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Nowadays, environmental problems are a research objective of scientifics and engi-
neers. The numerical resolution of these problems requires the formulation of mathe-
matical models. The application of a discretization technique for solving these models
(finite element, finite differences, finite volume, ...) leads to a linear systems of equa-
tions, which is usually large and sparse. On the other hand, these problems are time
dependent. This means to apply also a time discretization scheme, and thus, to solve
such a linear system in each time step. So, the size of the matrices and the high number
of linear systems that must be solved, make the resolution of large and sparse linear
systems an essential part for an efficient simulation.

Let consider,
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is a sparse, large and non-singular matrix. The first question is if it is better
a direct or an iterative resolution. The main disadvantage of direct methods compared
with iterative ones is that the rounding errors are accumulated along the process of
direct solving. Besides they require more memory requirements due to the fill-in
effect. On the other hand, in non steady problems where there must be solved many
similar systems of equations, iterative solvers may use the solution obtained in the
previous time step as initial guess. So, nowadays it is preferred to use iterative methods
in front of direct ones.

The reordering techniques based on graph theory, that were initially applied in the
resolution by using direct methods, provide matrices with smaller band width or a
sparsity pattern with a lower number of nonzero inner entries. However, this reduc-
tion may be used in order to improve the effect of incomplete factorization precondi-
tioners on the rate of convergence of iterative methods. The effect several reordering
techniques on different Krylov subspace methods may be seen in [1, 2, 3].
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On the other hand, preconditioning techniques improve the convergence of iterative
methods. Here, we study some standard preconditioners, in particular, Jacobi, SSOR,
ILU and sparse approximate inverse.

In addition, we study the three groups of Krylov subspace methods (see [4, 5]):
orthogonalisation, biorthogonalization and normal equation methods. For the case of
symmetric linear systems of equations, the use of Conjugate Gradient method [6] is
generally accepted as the best choice. It is based on the Lanczos orthogonalization
method which is a simplification of Arnoldi algorithm for symmetric linear systems.
Among orthogonalization methods for nonsymmetric linear systems that apply the
Arnoldi algorithm [7], we study the Generalized Minimum Residual method (GM-
RES) [8]. We also study the Biconjugate Gradient Stabilized method (Bi-CGSTAB)
[9] and its quasi-minimun residual version, the QMRCGSTAB algorithm [10].
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