
September 6, 2007 14:14 WSPC/INSTRUCTION FILE ACSproyect

Advances in Complex Systems
c© World Scientific Publishing Company

ALGORITHM COMPARING BINARY STRING PROBABILITIES
IN COMPLEX STOCHASTIC BOOLEAN SYSTEMS

USING INTRINSIC ORDER GRAPH

LUIS GONZÁLEZ

Department of Mathematics, University of Las Palmas de Gran Canaria,

Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria, Spain

luisglez@dma.ulpgc.es

Received (received date)
Revised (revised date)

This paper deals with a special kind of complex systems which depend on an arbitrary
(and usually large) number n of random Boolean variables. The so-called complex sto-

chastic Boolean systems often appear in many different scientific, technical or social
areas. Clearly, there are 2n binary states associated to such a complex system. Each

one of them is given by a binary string u = (u1, . . . , un) ∈ {0, 1}n of n bits, which has

a certain occurrence probability Pr {u}. The behavior of a complex stochastic Boolean
system is determined by the current values of its 2n binary n-tuple probabilities Pr {u}
and by the ordering between pairs of them. Hence, the intrinsic order graph provides

an useful representation of these systems by displaying (scaling) the 2n binary n-tuples
which are ordered with decreasing probabilities of occurrence. The intrinsic order re-

duces the complexity of the problem from the exponential (2n binary n-tuples) to the

linear (n Boolean variables). For any fixed binary n-tuple u, this paper presents a new,
simple algorithm enabling rapid, elegant determination of all the binary n-tuples v with

occurrence probabilities less than or equal to (greater than or equal to) Pr {u}. This

algorithm is closely related to the lexicographic (truth-table) order in {0, 1}n, and it is
illustrated through the connections (paths) in the intrinsic order graph.

Keywords: Complex stochastic Boolean system; binary string probabilities; lexicographic

order; intrinsic order; algorithm.

1. Introduction

Many different phenomena arising from diverse scientific fields could be considered
as a complex stochastic Boolean system (CSBS). By a CSBS we mean a complex
system depending on an arbitrary (and, in practice, usually large) number n of
random Boolean variables. That is, the n basic variables of the system are assumed
to be stochastic (i.e., non-deterministic) and to take only two possible values: 0, 1.
Using the statistical terminology, the mathematical modeling of such systems be-
gins with the simplest multi-dimensional discrete distribution used in Statistics, i.e.
the n-dimensional Bernoulli distribution [11]. It is the well known fact that this
distribution is consisting on n random variables, x1, . . . , xn, which only take two

1

September 6, 2007 14:14 WSPC/INSTRUCTION FILE ACSproyect

2 Luis González

possible values, zero or one, with probabilities

Pr {xi = 1} = pi, Pr {xi = 0} = 1− pi (1 ≤ i ≤ n) .

Of course, the sample space, i.e., the set of elementary events of this distribution is
the set of n-tuples of 0s and 1s

{0, 1}n = {(u1, . . . , un) | ui ∈ {0, 1} , 1 ≤ i ≤ n} .

In the following, the marginal Bernoulli variables x1, . . . , xn are mutually indepen-
dent, so that the probability of occurrence of each one of the 2n binary n-tuples,
u = (u1, . . . , un) ∈ {0, 1}n, can be computed as the product

Pr {(u1, . . . , un)} =
n∏

i=1

Pr {xi = ui} =
n∏

i=1

pui
i (1− pi)

1−ui , (1)

that is, Pr {(u1, . . . , un)} is the product, taken over all components ui (1 ≤ i ≤ n),
of factors pi or 1− pi if ui = 1 or ui = 0, respectively. Throughout this paper, the
binary n-tuples (u1, . . . , un) of 0s and 1s will be also called binary strings or system
binary states.

As an example of stochastic Boolean system, we can consider an application de-
pending on a certain number n of basic components. These applications, as well as
other CSBSs taken from diverse scientific areas (Climatology, Cybernetics, Econ-
omy, etc.), have been widely studied in Reliability Theory and Risk Analysis in
order to estimate the system unavailability using different probabilistic and/or al-
gebraic techniques. See, e.g., [1, 7, 8, 9] for more details about these techniques and
for many different real world cases of CSBSs.

As one specific application, we can consider an accumulator system of a pres-
sured water reactor in a nuclear power plant, taken from [12] and analyzed in [6].
This technical system depends on n = 83 independent basic components x1, . . . , x83.
Assuming that xi = 1 if component i fails, xi = 0 otherwise, then the fail-
ure and working probabilities of the component i will be Pr {xi = 1} = pi and
Pr {xi = 0} = 1−pi, respectively. Thus, this accumulator system can be considered
as a CSBS where each one of its 283 system binary states (i.e., binary 83-tuples
(u1, . . . , u83) ∈ {0, 1}83) describes the current situation of its 83 basic components
(failing or working). For instance, the binary 83-tuple

u = (1, . . . , 1︸ ︷︷ ︸
13

, 0, . . . , 0︸ ︷︷ ︸
70

) (2)

represents the system state for which the 13 first components fail, while the 70 last
components work. Moreover, the occurrence probability of u can be computed using
Eq. (1) as follows

Pr {u} =
13∏

i=1

pi

70∏
i=14

(1− pi) .

September 6, 2007 14:14 WSPC/INSTRUCTION FILE ACSproyect

Probabilities in complex stochastic Boolean systems 3

The behavior of each given stochastic Boolean system depends on the ordering
between the current values of the 2n binary n-tuple probabilities Pr {u}. At the same
time, the ordering between the occurrence probabilities, Pr {u} ,Pr {v}, of two given
binary n-tuples, u, v, depends, through Eq. (1), on the n current parameters {pi}n

i=1

of the associated Bernoulli distribution, as the following simple example shows.

Example 1. For n = 3, u = (0, 1, 1) , v = (1, 0, 0), using Eq. (1) we have

Pr {u} = (1− p1) p2 p3, Pr {v} = p1 (1− p2) (1− p3)

and then we can consider the following two cases

(a) p1 = 0.1, p2 = 0.2, p3 = 0.3 : Pr {u} = 0.054 < Pr {v} = 0.056,

(b) p1 = 0.2, p2 = 0.3, p3 = 0.4 : Pr {u} = 0.096 > Pr {v} = 0.084.

This example seems to suggest us that to order the 2n binary n-tuple probabil-
ities, we need to compute first all these probabilities using Eq. (1). Of course, this
procedure is not feasible due to its exponential nature. That is, since the number
of binary n-tuples u ∈ {0, 1}n is 2n then the problem of computing the 2n cor-
responding probabilities Pr {u} has exponential complexity with respect to n. To
overcome this obstacle, in [2, 6] we have established a simple, positional criterion
that allows us to compare (to order) a priori two given binary string probabili-
ties, Pr {u} ,Pr {v}, without computing them (i.e., without using Eq. (1)), simply
looking at the relative positions of their 0s and 1s. This positional criterion (which
will be described in the next section) is called intrinsic order criterion (IOC), be-
cause it is completely independent of the parameters pi (1 ≤ i ≤ n), and it only (i.e.,
intrinsically) depends on the positions of 0s and 1s in the binary n-tuples.

The only hypothesis that we require to apply the IOC to a CSBS is that its
n parameters {pi}n

i=1 must be less than or equal to one half and they must be
arranged in non-decreasing order, i.e.,

0 < p1 ≤ · · · ≤ pn ≤ 0.5. (3)

Fortunately, this assumption, although essential for theoretical results, is not re-
strictive for practical applications. Moreover, in this way, to compare binary string
probabilities, we drastically reduce the computational cost by avoiding computation,
via Eq. (1), of the 2n binary n-tuple probabilities Pr {u}. More precisely, instead
of computing and ordering the 2n binary n-tuple probabilities Pr {u} we only need
to order the n parameters pi, as shown in Eq. (3), and to apply IOC for rapidly
comparing pairs of binary string probabilities. In other words, we would be able to
understand the behavior of the whole CSBS from the behavior of its n basic com-
ponents, x1, . . . , xn, reducing the complexity of the problem from the exponential
to the linear!

It is also important to mention that not all pairs (u, v) of binary strings satisfy
IOC. Hence, there are two possibilities:

September 6, 2007 14:14 WSPC/INSTRUCTION FILE ACSproyect

4 Luis González

(i) When (u, v) ((v, u)) satisfies IOC, then we can assure that Pr {u} ≥ Pr {v}
(Pr {v} ≥ Pr {u}) without computing none of these two probabilities.

(ii) When none of the two pairs (u, v), (v, u) satisfies IOC, then we can assure
that sometimes Pr {u} ≥ Pr {v} and sometimes Pr {u} < Pr {v} depending on
the current values of the n basic probabilities p1, . . . , pn. So, in this case we
must use Eq. (1) to compute and compare Pr {u} and Pr {v}. The example 1
corresponds to this second possibility.

In this context, for any CSBS and for any given fixed binary n-tuple u, the main
goal of this paper is to provide a new algorithm for rapidly determining the set Cu

(Cu) of all binary n-tuples v whose occurrence probabilities are always less than or
equal to (greater than or equal to) the occurrence probability of u, i.e.,

Cu = {v ∈ {0, 1}n | Pr {u} ≥ Pr {v}} , (4)

Cu = {v ∈ {0, 1}n | Pr {u} ≤ Pr {v}} . (5)

Of course, the interest of this fast determination algorithm for both the theo-
retical and practical analysis of CSBSs is clear. Let us stress out that, by its own
nature, our algorithm will exclusively use pairs (u, v) or (v, u) of binary strings
satisfying IOC. The reason is that the algorithm determines the sets Cu and Cu,
i.e. those binary strings v such that the respective inequalities Pr {u} ≥ Pr {v} and
Pr {u} ≤ Pr {v}, always (intrinsically) hold. Hence, we are always in the above
defined case (i) and we do not need to use Eq. (1). Neither Pr {u} needs to be com-
puted to obtain the sets Cu and Cu! Hence, as explained above, the exponential
complexity (2n probabilities Pr {v}) is reduced to the linear complexity (n para-
meters pi). For instance, for the above mentioned accumulator system, the direct
determination of the sets Cu and Cu (without our algorithm) would be compu-
tationally extremely expensive: there are 283 binary 83-tuples. Furthermore, for a
CSBS with n = 203 basic components (a reasonable quantity in practice; see, e.g.,
[1, 7, 8]) this direct determination would be just physically impossible: there are
2203 binary 203-tuples. Think that the age of the Universe from the Big-Bang to
this instant is approximately 2203 Planck times. Let us recall that the Planck time is
the smallest possible measurement of time that has any physical meaning (1 Planck
time ≈ 5.391× 10−44 seconds).

Now, let us recall that the lexicographic order defined on the set {0, 1}n of
binary n-tuples, i.e. the usual truth-table order, coincides with the natural ordering
between the decimal representations of the binary n-tuples u ∈ {0, 1}n. This well-
known fact is illustrated for the set {0, 1}3 by Table 1, where the left column gives
the decimal representation u(10 of each binary 3-tuple u. Throughout this paper,
the decimal numbering of a binary string u is denoted by the symbol u(10. We use
this symbol, instead of the more usual notation u10, to avoid confusions with the
10-th component u10 of the binary string u.

The algorithm that is proposed in this paper is closely related to the lexico-
graphic (truth-table) order. This tight, elegant relationship between our algorithm

September 6, 2007 14:14 WSPC/INSTRUCTION FILE ACSproyect

Probabilities in complex stochastic Boolean systems 5

and the lexicographic order will be illustrated by the connections (paths) in the
intrinsic order graph.

Table 1. Lexicographic or-

dering in {0, 1}3 corre-

sponds to decimal number-
ing of binary 3-tuples.

u(10 u = (u1, u2, u3)

0 (0, 0, 0)

1 (0, 0, 1)
2 (0, 1, 0)

3 (0, 1, 1)

4 (1, 0, 0)
5 (1, 0, 1)

6 (1, 1, 0)

7 (1, 1, 1)

This paper has been organized as follows. In Section 2, we present overview of
intrinsic ordering enabling non-specialists to follow the paper without difficulties.
Sections 3 and 4 are respectively devoted to obtain the sets Cu and Cu, for each
given binary n-tuple u. Finally, conclusions are presented in Section 5.

2. Background on Intrinsic Ordering

2.1. Basic notation

First, the basic notation is presented in the following definition.

Definition 1. For all binary n-tuple u = (u1, . . . , un) ∈ {0, 1}n

(i) The Hamming weight (or, simply, weight) of u is the number of 1 bits in u

wH (u) =
n∑

i=1

ui.

(ii) The decimal numbering of u is its representation in the decimal number system

u(10 = (u1, . . . , ui, . . . , un)(10 =
n∑

i=1

2n−iui.

(iii) The lexicographic order in {0, 1}n is the usual truth-table order between binary
n-tuples. It coincides with the natural ordering between the decimal represen-
tations of the binary n-tuples, i.e., u(10 ≤ v(10 (see Table 1).

(iv) The vector of positions of 1s of u is the vector of positions of its 1 bits, numbered
from the right-most position 0 to the left-most position n − 1. That is, the n

positions in the binary n-tuple u are labeled with the corresponding exponents,

September 6, 2007 14:14 WSPC/INSTRUCTION FILE ACSproyect

6 Luis González

in the powers of 2, used when converting u from binary to decimal. For all n-
tuple u with weight wH (u) = m (1 ≤ m ≤ n), we denote

u = [i1, . . . , im]n ⇔ u(10 = 2i1 + · · ·+ 2im , 0 ≤ i1 < · · · < im ≤ n− 1.

(v) The complementary n-tuple of a binary n-tuple u is obtained by changing its
0s by 1s and its 1s by 0s

uc = (u1, . . . , un)c = (1− u1, . . . , 1− un) .

(vi) The complementary set of a set S of binary n-tuples is the set of the comple-
mentary n-tuples of all the n-tuples of S. For all S ⊆ {0, 1}n

Sc = {uc | u ∈ S } .

Example 2. For n = 6 and u = (1, 0, 1, 0, 1, 1) ∈ {0, 1}6, we have

wH (u) = 4, u(10 = 20 + 21 + 23 + 25 = 43, u = [0, 1, 3, 5]6 , uc = (0, 1, 0, 1, 0, 0) .

Remark 1. Throughout this paper, we shall denote any binary n-tuple u, indis-
tinctly by its binary representation, by its decimal representation or by the vector
of positions of its 1s, since each one of them clearly identifies the binary n-tuple.
We use the symbol “≡” to denote the equivalence between these different represen-
tations of the same binary n-tuple, i.e.,

(u1, . . . , un) ≡ u(10 ≡ [i1, . . . , im]n , e.g., (1, 0, 1, 0, 1, 1) ≡ 43 ≡ [0, 1, 3, 5]6 .

Note that the sum of arbitrary two complementary binary n-tuples is always same

u + uc = (u1, . . . , un) + (1− u1, . . . , 1− un) = (1, . . . , 1︸ ︷︷ ︸
n

)

≡ 20 + · · ·+ 2n−1 = 2n − 1 = u(10 + uc
(10, (6)

e.g., Example 2 gives

u + uc = (1, 0, 1, 0, 1, 1) + (0, 1, 0, 1, 0, 0) = (1, 1, 1, 1, 1, 1)

≡ 20 + 21 + 22 + 23 + 24 + 25 = 63 = 26 − 1.

Remark 2. As is well-known, the lexicographic order in the set {0, 1}n (Definition
1-(iii)) can be easily characterized as follows. Let u = (u1, . . . , un) , v = (v1, . . . , vn)
be two any binary n-tuples. Then u precedes v in the lexicographic (truth-table)
order, i.e., u(10 < v(10, if and only if the left-most column of matrix

Mu
v =

(
u1 . . . un

v1 . . . vn

)
different from

(
0
0

)
and

(
1
1

)
, is

(
0
1

)
, or equivalently, if and only if the left-most column

of matrix

Mv
u =

(
v1 . . . vn

u1 . . . un

)

September 6, 2007 14:14 WSPC/INSTRUCTION FILE ACSproyect

Probabilities in complex stochastic Boolean systems 7

different from
(
0
0

)
and

(
1
1

)
, is

(
1
0

)
(see Table 1).

Example 3. Let n = 7 and u = (1, 0, 1, 0, 1, 1, 1) , v = (1, 0, 1, 1, 0, 1, 0) ∈ {0, 1}7.
Then, according to Remark 2, u precedes v in the lexicographic (truth-table) order,
i.e., u(10 = 87 < v(10 = 90, because the left-most column of matrix

Mu
v =

(
1 0 1 0 1 1 1
1 0 1 1 0 1 0

)
different from

(
0
0

)
and

(
1
1

)
, is (its fourth column)

(
0
1

)
, or equivalently, because the

left-most column of matrix

Mv
u =

(
1 0 1 1 0 1 0
1 0 1 0 1 1 1

)
different from

(
0
0

)
and

(
1
1

)
, is (its fourth column)

(
1
0

)
.

Remark 3. In particular, as an immediate consequence of the matrix description
of the lexicographic ordering in {0, 1}n (Remark 2), we derive that, for all n ≥ 1,
the first and last binary n-tuples, respectively, in the lexicographic (truth-table)
order are

(0, . . . , 0︸ ︷︷ ︸
n

) and (1, . . . , 1︸ ︷︷ ︸
n

),

respectively (see Table 1).

2.2. Intrinsic order

As we mentioned in Section 1, the evaluation of the 2n binary n-tuple probabilities
Pr {u} of a CSBS using Eq. (1) to order them is not in general possible due to the
exponential nature of the problem. To overcome this obstacle, the next theorem
(see [2, 6]) provides us with a simple criterion that allows to order two given binary
string probabilities, Pr {u} ,Pr {v}, without computing them, simply looking at the
relative positions of their 0s and 1s. Recall that in Section 1 we mentioned that this
positional criterion is called the intrinsic order criterion (IOC).

Theorem 1. (The intrinsic order theorem) Let x1, . . . , xn be n independent
Bernoulli variables, with parameters pi = Pr {xi = 1} (1 ≤ i ≤ n) satisfying:

0 < p1 ≤ · · · ≤ pn ≤
1
2
. (7)

Then, the probability of the n-tuple u = (u1, . . . , un) ∈ {0, 1}n is intrinsically greater
than or equal to the probability of the n-tuple v = (v1, . . . , vn) ∈ {0, 1}n (that is, for
all set of parameters {pi}n

i=1 such that (7)) if, and only if, the matrix

Mu
v =

(
u1 . . . un

v1 . . . vn

)

September 6, 2007 14:14 WSPC/INSTRUCTION FILE ACSproyect

8 Luis González

either has no
(
1
0

)
columns, or for each

(
1
0

)
column in Mu

v there exists (at least) one
corresponding preceding

(
0
1

)
column (IOC).

Remark 4. In the following, we assume that the parameters pi always satisfy
condition (7). Note that, fortunately for the analysis of CSBSs, this hypothesis is
not restrictive in practice. Indeed, if pi > 0.5 for some i, then we only need to
consider the variable xi = 1 − xi instead of xi. Next, we order the n Bernoulli
variables by increasing order of their probabilities.

Remark 5. The
(
0
1

)
column preceding to each

(
1
0

)
column is not required to

be necessarily placed at the immediately previous position, but just at previous
position.

Remark 6. The term corresponding used in Theorem 1, has the following mean-
ing. For each two

(
1
0

)
columns in matrix Mu

v , there must exist (at least) two different(
0
1

)
columns preceding to each other. In other words, IOC can be reformulated as

follows. Either matrix Mu
v has no

(
1
0

)
columns, or for each given

(
1
0

)
column C1

0 in
Mu

v the number of
(
0
1

)
columns preceding C1

0 is strictly greater than the number of(
1
0

)
columns preceding C1

0 .

The matrix condition stated by Theorem 1 naturally leads to define the follow-
ing order relation between the binary n-tuples of 0s and 1s. We use the standard
abbreviations “iff” and “s.t.” to denote the mathematical expressions “if and only
if” and “such that”, respectively.

Definition 2. For all u, v ∈ {0, 1}n

u � v iff Pr {u} ≥ Pr {v} for all set {pi}n
i=1 s.t. (7) iff Mu

v satisfies IOC.

The order relation “�” defined on {0, 1}n is called intrinsic order, because it
intrinsically depends on the positions of 0s and 1s, and it is independent of the
values of the parameters {pi}n

i=1 satisfying hypothesis (7). Now, we can rewrite the
two possibilities (i) & (ii), described in Section 1, in a more precise way as follows.

For each given pair (u, v) of binary n-tuples two cases are possible:

(i) When u � v (resp. v � u), i.e., when Mu
v (resp. Mv

u) satisfies IOC, then we can
assure that Pr {u} ≥ Pr {v} (resp. Pr {v} ≥ Pr {u}) for all set of parameters
{pi}n

i=1 satisfying (7), without computing the probabilities Pr {u} , Pr {v}. In
this case we say that u and v are comparable by intrinsic order.

(ii) When neither u � v, nor v � u, i.e., when neither matrix Mu
v , nor matrix Mv

u

satisfies IOC, then sometimes Pr {u} ≥ Pr {v} and sometimes Pr {u} < Pr {v}
depending on the current values of the parameters {pi}n

i=1 satisfying (7). So, in
this case we must use Eq. (1) to compute and compare Pr {u} and Pr {v}. In
this case we say that u and v are incomparable by intrinsic order.

The binary relation “�” is a partial order relation on the set {0, 1}n. In the
following, we shall denote the corresponding partially ordered set (poset, for short)

September 6, 2007 14:14 WSPC/INSTRUCTION FILE ACSproyect

Probabilities in complex stochastic Boolean systems 9

by In = ({0, 1}n
,�). We refer the reader to [10] for more details about posets. The

following examples illustrate Theorem 1 and Definition 2.

Example 4. For n = 3, (0, 1, 1) � (1, 0, 0) and (1, 0, 0) � (0, 1, 1) because

neither
(

0 1 1
1 0 0

)
, nor

(
1 0 0
0 1 1

)
satisfies IOC (Remark 6). Hence, the ordering between the occurrence probabilities
Pr {(0, 1, 1}) and Pr {(1, 0, 0}) depends on the current values of the basic probabil-
ities 0 < p1 ≤ p2 ≤ p3 ≤ 0.5, as Example 1 has shown.

Example 5. For n = 4, (0, 0, 1, 1) � (1, 1, 0, 0) because matrix(
0 0 1 1
1 1 0 0

)
satisfies IOC (Remark 5). Hence,

Pr { (0, 0, 1, 1)} ≥ Pr { (1, 1, 0, 0)} , i.e.,

(1− p1) (1− p2) p3p4 ≥ p1p2 (1− p3) (1− p4) for all 0 < p1 ≤ p2 ≤ p3 ≤ p4 ≤ 0.5.

Example 6. For n = 83 and for the accumulator system mentioned in Section 1

u = (0, . . . , 0︸ ︷︷ ︸
38

, 1, . . . , 1︸ ︷︷ ︸
45

) � (0, . . . , 0︸ ︷︷ ︸
30

, 1, . . . , 1︸ ︷︷ ︸
48

, 0, . . . , 0︸ ︷︷ ︸
5

) = v

because matrix 0 . . . 0 0 . . . 0 1 . . . 1 1 . . . 1
0 . . . 0︸ ︷︷ ︸

30

1 . . . 1︸ ︷︷ ︸
8

1 . . . 1︸ ︷︷ ︸
40

0 . . . 0︸ ︷︷ ︸
5


satisfies IOC (Remark 5). Hence, Pr {u} ≥ Pr {v} for all 0 < p1 ≤ · · · ≤ p83 ≤ 0.5.

Example 7. For all n ≥ 1, and for all u = (u1, . . . , un) ∈ {0, 1}n

0 ≡ (0, . . . , 0) � (u1, . . . , un) � (1, . . . , 1) ≡ 2n − 1,

because both matrices (
0 . . . 0
u1 . . . un

)
and

(
u1 . . . un

1 . . . 1

)
satisfy IOC, since they have no

(
1
0

)
columns. Hence, for all u = (u1, . . . , un) ∈ {0, 1}n

Pr {(0, . . . , 0)} ≥ Pr {(u1, . . . , un)} ≥ Pr {(1, . . . , 1)} ,

for all 0 < p1 ≤ · · · ≤ pn ≤ 0.5. So, 0 and 2n − 1 are the maximum and minimum
elements, respectively, in the poset In.

To finish this subsection, we describe the tight relationship between the lexico-
graphic and intrinsic orderings in the set {0, 1}n of binary n-tuples. Suppose that
u is intrinsically greater than v, i.e., u � v. Thus, according to Definition 2, matrix

September 6, 2007 14:14 WSPC/INSTRUCTION FILE ACSproyect

10 Luis González

Mu
v satisfies IOC. Consequently, the left-most column of Mu

v , different from
(
0
0

)
and

(
1
1

)
, must be

(
0
1

)
because, otherwise, if this column is

(
1
0

)
then Mu

v does not
satisfy IOC. But to affirm that the left-most column of Mu

v , different from
(
0
0

)
and(

1
1

)
, is

(
0
1

)
is equivalent to say that u precedes v in the truth-table (lexicographic)

order, i.e., u(10 < v(10 (Remark 2, Example 3). In this way, we have proved that
the lexicographic order is a necessary condition for intrinsic order. More precisely

Corollary 1. For all n ≥ 1 and for all u, v ∈ {0, 1}n

u � v ⇒ u(10 < v(10, i.e., u � v ⇒ u(10 ≤ v(10. (8)

Remark 7. The converse of Corollary 1 is false, i.e., lexicographic order is not a
sufficient condition for intrinsic order. Otherwise, intrinsic order and lexicographic
order would be the same thing and this paper would has not any sense! The simplest
counter-example that one can find is: For n = 3, u = (0, 1, 1) , v = (1, 0, 0)

u(10 = 3 < v(10 = 4, but u � v

as shown by (the left matrix in) Example 4 and as confirmed by Example 1.

We refer the reader to [2, 3] for more theoretical properties of the intrinsic order.
For applications of the intrinsic order to the reliability analysis of technical systems
and, in general, of any CSBS, see [5, 6].

2.3. Intrinsic order graph

Now, we present the graphical representation of the poset In = ({0, 1}n
,�). The

usual representation of a poset is its Hasse diagram (see [10] for more details about
these diagrams). Specifically, for the intrinsic partial order relation, the Hasse dia-
gram is a directed graph (digraph, for short) whose vertices are the binary n-tuples
of 0s and 1s, and whose edges connect each pair (u, v) of binary n-tuples whenever
u is intrinsically greater than v and there are no other elements between them, i.e.,

u � v and there is no w ∈ {0, 1}n s.t. u � w � v.

Consequently, there are two possibilities:

(i) Each pair (u, v) of vertices connected in the Hasse diagram of In either by one
edge, or by a path consisting on more than one edge means that u and v are
comparable by intrinsic order, i.e., u � v or v � u. This situation corresponds
to case (i) in the previous subsection.

(ii) On the contrary, each pair (u, v) of vertices non connected in the Hasse diagram
of In means that u and v are incomparable by intrinsic order, i.e., u � v and
v � u. This situation corresponds to case (ii) in the previous subsection.

Moreover, according to the usual convention for Hasse diagrams, if u � v then u

is drawn above v. The Hasse diagram of the poset In will be also called the intrinsic
order graph for n variables. From now on, looking for a more comfortable and simple

September 6, 2007 14:14 WSPC/INSTRUCTION FILE ACSproyect

Probabilities in complex stochastic Boolean systems 11

notation, we shall denote the vertices (binary n-tuples) in the intrinsic order graph
by their decimal numbering (Remark 1).

For small values of n, the Hasse diagram of In can be constructed by direct
application of IOC. For instance, the Hasse diagram of I1 = ({0, 1} ,�) is

0
|
1

(9)

because 0 � 1, since matrix
(
0
1

)
satisfies IOC (it has no

(
1
0

)
columns!). However,

for large values of n we need a more efficient method. For this purpose, in [4] we
have developed an algorithm for iteratively building up the digraph of In from the
digraph (9) of I1, for all n ≥ 2. The next theorem states this algorithm, which
uses the decimal representation of the binary strings. See [4] for the proof and for
additional properties of the intrinsic order graph.

Theorem 2. (Iterative construction of In from I1) For all n > 1, the di-
graph of In = {0, . . . , 2n − 1} can be drawn simply by adding to the digraph of
In−1 =

{
0, . . . , 2n−1 − 1

}
its isomorphic copy 2n−1 + In−1 =

{
2n−1, . . . , 2n − 1

}
.

This addition must be performed placing the powers of 2 at consecutive levels of the
Hasse diagram of In. Finally, the edges connecting one vertex u of In−1 with the
other vertex v of 2n−1 + In−1 are given by the set of vertex pairs{

(u, v) ≡
(
u(10 , 2n−2 + u(10

) ∣∣ 2n−2 ≤ u(10 ≤ 2n−1 − 1
}

.

In Figure 1, we illustrate the algorithm described by Theorem 2 with the intrinsic
order graph for n = 1, 2, 3, 4. Of course, the digraphs of I1, I2, I3, I4 can be also
drawn substituting the decimal representations of their 2, 4, 8, 16 nodes or binary
1, 2, 3, 4-tuples, respectively, by their corresponding binary representations.

The following two examples respectively correspond to the above cases (i) & (ii).

(i) Looking at the Hasse diagram or digraph of I4, the most right one in Figure
1, we observe that the binary 4-tuples 3 and 12 are connected in the digraph
(it does not mind if the connection is by one edge or by a path with length
> 1), and 3 is drawn above 12. Hence, they are comparable by intrinsic order.
Using the binary representation 3 ≡ (0, 0, 1, 1) and 12 ≡ (1, 1, 0, 0), this is in
accordance with Example 5 where we have shown that (0, 0, 1, 1) � (1, 1, 0, 0).

(ii) Looking at the Hasse diagram or digraph of I3, the third one from left to right
in Figure 1, we observe that the binary 3-tuples 3 and 4 are non connected in
the digraph. Hence, they are incomparable by intrinsic order. Using the binary
representation 3 ≡ (0, 1, 1) and 4 ≡ (1, 0, 0), this is in accordance with Example
4 where we have shown that (0, 1, 1) � (1, 0, 0) and (1, 0, 0) � (0, 1, 1).

Also, we can confirm that for the four digraphs n = 1, 2, 3, 4, the maximum and
minimum elements are 0 and 2n − 1 = 1, 3, 7, 15, respectively, as we have proved
in Example 7. Finally, looking at any of the four Hasse diagrams, we can confirm

September 6, 2007 14:14 WSPC/INSTRUCTION FILE ACSproyect

12 Luis González

0
|
1

0
|
1
|
2
|
3

0
|
1
|
2
| �
3 4

� |
5
|
6
|
7

0
|
1
|
2
| �
3 4

� | �
5 8
| � |
6 9
| � |
7 10

� | �
11 12

� |
13
|

14
|

15

Fig. 1. The intrinsic order graph for n = 1, 2, 3, 4 shown from the left side to the right one. Nodes
connected either by one edge, or by a longer path are comparable, i.e., u � v if u is connected

with v and drawn above v. Non-connected nodes are incomparable, i.e., u � v and v � u.

Corollary 1. Whenever u is written above v and they are connected (either by one
edge, or by a longer path) then the decimal numbering of u is less than the decimal
numbering of v. In other words, whenever u � v then u(10 < u(10, as Corollary 1
has stated.

3. The Set Cu

Using the ideas and definitions presented in Section 2, we can reformulate our main
goal stated in Section 1 and the corresponding Eq. (4) and Eq. (5), in a more
precise and rigorous way, as follows. For any given binary n-tuple u, our purpose is
to characterize, in an efficient way, the sets

Cu = {v ∈ {0, 1}n | Pr {u} ≥ Pr {v} , ∀ {pi}n
i=1 s.t. (7)} ,

Cu = {v ∈ {0, 1}n | Pr {u} ≤ Pr {v} , ∀ {pi}n
i=1 s.t. (7)} .

Let us rewrite it in a more compact form, according to Definition 2

Cu = {v ∈ {0, 1}n | u � v } , (10)

September 6, 2007 14:14 WSPC/INSTRUCTION FILE ACSproyect

Probabilities in complex stochastic Boolean systems 13

Cu = {v ∈ {0, 1}n | u � v } . (11)

Now, let us denote by Lu (resp. Lu) the set of all binary n-tuples v whose decimal
numbering are greater than or equal to (resp. less than or equal to) the decimal
numbering of u, i.e.,

Lu =
{
v ∈ {0, 1}n ∣∣ u(10 ≤ v(10

}
=

{
v ∈ {0, 1}n ∣∣ u(10 ≤ v(10 ≤ 2n − 1

}
, (12)

Lu =
{
v ∈ {0, 1}n ∣∣ u(10 ≥ v(10

}
=

{
v ∈ {0, 1}n ∣∣ u(10 ≥ v(10 ≥ 0

}
. (13)

Note that the second expression for the set Lu in Eq. (12) is an obvious consequence
of the fact that the last binary n-tuple in the lexicographic (truth-table) order is
(see Remark 3)

(1, . . . , 1︸ ︷︷ ︸
n

) ≡ (1, . . . , 1︸ ︷︷ ︸
n

)(10 = 20 + · · ·+ 2n−1 = 2n − 1.

Analogously, the second expression for the set Lu in Eq. (13) is an obvious conse-
quence of the fact that the first binary n-tuple in the lexicographic (truth-table)
order is (see Remark 3)

(0, . . . , 0︸ ︷︷ ︸
n

) ≡ (0, . . . , 0︸ ︷︷ ︸
n

)(10 = 0.

In this section we address only the case of the set Cu, while the next section is
devoted to the set Cu. First, taking into account Corollary 1, we have u � v implies
u(10 ≤ v(10, that is, we have

Cu = {v ∈ {0, 1}n | u � v } ⊆
{
v ∈ {0, 1}n ∣∣ u(10 ≤ v(10

}
= Lu. (14)

3.1. A relevant special case

From Eq. 14, we have the inclusion Cu ⊆ Lu. Moreover, sometimes, for some binary
strings u these two sets coincide. Thus, before answering to the general question of
identifying the set Cu for all binary strings u, we consider the following relevant
special case/question: for which binary n-tuples u, the set inclusion Cu ⊆ Lu is in
fact the set equality Cu = Lu? In other words: can we identify the binary n-tuples u

for which the set of binary n-tuples with smaller occurrence probabilities, is simply,
exactly the set of binary n-tuples with larger decimal numbering? The following
theorem answers to this question characterizing, by a surprisingly easy criterion,
those binary strings u for which Cu = Lu.

Theorem 3. Let n ≥ 1 and u = (u1, . . . , un) ∈ {0, 1}n. Then

Cu = Lu (15)

if and only if u does not contain any 0 bit followed by two (or more) 1 bits, placed
at consecutive or non consecutive positions, i.e., u has the general pattern

u = (1, . . . , 1︸ ︷︷ ︸
p

, 0, . . . , 0︸ ︷︷ ︸
q

, 1︸︷︷︸
1

, 0, . . . , 0︸ ︷︷ ︸
r

), p + q + r + 1 = n, (16)

September 6, 2007 14:14 WSPC/INSTRUCTION FILE ACSproyect

14 Luis González

where any (but not all) of the above four subsets of bits grouped together can be
omitted.

Proof. Necessary condition. Suppose that u contains, at least, one 0 bit followed by
two (or more) 1 bits. In other words, (u1, . . . , un) contains, at least, one subsequence
of three bits 0 . . . 1 . . . 1 (placed at consecutive or non consecutive positions), that
is,

∃ 1 ≤ i < j < k ≤ n s.t. ui = 0, uj = 1, uk = 1.

Then defining v = (v1, . . . , vn) by

vl =
{

1− ul if l = i, j, k,

ul if l 6= i, j, k,

we have

Mu
v =

(
u1 . . . ui−1 0 . . . 1 . . . 1 uk+1 . . . un

u1 . . . ui−1 1 . . . 0 . . . 0 uk+1 . . . un

)
, (17)

and then, obviously, u(10 ≤ v(10. However, u � v because matrix (17) contains
exactly two

(
1
0

)
columns preceded by exactly one

(
0
1

)
column, and then it does not

satisfies IOC (Remark 6). Hence, v ∈ Lu but v /∈ Cu, so that the inclusion (14) is
strict and then the equality (15) does not hold.

Sufficient condition. Conversely, suppose that u does not contain any 0 bit fol-
lowed by two (or more) 1 bits. Then the general pattern of u is (16), where any (but
not all) of the underlined groups of bits can be omitted. Let v ∈ Lu, i.e., u(10 ≤ v(10

and consider the matrix

Mu
v =

(
1 . . . 1 0 . . . 0 1 0 . . . 0
v1 . . . vp vp+1 . . . vp+q vp+q+1 vp+q+2 . . . vn

)
. (18)

Let us prove that matrix (18) satisfies IOC. First, note that from the assumption
u(10 ≤ v(10 we can assure that v1 = · · · = vp = 1. Now, there are two possible cases:

• If vp+q+1 = 1, then matrix (18) has no
(
1
0

)
columns. Thus, (18) satisfies IOC.

• If vp+q+1 = 0, then taking again into account that u(10 ≤ v(10, we can assure that
at least one of the components vp+1, . . . , vp+q of v is 1. Otherwise, the left-most
column of matrix (18), different from

(
0
0

)
and

(
1
1

)
, would be its (p + q + 1)-th

column
(
1
0

)
, so that u(10 > v(10 which contradicts the assumption u(10 ≤ v(10.

Consequently, (18) has only one
(
1
0

)
column (the (p + q + 1)-th one), which is

preceded by, at least, one
(
0
1

)
column (placed among the positions, p+1, . . . , p+q).

Thus, (18) satisfies IOC.

So, we have shown that for all v ∈ Lu, matrix (18) satisfies IOC, i.e., u � v,
i.e, v ∈ Cu. This proves the inclusion Lu ⊆ Cu which, together with the reciprocal
inclusion (14), leads to the equality (15).

September 6, 2007 14:14 WSPC/INSTRUCTION FILE ACSproyect

Probabilities in complex stochastic Boolean systems 15

Example 8. For n = 4, the 11 following binary 4-tuples

0 ≡ (0, 0, 0, 0) , 1 ≡ (0, 0, 0, 1) , 2 ≡ (0, 0, 1, 0) , 4 ≡ (0, 1, 0, 0) , 8 ≡ (1, 0, 0, 0) ,

9 ≡ (1, 0, 0, 1) , 10 ≡ (1, 0, 1, 0) , 12 ≡ (1, 1, 0, 0) , 13 ≡ (1, 1, 0, 1) ,

14 ≡ (1, 1, 1, 0) , 15 ≡ (1, 1, 1, 1) , (19)

and only them, have the pattern (16). In other words, none of them contains a 0 bit
followed by two or three 1 bits. Therefore, Theorem 3 assures as that for each one
of these “exclusive” 4-tuples u, the set Cu of 4-tuples v with occurrence probability
less than or equal to the occurrence probability of u is exactly (and simply) the
set Lu of 4-tuples v with decimal numbering greater than or equal to the decimal
numbering of u. This fact can be illustrated by Figure 1 for each one of the binary
4-tuples given in (19). For instance, for u = (1, 0, 0, 1) ≡ 9, using Eq. (12), we have

Cu = Lu =
{

v ∈ {0, 1}4
∣∣ u(10 = 9 ≤ v(10 ≤ 24 − 1

}
= {9, 10, 11, 12, 13, 14, 15}

and looking at the right-most digraph (n = 4) in Figure 1, we observe that
10, 11, 12, 13, 14, 15 are exactly the vertices connected (comparable by intrinsic or-
der) with 9 and drawn below 9.

Example 9. For the accumulator system with n = 83 basic components described
in Section 1, the binary 83-tuple u defined by Eq. (2) has the pattern (16), i.e., u

does not contain any 0 bit followed by two (or more) 1 bits. Therefore, Theorem 3
assures that Cu = Lu. Hence, using Eq. (12), we get that Cu is given by the closed
interval

Cu = Lu =
{

v ∈ {0, 1}83
∣∣ u(10 ≤ v(10 ≤ 283 − 1

}
=

[
270 + · · ·+ 282 , 283 − 1

]
,

since

u = (1, . . . , 1︸ ︷︷ ︸
13

, 0, . . . , 0︸ ︷︷ ︸
70

) ≡ 270 + · · ·+ 282 = u(10.

3.2. The general case

In the previous subsection, Theorem 3 has answered to the proposed question,
namely the characterization of the set Cu, only for a special case: when u satisfies
the positional condition (16). In this case, and only in this case, Cu simply coincides
with Lu. Unfortunately, not all binary strings have the pattern (16). For these
“unfortunate” cases, the characterization Theorem 3 assures us that the set equality
Cu = Lu does not hold. In other words, the set inclusion Cu ⊆ Lu is strict, i.e.,
Cu $ Lu. In this case we proceed as follows. To determine the set Cu we develop
an algorithm for obtaining the set difference or complementary set

Cu = Lu − Cu = {v ∈ {0, 1}n | v ∈ Lu, v /∈ Cu }
=

{
v ∈ {0, 1}n ∣∣ u(10 < v(10, u � v

}
, (20)

September 6, 2007 14:14 WSPC/INSTRUCTION FILE ACSproyect

16 Luis González

and then Cu will be immediately obtained as the set difference

Cu = Lu − Cu. (21)

For instance, the binary 3-tuple u = (0, 1, 1) ≡ 3 contains a 0 bit followed by two
1 bits (it has not the pattern (16)). Hence, Cu $ Lu, and to obtain the set Cu

we shall apply our algorithm to obtain the set (this particular application of the
algorithm will be shown in Example 13)

Cu =
{

v ∈ {0, 1}3
∣∣ u(10 = 3 < v(10, u � v

}
= {4}

and taking into account that (see Eq. (12))

Lu =
{

v ∈ {0, 1}3
∣∣ u(10 = 3 ≤ v(10 ≤ 23 − 1

}
= {3, 4, 5, 6, 7}

then, using Eq. (21), we immediately obtain

Cu = Lu − Cu = {3, 4, 5, 6, 7} − {4} = {3, 5, 6, 7} .

This example can be confirmed by (the third digraph of) Figure 1. On one hand, we
observe that the only node with decimal numbering greater than or equal to 3 and
non connected with 3 is 4: the only element of Cu. On the other hand, we observe
that the nodes with decimal numbering greater than or equal to 3, connected with
3 and drawn below 3 are 3, 5, 6, 7: the elements of Cu. So, the problem is reduced
to present an algorithm for obtaining the set Cu. In the next theorem we present
this algorithm, but first we need two auxiliary lemmas.

Lemma 1. Let n ≥ 1 and u = (u1, . . . , un) , v = (v1, . . . , vn) ∈ {0, 1}n. Then
v ∈ Cu if and only if the matrix

Mu
v =

(
u1 . . . un

v1 . . . vn

)
can be split into the two following submatrices Mu′

v′ and Mu′′

v′′

Mu
v =

(
Mu′

v′
... Mu′′

v′′

)
, Mu′

v′ =
(

u1 . . . ur

v1 . . . vr

)
, Mu′′

v′′ =
(

ur+1 . . . ul . . . un

vr+1 . . . vl . . . vn

)
, (22)

where
(i) Mu′

v′ satisfies IOC, it has the same number of
(
1
0

)
columns as

(
0
1

)
columns, its

left-most column different from
(
0
0

)
and

(
1
1

)
is

(
0
1

)
, and its right-most (or its last)

column is
(
ur
vr

)
=

(
1
0

)
.

(ii) Mu′′

v′′ satisfies that its left-most column different from
(
0
0

)
and

(
1
1

)
is

(
ul
vl

)
=

(
1
0

)
.

Proof. Using Eq. (20), we have that v ∈ Cu if and only if u(10 < v(10 and u � v. On
one hand, according to Remark 2, u(10 < v(10 if and only if the first or the left-most
column of Mu

v , different from
(
0
0

)
and

(
1
1

)
, is

(
0
1

)
. Call this column

(uf
vf

)
. On the other

hand, u � v if and only if matrix Mu
v contains, at least, one

(
1
0

)
column without

its corresponding preceding
(
0
1

)
column, i.e., avoiding IOC (Definition 2, Theorem

September 6, 2007 14:14 WSPC/INSTRUCTION FILE ACSproyect

Probabilities in complex stochastic Boolean systems 17

1). Let
(
ul
vl

)
be the left-most

(
1
0

)
column of matrix Mu

v avoiding IOC (3 ≤ l ≤ n).
Thus, according to Remark 6,

(
ul
vl

)
is exactly the left-most

(
1
0

)
column of matrix

Mu
v for which the number of

(
1
0

)
columns and the number of

(
0
1

)
columns preceding

it coincide. Let
(
ur
vr

)
be the right-most

(
1
0

)
column preceding

(
ul
vl

)
(2 ≤ r < l).

That is, more briefly:
(
ur
vr

)
is defined as the right-most

(
1
0

)
column preceding the

left-most
(
1
0

)
column

(
ul
vl

)
of matrix Mu

v that avoids IOC. From these definitions of
the columns

(
ul
vl

)
and

(
ur
vr

)
, we conclude that v ∈ Cu if and only in the split (22) of

Mu
v the following conditions hold

• Mu′

v′ satisfies IOC, because
(
ul
vl

)
is the left-most

(
1
0

)
column of matrix Mu

v avoiding
IOC and r < l.

• Mu′

v′ has the same number of
(
1
0

)
columns as

(
0
1

)
columns, because

(
ul
vl

)
is the

left-most
(
1
0

)
column of matrix Mu

v for which the number of
(
1
0

)
columns and the

number of
(
0
1

)
columns preceding it coincide, and all these columns belong to the

submatrix Mu′

v′ , because of the definition of
(
ur
vr

)
.

• The left-most column of Mu′

v′ different from
(
0
0

)
and

(
1
1

)
is

(
0
1

)
, because the left-

most column of Mu
v , different from

(
0
0

)
and

(
1
1

)
, is

(uf
vf

)
=

(
0
1

)
and

(uf
vf

)
necessarily

belongs to Mu′

v′ , since Mu′

v′ satisfies IOC and then it must contain (at least) one(
0
1

)
preceding

(
ur
vr

)
=

(
1
0

)
(Theorem 1).

• The right-most column of Mu′

v′ is
(
ur
vr

)
=

(
1
0

)
, by construction.

• The left-most column of Mu′′

v′′ , different from
(
0
0

)
and

(
1
1

)
, is

(
ul
vl

)
=

(
1
0

)
, by

construction.

The following example illustrates Lemma 1.

Example 10. Let n = 11 and let

u = (0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1) ,

v = (0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1) .

Then u and v satisfy the hypothesis v ∈ Cu of Lemma 1. That is, on one hand,
u(10 < v(10 because u(10 = 343 < v(10 = 417 (Definition 1-(ii)) or, equivalently,
because the left-most column of the matrix

Mu
v =

(
0 0 1 0 1 0 1 0 1 1 1
0 0 1 1 0 1 0 0 0 0 1

)
(23)

different from
(
0
0

)
and

(
1
1

)
, is (its fourth column)

(
0
1

)
(Remark 2).

On the other hand, u � v because the matrix (23) does not satisfy IOC. In fact,
the left-most

(
1
0

)
column of Mu

v without its corresponding preceding
(
0
1

)
column,

i.e. the left-most
(
1
0

)
column of Mu

v for which the number of
(
1
0

)
columns and the

number of
(
0
1

)
columns preceding it coincide (in this example, this number is 2) is

its ninth column
(
ul
vl

)
=

(
u9
v9

)
=

(
1
0

)
, i.e., l = 9.

Hence, we can apply Lemma 1, where
(
ur
vr

)
was defined as the right-most

(
1
0

)
column

of Mu
v preceding

(
u9
v9

)
, so that

(
ur
vr

)
=

(
u7
v7

)
=

(
1
0

)
, i.e., r = 7.

September 6, 2007 14:14 WSPC/INSTRUCTION FILE ACSproyect

18 Luis González

Thus, Lemma 1 assures that we can obtain the following split (22) of matrix (23),
with r = 7, l = 9, n = 11

Mu
v =

(
Mu′

v′
... Mu′′

v′′

)
,

Mu′

v′ =
(

u1 . . . u7

v1 . . . v7

)
=

(
0 0 1 0 1 0 1
0 0 1 1 0 1 0

)
, Mu′′

v′′ =
(

u8 . . . u11

v8 . . . v11

)
=

(
0 1 1 1
0 0 0 1

)
,(24)

where one can immediately confirm that the submatrices Mu′

v′ and Mu′′

v′′ , respec-
tively, satisfy the conditions described in Lemma 1-(i) and Lemma 1-(ii), respec-
tively.

Lemma 2. Let n ≥ 1 and u = (u1, . . . , un) , v = (v1, . . . , vn) ∈ {0, 1}n. Then
v ∈ Cu if and only if the matrix

Mu
v =

(
u1 . . . un

v1 . . . vn

)
can be split into the two following submatrices Mu′

v′ and Mu′′

v′′

Mu
v =

(
Mu′

v′
... Mu′′

v′′

)
, Mu′

v′ =
(

u1 . . . ur

v1 . . . vr

)
, Mu′′

v′′ =
(

ur+1 . . . ul . . . un

vr+1 . . . vl . . . vn

)
,

where denoting by m the Hamming weight of u (0 < wH (u) = m < n), we have

wH (u1, . . . , ur) = wH (v1, . . . , vr) = m− (s− 1) , with 1 ≤ s− 1 ≤ n− r, (25)

and denoting as follows the vectors of positions of the [m− (s− 1)] 1 bits of the two
following binary n-tuples

(u1, . . . , ur, 0, . . . , 0︸ ︷︷ ︸
n−r

) ≡ [is, . . . , im]n ≡ 2is + · · ·+ 2im , is < · · · < im ≤ n− 1, (26)

(v1, . . . , vr, 0, . . . , 0︸ ︷︷ ︸
n−r

) ≡ [js, . . . , jm]n ≡ 2js + · · ·+ 2jm , js < · · · < jm ≤ n− 1, (27)

we have
(i′) js � is, js+1 ≥ is+1, . . . , jm ≥ im.

(ii′) Mu′′

v′′ satisfies that its left-most column different from
(
0
0

)
, and

(
1
1

)
is

(
ul
vl

)
=

(
1
0

)
.

Proof. First, we note that the assumption 0 < wH (u) = m < n excludes the two
extreme cases

wH (u) = 0 ⇔ u = (0, . . . , 0︸ ︷︷ ︸
n

) and wH (u) = n ⇔ u = (1, . . . , 1︸ ︷︷ ︸
n

).

The reason is that these two n-tuples have the pattern (16) and then, they corre-
spond to the special case studied in the previous subsection. In fact, using Theorem
3 and Eq. (12) we get (see Example 7 and Figure 1)

u = (0, . . . , 0︸ ︷︷ ︸
n

) : Cu = Lu = {0, 1}n
, u = (1, . . . , 1︸ ︷︷ ︸

n

) : Cu = Lu = {2n − 1} .

September 6, 2007 14:14 WSPC/INSTRUCTION FILE ACSproyect

Probabilities in complex stochastic Boolean systems 19

From Lemma 1, we know that v ∈ Cu if and only if the matrix

Mu
v =

(
u1 . . . un

v1 . . . vn

)
can be split as

Mu
v =

(
Mu′

v′
... Mu′′

v′′

)
, Mu′

v′ =
(

u1 . . . ur

v1 . . . vr

)
, Mu′′

v′′ =
(

ur+1 . . . ul . . . un

vr+1 . . . vl . . . vn

)
,

where the submatrices Mu′

v′ and Mu′′

v′′ satisfy the conditions described in Lemma 1-
(i) and Lemma 1-(ii), respectively. In particular, we know that in Mu′

v′ the number
of

(
1
0

)
columns is equal to the number of

(
0
1

)
columns. Then, denoting by n1

0, n
0
1 and

n1
1 the number of

(
1
0

)
,
(
0
1

)
and

(
1
1

)
columns, respectively, of the submatrix Mu′

v′ , we
have

n1
0 = n0

1 ⇔ n1
0 + n1

1 = n0
1 + n1

1 ⇔ wH (u1, . . . , ur) = wH (v1, . . . , vr) . (28)

Moreover, let us denote by s − 1 the number of 1 bits in the binary (n − r)-tuple
(ur+1, . . . , un). We can assure that

1 ≤ wH (ur+1, . . . , un) = s− 1 ≤ n− r, (29)

because this binary (n− r)-tuple has at least one 1 bit (ul=1, since
(
ul
vl

)
=

(
1
0

)
; see

Lemma 1-(ii)) and at most (n−r) 1 bits (because it has n−r components!). Hence,
from the identity

wH (u1, . . . , ur) + wH (ur+1, . . . , un) = wH (u1, . . . , un) = m,

and from (29) we get

wH (u1, . . . , ur) = m− wH (ur+1, . . . , un) = m− (s− 1) , 1 ≤ s− 1 ≤ n− r,

and then, from this last expression and from Eq. (28) we derive Eq.(25).
Now, we prove that

js ≥ is, js+1 ≥ is+1, . . . , jm ≥ im, (30)

where {ik}m
k=s and {jk}m

k=s are the sets of indices defined by Eq. (26) and Eq. (27),
respectively. From Lemma 1-(i), we know that the submatrix Mu′

v′ satisfies IOC. This
is equivalent to say that for each

(
1
0

)
column in Mu′

v′ there exists a corresponding
preceding

(
0
1

)
column (Theorem 1). On one hand, the (m − s + 1) 1 bits of the

binary r-tuple (u1, . . . , ur) (with positions is < is+1 < · · · < im) correspond to the(
1
0

)
and

(
1
1

)
columns of matrix Mu′

v′ . On the other hand, the (m − s + 1) 1 bits of
the binary r-tuple (v1, . . . , vr) (with positions js < js+1 < · · · < jm) correspond
to the

(
0
1

)
and

(
1
1

)
columns of matrix Mu′

v′ . Hence, since the positions of the 1 bits
are, by convention, numbered in increasing order from right to left (see Definition
1-(iv)), then the matrix description IOC of Mu′

v′ is equivalent to Eq. (30).
To finish the proof of (i’), we must prove that the first inequality in Eq. (30) is

strict, i.e., js � is. Using again Lemma 1-(i), we have that the right-most column

September 6, 2007 14:14 WSPC/INSTRUCTION FILE ACSproyect

20 Luis González

of Mu′

v′ is
(
ur
vr

)
=

(
1
0

)
, i.e., ur = 1, vr = 0. But, this is equivalent to say that the

right-most 1-bit (vi = 1 for some i < r) of the r-tuple (v1, . . . , vr) (i.e., the one
placed at the position js) precedes in Mu′

v′ the right-most 1-bit (ur = 1) of the
r-tuple (u1, . . . , ur) (i.e., the one placed at the position is). Since the positions of
the 1 bits are numbered in increasing order from right to left, this is equivalent to
say that js � is.

Finally the assertion Lemma 2-(ii’) is identical to the assertion Lemma 1-(ii).

The following example, the same used to illustrate Lemma 1, also illustrates
Lemma 2.

Example 11. Let n = 11 and let

u = (0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1) ,

v = (0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1) .

Then u and v satisfy the hypothesis v ∈ Cu of Lemma 2 (the same hypothesis of
Lemma 1), as we have shown in Example 10. Hence, Lemma 2 assures us that we
can obtain the following split (22) of matrix (23), i.e., exactly the same split (24),
with r = 7, l = 9, n = 11, of Example 10

Mu
v =

(
Mu′

v′
... Mu′′

v′′

)
,

Mu′

v′ =
(

u1 . . . u7

v1 . . . v7

)
=

(
0 0 1 0 1 0 1
0 0 1 1 0 1 0

)
, Mu′′

v′′ =
(

u8 . . . u11

v8 . . . v11

)
=

(
0 1 1 1
0 0 0 1

)
.

Since m = wH (u) = 6, using Eq. (29), we have

wH (ur+1=8, . . . , un=11) = wH (0, 1, 1, 1) = s− 1 = 3 ⇒ s = 4

and thus, from Eq. (25), we get

wH (u1, . . . , ur=7) = wH (v1, . . . , vr=7) = m− (s− 1) = 6− (4− 1) = 3.

The binary n-tuples defined by (26) and (27) are

(u1, . . . , u7, 0, . . . , 0︸ ︷︷ ︸
n−r=4

) = (0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0) ≡ [is, . . . , im]11 , is < · · · < im,

(v1, . . . , v7, 0, . . . , 0︸ ︷︷ ︸
n−r=4

) = (0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0) ≡ [js, . . . , jm]11 , js < · · · < jm,

respectively, so that, the sets of indices

is = i4 = 4, is+1 = i5 = 6, im = i6 = 8
js = j4 = 5, js+1 = j5 = 7, jm = j6 = 8

satisfy Lemma 2-(i’), i.e., js � is, js+1 ≥ is+1, jm ≥ im.

Finally, Mu′′

v′′ obviously satisfies Lemma 2-(ii’), as shown in example 10.

September 6, 2007 14:14 WSPC/INSTRUCTION FILE ACSproyect

Probabilities in complex stochastic Boolean systems 21

Now, we can prove, using Lemma 2, the above mentioned algorithm for obtaining
the set Cu, which represents the binary strings by the vectors of positions of their
1 bits (Definition 1-(iv)). We call this algorithm “the intrinsically incomparable
binary n-tuples algorithm”, because it provides us with the set Cu of all the binary
n-tuples v (with u(10 < v(10) such that u and v are incomparable by intrinsic order
(see Eq. (20)).

Before establishing this theorem, let us briefly explain the intuitive idea un-
derlying our algorithm. Our purpose is to express the set Cu, using the decimal
numbering, as a set union of half-closed intervals of consecutive natural numbers.
For this purpose, we use the split (22) of matrix Mu

v

Mu
v =

(
Mu′

v′
... Mu′′

v′′

)
, Mu′

v′ =
(

u1 . . . ur

v1 . . . vr

)
, Mu′′

v′′ =
(

ur+1 . . . ul . . . un

vr+1 . . . vl . . . vn

)
,

and its properties described in Lemmas 1 and 2. The basic idea to obtain the
binary n-tuples v ∈ Cu is that in this split the left sub-string (v1, . . . , vr) of v =
(v1, . . . , vn) ∈ Cu, i.e., the one placed at the left submatrix Mu′

v′ , is always the
same for all the n-tuples of the same half-closed interval, and it is defined by the
conditions of Lemma 1-(i) or, equivalently, of Lemma 2-(i’). On the contrary, the
right sub-string (vr+1, . . . , vn) of v = (v1, . . . , vn) ∈ Cu, i.e., the one placed at
the right submatrix Mu′′

v′′ , takes all possible consecutive values in the truth-table
(lexicographic) order, from (0, . . . , 0︸ ︷︷ ︸

n−r

) to the (n − r)-tuple immediately previous to

(ur+1, . . . , un), according to the condition of Lemma 1-(ii) or Lemma 2-(ii’).

Example 12. Let n = 5 and let u = (0, 1, 1, 0, 0) ≡ 12. Then the intuitive idea
is to use the split (22) of matrix Mu

v , according to Lemmas 1 and 2, with, e.g.
r = 2, l = 3, as follows

Mu
v =

(
u1 u2 u3 u4 u5

v1 v2 v3 v4 v5

)
=

(
Mu′

v′
... Mu′′

v′′

)
,

Mu′

v′ =
(

u1 u2

v1 v2

)
=

(
0 1
1 0

)
, Mu′′

v′′ =
(

u3 u4 u5

v3 v4 v5

)
=

(
1 0 0
v3 v4 v5

)
,

where

(v3, v4, v5) = (0, 0, 0) , (0, 0, 1) , (0, 1, 0) , (0, 1, 1)

and then

v = (v1, v2, v3, v4, v5) = (1, 0, 0, 0, 0) , (1, 0, 0, 0, 1) , (1, 0, 0, 1, 0) , (1, 0, 0, 1, 1)

that is, using the decimal representation, we get

Cu = {16, 17, 18, 19} = [16, 20) ,

as we shall explain, more precisely, in Example 15.

September 6, 2007 14:14 WSPC/INSTRUCTION FILE ACSproyect

22 Luis González

Theorem 4. (The intrinsically incomparable binary n-tuples algorithm)
Let n ≥ 3. Let u ∈ {0, 1}n with Hamming weight 0 < wH (u) = m < n and with
decimal numbering and vector of positions of its 1s

u(10 = 2i1 + 2i2 + · · ·+ 2im ≡ [i1, i2, . . . , im]n , 0 ≤ i1 < i2 < · · · < im ≤ n− 1.(31)

Then the set Cu can be obtained by the following algorithm:
Step 1. Generate all the binary n-tuples with Hamming weight m

2j1 + 2j2 + · · ·+ 2jm ≡ [j1, j2, . . . , jm]n , (32)

where each one of the sequences {j1, j2, . . . , jm} must satisfy the following conditions

j1 = i1, ∀ k = 2, . . . ,m : jk ≥ ik with jk � ik for some k = 2, . . . ,m,

0 ≤ j1 < j2 < · · · < jm ≤ n− 1. (33)

Step 2. For each one of the n-tuples [j1, j2, . . . , jm]n generated in the step 1, call s

(2 ≤ s ≤ m) the smallest index k for which the inequality jk ≥ ik is strict, i.e.,

j1 = i1, . . . , js−1 = is−1, js � is, js+1 ≥ is+1, . . . , jm ≥ im. (34)

Then consider the half-closed interval of consecutive natural numbers[
2js + · · ·+ 2jm , 2j1 + · · ·+ 2js + · · ·+ 2jm

)
. (35)

Step 3. Finally, the set Cu is given, using the decimal representation, by

Cu =
⋃

[j1,...,jm]n

[
2js + · · ·+ 2jm , 2j1 + · · ·+ 2js + · · ·+ 2jm

)
, (36)

where the above set union (of all half-closed intervals (35) constructed in the step
2) is extended over all binary n-tuples [j1, . . . , jm]n generated in the step 1.

Proof. To prove this theorem is equivalent to prove the set equality (36). That is,
we must prove that

v ∈ Cu ⇔ v(10 ∈
⋃

[j1,...,jm]n

[
2js + · · ·+ 2jm , 2j1 + · · ·+ 2js + · · ·+ 2jm

)
, (37)

where the above set union is extended over all binary n-tuples [j1, . . . , jm]n gener-
ated in the step 1. In other words, we shall prove that all the n-tuples of Cu are
generated by our algorithm (implication “⇒” in (37)) and, conversely, that all the
n-tuples generated by our algorithm belong to Cu (implication “⇐” in (37)).

Before proving the equivalence (37), we must stress out the following fact: all
the intervals (35) generated in the step 2 are, by construction, pair-wise disjoint.
Indeed, let [

2js + · · ·+ 2jm , 2j1 + · · ·+ 2js−1 + 2js + · · ·+ 2jm
)
,[

2j′s + · · ·+ 2j′m , 2j′1 + · · ·+ 2j′s−1 + 2j′s + · · ·+ 2j′m

)
(38)

September 6, 2007 14:14 WSPC/INSTRUCTION FILE ACSproyect

Probabilities in complex stochastic Boolean systems 23

be two different half-closed intervals generated in the step 2, that is, corresponding
to the two different binary n-tuples

[j1, . . . , js−1, js, . . . , jm]n 6=
[
j′1, . . . , j

′
s−1, j

′
s, . . . , j

′
m

]
n

generated in the step 1. Since, from Eq. (34) we derive that the first (s− 1) indices
of both n-tuples must coincide, i.e.,

j1 = i1 = j′1, . . . , js−1 = is−1 = j′s−1 ⇒ j1 = j′1, . . . , js−1 = j′s−1,

then, we conclude that the sets of the last (m − (s− 1)) indices of both n-tuples
must be different, i.e.,

{js, . . . , jm} 6= {j′s, . . . , j′m} ,

and then the lower endpoints 2js + · · · + 2jm and 2j′s + · · · + 2j′m of the two inter-
vals (38) are different, while their upper endpoints are obtained by adding to the
corresponding lower endpoints the same quantity 2i1 + · · · + 2is−1 . Hence the two
intervals (38) are disjoint.

Let us prove the equivalence (37). From Lemma 2, we know that v ∈ Cu if and
only if the matrix

Mu
v =

(
u1 . . . un

v1 . . . vn

)
can be split into the two following submatrices Mu′

v′ and Mu′′

v′′

Mu
v =

(
Mu′

v′
... Mu′′

v′′

)
, Mu′

v′ =
(

u1 . . . ur

v1 . . . vr

)
, Mu′′

v′′ =
(

ur+1 . . . ul . . . un

vr+1 . . . vl . . . vn

)
,

which satisfy all the conditions established in this lemma. In particular, Lemma
2-(ii’) assures that the left-most column of the submatrix Mu′′

v′′ different from
(
0
0

)
and

(
1
1

)
is

(
ul
vl

)
=

(
1
0

)
. But, this is equivalent to affirm that (Remark 2)

(vr+1, . . . , vn)(10 � (ur+1, . . . , un)(10 , i.e.,

0 = (0, . . . , 0︸ ︷︷ ︸
n−r

)(10 ≤ (vr+1, . . . , vn)(10 � (ur+1, . . . , un)(10 , i.e.,

(0, . . . , 0︸ ︷︷ ︸
r

, 0, . . . , 0︸ ︷︷ ︸
n−r

)(10 ≤

0, . . . , 0︸ ︷︷ ︸
r

, vr+1, . . . , vn


(10

�

0, . . . , 0︸ ︷︷ ︸
r

, ur+1, . . . , un


(10

,(39)

since the addition of any number r of 0 bits on the left of a binary string does not
modify its decimal numbering. Now, adding

(v1, . . . , vr, 0, . . . , 0︸ ︷︷ ︸
n−r

)(10

to the three terms of (39), we get

(v1, . . . , vr, 0, . . . , 0︸ ︷︷ ︸
n−r

)(10 ≤ (v1, . . . , vr, vr+1, . . . , vn)(10 � (v1, . . . , vr, ur+1, . . . , un)(10 .(40)

September 6, 2007 14:14 WSPC/INSTRUCTION FILE ACSproyect

24 Luis González

Now, one one hand, using Eq. (27) we have

(v1, . . . , vr, 0, . . . , 0︸ ︷︷ ︸
n−r

)(10 = 2js + · · ·+ 2jm , (41)

and, on the other hand, using Eq. (26) and Eq. (31) we have

(u1, . . . , ur, 0, . . . , 0︸ ︷︷ ︸
n−r

)(10 = 2is + · · ·+ 2im ,

(u1, . . . , ur, ur+1, . . . , un)(10 = 2i1 + · · ·+ 2is−1 + 2is + · · ·+ 2im

and from the last two equations, we get

(ur+1, . . . , un)(10 = (0, . . . , 0︸ ︷︷ ︸
r

, ur+1, . . . , un)(10 = 2i1 · · ·+ 2is−1 . (42)

Using (41) and (42), Eq. (40) is equivalent to

2js + · · ·+ 2jm ≤ v(10 � 2i1 + · · ·+ 2is−1 + 2js + · · ·+ 2jm . (43)

Now call

j1 = i1, . . . , js−1 = is−1. (44)

Note that, from Lemma 2-(i’) we have js � is, and then js−1 = is−1 < is < js, and
consequently we assure that js−1 < js. Hence, Eq. (43) can be rewritten as

2js + · · ·+ 2jm ≤ v(10 � 2j1 + · · ·+ 2js−1 + 2js + · · ·+ 2jm , i.e.,

v(10 ∈
[
2js + · · ·+ 2jm , 2j1 + · · ·+ 2js−1 + 2js + · · ·+ 2jm

)
,

for some set of indices {j1, . . . , jm} satisfying (34), i.e., such that (see Eq. (44) and
Lemma 2-(i’))

j1 = i1, . . . , js−1 = is−1, js � is, js+1 ≥ is+1, . . . , jm ≥ im,

but this is equivalent to say that

v(10 ∈
⋃

[j1,...,jm]n

[
2js + · · ·+ 2jm , 2j1 + · · ·+ 2js + · · ·+ 2jm

)
,

where the above set union (of all half-closed intervals (35) constructed in the step
2) is extended over all binary n-tuples [j1, . . . , jm]n generated in the step 1. The
proof is concluded.

Remark 8. Note that the exponential notation used in the intervals (35) does
not imply exponential complexity of our algorithm. The union of these half-closed
intervals provides us with the exact, clearly defined solution (36) to our problem,
without computing the powers of 2.

Remark 9. The generation of the sequences [j1, . . . , jm]n from the sequence
[i1, . . . , im]n of the positions of the 1 bits in u, described in step 1 of the al-
gorithm, has the following intuitive meaning. Step 1 generates all the sequences

September 6, 2007 14:14 WSPC/INSTRUCTION FILE ACSproyect

Probabilities in complex stochastic Boolean systems 25

[j1, . . . , jm]n, by moving from right to left one or more 1 bits of u, with the only
exception of its right-most 1 bit, which must always stay at its original position in
u (i.e., j1 = i1). Moreover, the index is defined in the step 2 of the algorithm is
exactly the position of the right-most 1 bit in u that has been moved from right
to left, while the index js is the new position of this 1 bit after being moved (i.e.,
j1 = i1, . . . , js−1 = is−1, js � is).

Remark 10. Note that, according to Remark 9, to apply the step 1 of the al-
gorithm, the binary string u must contain at least one 1 bit that could be moved
from right to left. Since the right-most 1 bit of u never could be moved, then this
means that u must contain, at least, one 0 bit followed by two (or more) 1 bits.
In other words u must contain, at least, one subsequence 0 . . . 1 . . . 1. Otherwise, u

would have the pattern (16) and step 1 does not generate any sequence. So, in this
case, the solution provided by our theorem/algorithm is Cu = ∅ and thus, using
Eq. (21), we get

Cu = Lu − Cu = Lu − ∅ = Lu,

which is in accordance with Theorem 3!

In the following examples, we obtain the sets Cu and Cu using Theorem 4 and
Eq. (21), respectively. Both sets can be illustrated by the connections/paths in
the intrinsic order graph, as explained in the paragraph immediately before the
statement of Lemma 1 (see Figure 1 for n = 1, 2, 3, 4). We begin with the simplest
possible example for which the algorithm can be applied.

Example 13. For n = 3 and u = (0, 1, 1) ≡ 3, we have

m = wH (u) = 2, u(10 = 20 + 21 ≡ [i1, i2]3 = [0, 1]3 .

Using the algorithm (Theorem 4), we obtain

• Step 1: [j1, j2]3 = [0, 2]3 .

• Step 2: js = j2 = 2, jm = j2 = 2 →
[
22, 20 + 22

)
= [4, 5) .

• Step 3: Cu = [4, 5) = {4} .

Now, using Eq. (12) we have

Lu =
{

v ∈ {0, 1}3
∣∣ u(10 = 3 ≤ v(10 ≤ 23 − 1

}
= {3, 4, 5, 6, 7}

and, finally, from Eq. (21) we get

Cu = Lu − Cu = {3, 4, 5, 6, 7} − {4} = {3, 5, 6, 7} .

Example 14. For n = 4 and u = (0, 1, 1, 1) ≡ 7, we have

m = wH (u) = 3, u(10 = 20 + 21 + 22 ≡ [i1, i2, i3]4 = [0, 1, 2]4 .

Using the algorithm (Theorem 4), we obtain

September 6, 2007 14:14 WSPC/INSTRUCTION FILE ACSproyect

26 Luis González

• Step 1: [j1, j2, j3]4 =
{

(i) [0, 1, 3]4 ,

(ii) [0, 2, 3]4 .

• Step 2:
{

(i) js = j3 = 3, jm = j3 = 3 →
[
23, 20 + 21 + 23

)
= [8, 11) ,

(ii) js = j2 = 2, jm = j3 = 3 →
[
22 + 23, 20 + 22 + 23

)
= [12, 13) .

• Step 3: Cu = [8, 11)
⋃

[12, 13) = {8, 9, 10, 12} .

Now, using Eq. (12) we have

Lu =
{

v ∈ {0, 1}4
∣∣ u(10 = 7 ≤ v(10 ≤ 24 − 1

}
= {7, 8, 9, 10, 11, 12, 13, 14, 15}

and, finally, from Eq. (21) we get

Cu = Lu − Cu = {7, 8, 9, 10, 11, 12, 13, 14, 15} − {8, 9, 10, 12} = {7, 11, 13, 14, 15} .

Example 15. For n = 5 and u = (0, 1, 1, 0, 0) ≡ 12, we have

m = wH (u) = 2, u(10 = 22 + 23 ≡ [i1, i2]5 = [2, 3]5 .

Using the algorithm (Theorem 4), we obtain

• Step 1: [j1, j2]5 = [2, 4]5 .

• Step 2: js = j2 = 4, jm = j2 = 4 →
[
24, 22 + 24

)
= [16, 20) .

• Step 3: Cu = [16, 20) = {16, 17, 18, 19} .

Now, using Eq. (12) we have

Lu =
{

v ∈ {0, 1}5
∣∣ u(10 = 12 ≤ v(10 ≤ 25 − 1

}
= {12, 13, . . . , 31}

and, finally, from Eq. (21) we get

Cu = Lu − Cu = {12, 13, . . . , 31} − {16, 17, 18, 19} = {12, . . . , 15, 20, . . . , 31} .

We finish with an example of a CSBS with 203 basic components. For this or
for larger numbers of variables (appearing in practice), as we commented in Section
1, the time required for computing all the 2203 binary string probabilities (at the
theoretical/inaccessible speed of one Planck time for each one of these computa-
tions) would be larger than the age of the Universe. This example illustrates the
importance of our algorithm.

Example 16. For n = 203 and u = (1, . . . , 1︸ ︷︷ ︸
100

, 0, 1, 0, 1, 1, 0, . . . , 0︸ ︷︷ ︸
98

), we have

m = wH (u) = 103,

u(10 = 298 + 299 + 2101 + 2103 + · · ·+ 2202

≡ [i1, . . . , i103]203 = [98, 99, 101, 103, . . . , 202]203 .

Using the algorithm (Theorem 4), we obtain

September 6, 2007 14:14 WSPC/INSTRUCTION FILE ACSproyect

Probabilities in complex stochastic Boolean systems 27

• Step 1: [j1, . . . , j103]203 =


(i) [98, 99, 102, 103, . . . , 202]203 ,

(ii) [98, 100, 101, 103, . . . , 202]203 ,

(iii) [98, 100, 102, 103, . . . , 202]203 ,

(iv) [98, 101, 102, 103, . . . , 202]203 .

• Step 2:


(i) js = j3 = 102, jm = j103 = 202 →
(ii) js = j2 = 100, jm = j103 = 202 →
(iii) js = j2 = 100, jm = j103 = 202 →
(iv) js = j2 = 101, jm = j103 = 202 →

[
2102 + 2103 + · · ·+ 2202, 298 + 299 + 2102 + 2103 + · · ·+ 2202

)
= S1,[

2100 + 2101 + 2103 + · · ·+ 2202, 298 + 2100 + 2101 + 2103 + · · ·+ 2202
)

= S2,[
2100 + 2102 + 2103 + · · ·+ 2202, 298 + 2100 + 2102 + 2103 + · · ·+ 2202

)
= S3,[

2101 + 2102 + 2103 + · · ·+ 2202, 298 + 2101 + 2102 + 2103 + · · ·+ 2202
)

= S4.

• Step 3: Cu = S1

⋃
S2

⋃
S3

⋃
S4.

Now, using Eq. (12) we have

Lu =
{

v ∈ {0, 1}203
∣∣ u(10 = 298 + 299 + 2101 + 2103 + · · ·+ 2202 ≤ v(10 ≤ 2203 − 1

}
=

[
298 + 299 + 2101 + 2103 + · · ·+ 2202, 2203 − 1

]
and, finally, from Eq. (21) we get

Cu = Lu − Cu =
[
298 + 299 + 2101 + 2103 + · · ·+ 2202, 2203 − 1

]
−

⋃
1≤k≤4

Sk.

4. The Set Cu

In this section, we characterize the set Cu of all binary n-tuples v whose occurrence
probabilities are always (i.e., for all set of parameters {pi}n

i=1 satisfying the non-
restrictive hypothesis (7)) greater than or equal to the occurrence probability of u.
First, from Corollary 1, we know that if u � v then u(10 ≥ v(10. That is, using the
notation introduced in (11) and (13), we have the following set inclusion, dual of
the inclusion (14)

Cu = {v ∈ {0, 1}n | u � v } ⊆
{
v ∈ {0, 1}n ∣∣ u(10 ≥ v(10

}
= Lu. (45)

The results for the set Cu are analogous to the ones obtained in Section 3 for
the set Cu. Moreover, the corresponding dual propositions for Cu can be proved in
a similar way to the ones used for proving Theorems 3 and 4 for Cu. However, we
shall proceed in an alternative, shorter way obtaining the results for Cu from the
corresponding results already proved for Cu. For this purpose, we need the following
technical lemma.

Lemma 3. (Duality or Symmetry property) Let n ≥ 1 and u, v ∈ {0, 1}n.
Then
(i) v(10 ≤ u(10 ⇔ vc

(10 ≥ uc
(10,

September 6, 2007 14:14 WSPC/INSTRUCTION FILE ACSproyect

28 Luis González

(ii) v � u ⇔ vc � uc,
where uc and vc are the complementary n-tuples of u and v, respectively (Definition
1− (v)).

Proof.

(i) Using Eq. (6), we have

v(10 ≤ u(10 ⇔ (2n − 1)− v(10 ≥ (2n − 1)− u(10 ⇔ vc
(10 ≥ uc

(10.

(ii) The
(
0
0

)
,
(
1
1

)
,
(
0
1

)
and

(
1
0

)
columns in matrix Mu

v become
(
1
1

)
,
(
0
0

)
,
(
0
1

)
and

(
1
0

)
columns in matrix Mvc

uc , respectively (note that this second matrix is Mvc

uc and
not Muc

vc). Hence, we have

v � u ⇔ Mu
v satisfies IOC ⇔ Mvc

uc satisfies IOC ⇔ vc � uc,

and this concludes the proof.

4.1. A relevant special case

Sometimes, for some binary n-tuples u, the inclusion (45) becomes the set identity
Cu = Lu. These binary strings u satisfying this nice property are characterized by
the following theorem, which is the dual of Theorem 3 because the 0s are changed
by 1s and the 1s are changed by 0s in the corresponding positional criteria.

Theorem 5. Let n ≥ 1 and u = (u1, . . . , un) ∈ {0, 1}n. Then

Cu = Lu (46)

if and only if u does not contain any 1 bit followed by two (or more) 0 bits, placed
at consecutive or non consecutive positions, i.e., u has the general pattern

u = (0, . . . , 0︸ ︷︷ ︸
p

, 1, . . . , 1︸ ︷︷ ︸
q

, 0︸︷︷︸
1

, 1, . . . , 1︸ ︷︷ ︸
r

), p + q + r + 1 = n, (47)

where any (but not all) of the above four subsets of bits grouped together can be
omitted.

Proof. Using Lemma 3, we have

Cu = Lu iff {v ∈ {0, 1}n | u � v } =
{
v ∈ {0, 1}n ∣∣ u(10 ≥ v(10

}
iff

{vc ∈ {0, 1}n | uc � vc } =
{

vc ∈ {0, 1}n
∣∣∣ uc

(10 ≤ vc
(10

}
iff

{v ∈ {0, 1}n | uc � v } =
{

v ∈ {0, 1}n
∣∣∣ uc

(10 ≤ v(10

}
iff Cuc

= Luc

iff (apply Theorem 3 to uc) the n-tuple uc does not contain any 0 bit followed by
two (or more) 1 bits. Finally, this positional criterion for uc is transformed into the
corresponding positional criterion for u, changing the 0s by 1s and the 1s by 0s. In
this way, the last assertion about uc is equivalent to say that u does not contain

September 6, 2007 14:14 WSPC/INSTRUCTION FILE ACSproyect

Probabilities in complex stochastic Boolean systems 29

any 1 bit followed by two (or more) 0 bits, i.e., u does not contain any subsequence
of three bits 1 . . . 0 . . . 0 (placed at consecutive or non consecutive positions), i.e., u

has the general pattern given by Eq. (47).

Remark 11. The symbol Cuc

used in the above proof (as well as in the next
theorem) represents the set C(uc) and not the set (Cu)c. This is in accordance
with the usual convention for the exponential notation xyz

= x(yz). In other words,
Cuc

is the set of binary n-tuples which are intrinsically less than or equal to the
complementary n-tuple uc of u.

Example 17. For n = 4 the binary 4-tuple u = (1, 0, 1, 1) ≡ 11 does not contain
any 1 bit followed by two or three 0 bits, that is, u has the pattern given by the
condition (47). Therefore, Theorem 5 assures that the set Cu of binary 4-tuples v

with occurrence probability greater than or equal to the occurrence probability of
u is exactly (and simply) the set Lu of 4-tuples v with decimal numbering less than
or equal to the decimal numbering of u, i.e.,

Cu = Lu = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} .

This fact can be illustrated by looking at the right-most digraph (n = 4) in Fig-
ure 1, where we observe that 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 are exactly the vertices
connected (comparable by intrinsic order) with 11 and drawn above 11.

4.2. The general case

Of course, not all the binary strings have the pattern given by the condition (47).
For these cases, the characterization Theorem 5 assures us that the set equality
Cu = Lu does not hold. In other words, the set inclusion Cu ⊆ Lu is strict, i.e.,
Cu $ Lu. In such cases, using the symmetry (duality) property stated by Lemma
3, we can reduce (via complementary n-tuples) the problem of determining the sets
Cu to the determination of the sets Cu, which has been completely solved in Section
3. This procedure is described precisely in the following theorem.

Theorem 6. For all n ≥ 1 and for all u ∈ {0, 1}n

Cu =
[
Cuc

]c

. (48)

Proof. Using Definition 1-(vi) and Lemma 3-(ii), we get

v ∈ Cu ⇔ u � v ⇔ uc � vc ⇔ vc ∈ Cuc

⇔ v ∈
[
Cuc

]c

, (49)

as was to be shown.

Example 18. For n = 4 the binary 4-tuple u = (1, 0, 0, 0) ≡ 8 contains one 1 bit
followed by two or more 0 bits (in this case, exactly by three 0 bits). That is, u has
not the pattern (47). Hence, we must use Theorem 6, instead of Theorem 5.

C8 =
[
C8c

]c

=
[
C7

]c
= {7, 11, 13, 14, 15}c = {0, 1, 2, 4, 8} , (50)

September 6, 2007 14:14 WSPC/INSTRUCTION FILE ACSproyect

30 Luis González

since 8c ≡ (1, 0, 0, 0)c = (0, 1, 1, 1) ≡ 7, and the set C7 = {7, 11, 13, 14, 15} has been
obtained in Example 14.

This example can be illustrated looking at the right-most digraph (n = 4)
in Figure 1, where we observe that 0, 1, 2, 4, 8 are exactly the vertices connected
(comparable by intrinsic order) with 8 and drawn above 8.

5. Conclusions

A complex stochastic Boolean system (CSBS) is a system depending on an arbi-
trary (and, in practice, usually large) number n of random Boolean variables. The
behavior of a CSBS is determined by the current values of the 2n corresponding
binary n-tuple probabilities. In this context, this paper has proposed the following
question: For any fixed binary n-tuple u, how can we determine the set Cu of all
binary n-tuples v with occurrence probabilities less than or equal to the probability
of u? To answer this question, the evaluation of all 2n binary string probabilities is
not feasible due to its exponential complexity.

To overcome this obstacle, we presented the intrinsic order criterion (IOC):
a simple positional criterion that allows to compare most of pairs of binary n-
tuple probabilities, Pr {u} ,Pr {v}, without computing them, simply looking at the
positions of their 0s and 1s. The intrinsic ordering, as well as our examples and new
results, have been illustrated through a directed graph called the intrinsic order
graph. For applying IOC, as well as the other theoretical results that we presented
in this paper, it is enough to order the n basic component probabilities of the CSBS,
instead of ordering the 2n binary string probabilities. Hence, the proposed method
drastically reduces the complexity of the problem from the exponential to the linear.

Using IOC, we have answered the proposed question in two different cases. First,
we have characterized, by a surprisingly easy condition, those binary n-tuples u for
which the set Cu of binary strings with occurrence probabilities less than or equal
to the one of u is simply the set of binary strings with decimal numberings greater
than or equal to the one of u. The required condition for this first, “nice” case is
that u can not contain any 0 bit followed by two (or more) 1 bits. Second, for the
binary n-tuples u that do not satisfy this positional condition, we have developed
an algorithm which quickly determines the set Cu. Analogously, we have solved the
dual problem of determining, in an efficient way, the set Cu of all binary n-tuples
v with occurrence probabilities greater than or equal to the probability of u. Since
the only assumption on the parameters of the associated Bernoulli distribution, is
non restrictive in practice, our results provide a unified approach for the analysis of
CSBSs. In particular, for future research, our model can be applied to the analysis
and modeling of cellular automata (CAs). As parameters or basic probabilities pi,
we consider the transition probabilities defined by the (probabilistic) CA rules. In
general, the theoretical results can be applied to many scientific, technical or social
areas, it means, wherever CSBSs appear.

September 6, 2007 14:14 WSPC/INSTRUCTION FILE ACSproyect

Probabilities in complex stochastic Boolean systems 31

Acknowledgments

The author would like to thank Jiri Kroc, from the University of West Bohemia, for
his many helpful suggestions and detailed comments which substantially improved
this work and to Peter Sloot, from the University of Amsterdam, for strongly en-
couraging me to work on these topics related to the intrinsic order graph. This
work was partially supported by MEC (Spain) and FEDER through grant contract
CGL2004-06171-C03-02/CLI.

References

[1] Andrews, J. D. and Moss, B., Reliability and Risk Assessment, 2nd ed. (Professional
Engineering Publishing, 2002).

[2] González, L., A new method for ordering binary states probabilities in Reliability and
Risk Analysis, Lect. Notes Comput. Sci. 2329 (1), 137–146 (2002).

[3] González, L., N -tuples of 0s and 1s: Necessary and sufficient conditions for intrinsic
order, Lect. Notes Comput. Sci. 2667 (1), 937–946 (2003).

[4] González, L., A picture for complex stochastic Boolean systems: The intrinsic order
graph, Lect. Notes Comput. Sci. 3993 (3), 305–312 (2006).

[5] González, L., A mathematical model to evaluate the unavailability of a technical sys-
tem, in Fifth Int. Conference on Enginnering Computational Technology (ECT ’06),
eds. Topping, B. H. V. et al. (Civil-Comp Press, 2006), pp. 493–494.

[6] González, L., Garćıa, D. and Galván, B., An intrinsic order criterion to evaluate large,
complex fault trees, IEEE Trans. Reliability. 53 (3), 297–305 (2004).

[7] National Aeronautics and Space Administration, Fault Tree Analysis: A Bibliography,
Technical Report NASA/SP-2000-6111 (2000).

[8] O’Connor, P. D. T., Practical Reliability Engineering, 4th ed. (John Wiley & Sons,
2002).

[9] Singpurwalla, N. D., Foundational issues in Reliability and Risk Analysis, SIAM Rev.
30 (2), 264–282 (1988).

[10] Stanley, R. P., Enumerative Combinatorics, vol. 1 (Cambridge University Press,
1997), pp. 96–201.

[11] Stuart, A. and Ord, J. K., Kendall’s Advanced Theory of Statistics, vol. 1 (Oxford
University Press, 1998).

[12] U. S. Nuclear Regulatory Commission, Reactor Safety Study: An Assessment of Ac-
cident Risks in U.S. Commercial Nuclear Power Plants, Technical Report NUREG-
75/014: WASH-1400 (1975).

