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Resumen. This paper presents a new procedure to improve the quality of triangular
meshes defined on surfaces. The improvement is obtained by an iterative process in which
each node of the mesh is moved to a new position that minimizes certain objective function.
This objective function is derived from an algebraic quality measures of the local mesh (the
set of triangles connected to the adjustable or free node). The optimization is done in the
parametric mesh, where the presence of barriers in the objective function maintains the
free node inside the feasible region. In this way, the original problem on the surface
is transformed into a two-dimensional one on the parametric space. In our case, the
parametric space is a plane, chosen in terms of the local mesh, in such a way that this mesh
can be optimally projected performing a valid mesh, that is, without inverted elements. In
order to show the efficiency of this smoothing procedure, its application is presented.

1 INTRODUCTION

For 2-D or 3-D meshes the quality improvement [1] can be obtained by an iterative process
in which each node of the mesh is moved to a new position that minimizes an objective
function [2]. This function is derived from a quality measure of the local mesh. We
have chosen, as a starting point in section 2, a 2-D objective function that presents a
barrier in the boundary of the feasible region (set of points where the free node could be
placed to get a valid local mesh, that is, without inverted elements). This barrier has
an important role because it avoids the optimization algorithm to create a tangled mesh
when it starts with a valid one. Nevertheless, objective functions constructed by algebraic
quality measures are only directly applicable to inner nodes of 2-D or 3-D meshes, but not
to its boundary nodes. To overcome this problem, the local mesh, M(p), sited on a surface
Σ, is orthogonally projected on a plane P (the existence and search of this plane will be
discuss in section 3) in such a way that it performs a valid local mesh N(q). Therefore,
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it can be said that M(p) is geometrically conforming with respect to P [3]. Here p is
the free node on Σ and q is its projection on P . The optimization of M(p) is got by the
appropriated optimization of N(q). To do this we try to get ideal triangles in N(q) that
become equilateral in M(p). In general, when the local mesh M(p) is on a surface, each
triangle is placed on a different plane and it is not possible to define a feasible region on
Σ. Nevertheless, this region is perfectly defined in N(q) as it is analyzed in section 2.1.

To construct the objective function in N(q), it is first necessary to define the objective
function in M(p) and, afterwards, to establish the connection between them. A crucial
aspect for this construction is to keep the barrier of the 2-D objective function. This is
done with a suitable approximation in the process that transforms the original problem on
Σ into an entirely two-dimensional one on P . We develop this approximation in section
2.2.

The optimization of N(q) becomes a two-dimensional iterative process. The optimal
solutions of each two-dimensional problem form a sequence

{

xk
}

of points belonging to
P . We have checked in many numerical test that

{

xk
}

is always a convergent sequence.
It is important to underline that this iterative process only takes into account the position
of the free node in a discrete set of points, the points on Σ corresponding to

{

xk
}

and,
therefore, it is not necessary that the surface is smooth. Indeed, the surface determined
by the piecewise linear interpolation of the initial mesh is used as a reference to define
the geometry of the domain.

If the node movement only responds to an improvement of the quality of the mesh, it
can happen that the optimized mesh loses details of the original surface. To avoid this
problem, every time the free node p is moved on Σ, the optimization process only allows a
small distance between the centroid of the triangles of M(p) and the underlaying surface
(the true surface, if it is known, or the piece-wise linear interpolation, if it is not).

There are several alternatives to the previous method. For example, Garimella et al.
[4] develop a method to optimize meshes in which the nodes of the optimized mesh are
kept close to the original positions by imposing the Jacobians of the current and original
meshes to be also close. Frey et al. [5] get a control of the gap between the mesh and the
surface by modifying the element-size (subdividing the longest edges and collapsing the
shortest ones) in terms of an approximation of the smallest principal curvatures radius
associated to the nodes. Rassineux et al. [6] also use the smallest principal curvatures
radius to estimate the element-size compatible with a prescribed gap error. They construct
a geometrical model by using the Hermite diffuse interpolation in which local operations
like edge swapping, node removing, edge splitting, etc. are made to adapt the mesh size
and shape. More accurate approaches, that have into account the directional behavior of
the surface, have been considered in by Vigo [7] and, recently, by Frey in [8].

Application of our proposed optimization technique is shown in section 4.
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2 CONSTRUCTION OF THE OBJECTIVE FUNCTION

As it is shown in [2], [9], and [10] we can derive optimization functions from algebraic
quality measures of the elements belonging to a local mesh. Let us consider a triangular
mesh defined in R

2 and let t be an triangle in the physical space whose vertices are given
by xk = (xk, yk)

T ∈ R
2, k = 0, 1, 2. First, we are going to introduce an algebraic quality

measure for t. Let tR be the reference triangle with vertices u0 = (0, 0)T , u1 = (1, 0)T ,
and u2 = (0, 1)T . If we choose x0 as the translation vector, the affine map that takes tR
to t is x =Au + x0, where A is the Jacobian matrix of the affine map referenced to node

x0, given by A = (x1 − x0,x2 − x0). We will denote this type of affine maps as tR
A→ t.

Let now tI be an ideal triangle (not necessarily equilateral) whose vertices are wk ∈ R
2,

(k = 0, 1, 2) and let WI = (w1 −w0,w2 −w0) be the Jacobian matrix, referenced to node

w0, of the affine map tR
WI→ tI ; then, we define S = AW−1

I as the weighted Jacobian

matrix of the affine map tI
S→ t . In the particular case that tI was the equilateral

triangle tE, the Jacobian matrix WI = WE will be defined by w0 = (0, 0)T , w1 = (1, 0)T

and w2 = (1/2,
√

3/2)T .
We can use matrix norms, determinant or trace of S to construct algebraic quality

measures of t. For example, the Frobenius norm of S, defined by |S| =
√

tr (STS), is

specially indicated because it is easily computable. Thus, it is shown in [1] that qη = 2σ
2

3

|S|2

is an algebraic quality measure of t , where σ = det (S). We use this quality measure to
construct an objective function. Let x = (x, y)T be the position vector of the free node,
and let Sm be the weighted Jacobian matrix of the m-th triangle of a valid local mesh of

M triangles. The objective function associated to m-th triangle is ηm = |Sm|2

2σ
2

3
m

, and the

corresponding objective function for the local mesh is the n-norm of (η1, η2, . . . , ηM),

|Kη|n (x) =

[

M
∑

m=1

ηn
m (x)

]
1

n

(1)

This objective function presents a barrier in the boundary of the feasible region that
avoids the optimization algorithm to create a tangled mesh when it starts with a valid
one.

Previous considerations and definitions are only directly applicable for 2-D (or 3-D)
meshes, but some of them must be properly adapted when the meshes are located on an
arbitrary surface. For example, the concept of valid mesh is not clear in this situation
because neither the concept of inverted element is. We will deal with these questions in
next subsections.

2.1 Similarity Transformation for Surface and Parametric Meshes

Suppose that for each local mesh M(p) placed on the surface Σ, that is, with all its
nodes on Σ, it is possible to find a plane P such that the orthogonal projection of M(p)
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on P is a valid mesh N(q). Moreover, suppose that we define the axes in such a way that
the x, y-plane coincide with P . If, in the feasible region of N(q), it is possible to define
the surface Σ by the parametrization s(x, y) = (x, y, f(x, y)), where f is a continuous
function, then, we can optimize M(p) by an appropriate optimization of N(q). We will
refer to N(q) as the parametric mesh. The basic idea consists on finding the position q̄
in the feasible region of N(q) that makes M(p) be an optimum local mesh. To do this,
we search ideal elements in N(q) that become equilateral in M(p). Let τ ∈ M(p) be a
triangular element on Σ whose vertices are given by yk = (xk, yk, zk)

T , (k = 0, 1, 2) and
tR be the reference triangle in P (see Figure 1). If we choose y0 as the translation vector,

the affine map tR
Aπ→ τ is y = Aπu + y0, where Aπ is its Jacobian matrix, given by

Aπ =





x1 − x0 x2 − x0

y1 − y0 y2 − y0

z1 − z0 z2 − z0



 (2)

Now, consider that t ∈ N(q) is the orthogonal projection of τ on P . Then, the vertices of
t are xk = Πyk = (xk, yk)

T , (k = 0, 1, 2), where Π = (e1, e2)
T is 2× 3 matrix of the affine

map τ
Π→ t, being {e1, e2, e3} the canonical basis in R

3 (the associated projector from R
3

to P , considered as a subspace of R
3, is ΠT Π). Taking x0 as translation vector, the affine

map tR
AP→ t is x = APu + x0, where AP = ΠAπ is its Jacobian matrix

AP =

(

x1 − x0 x2 − x0

y1 − y0 y2 − y0

)

(3)

Therefore, the 3 × 2 matrix of the affine map t
T→ τ is

T = AπA
−1
P (4)

Let Vπ be the subspace spanned by the column vectors of Aπ and let π be the plane
defined by Vπ and the point y0. Our goal is to find the ideal triangle tI ⊂ P , moving q
on P , such that tI is mapped by T into an equilateral one, τE ⊂ π. In general, the strict
fulfillment of this requirement is only possible if N(q) is formed by a unique triangle.

Due to rank(Aπ) = rank(AP ) = 2, it exists a unique factorization Aπ = QR, where Q
is an orthogonal matrix and R is an upper triangular one with [R]ii > 0 (i = 1, 2). The
columns of the 3× 2 matrix Q define an orthonormal basis {q1,q2} that spans Vπ, so we

can see Q as the matrix of the affine map tR
Q→ τR and R as the 2× 2 Jacobian matrix of

the affine map τR
R→ τ (see Figure 1). As tR

WE→ tE and Q is an orthogonal matrix that

keeps the angles and norms of the vectors, then tE
Q→ τE and, therefore

QWE = AπR
−1WE (5)
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is the 3 × 2 Jacobian matrix of affine map tR
QWE→ τE. On the other hand, we define on

the plane π
S = RW−1

E (6)

as the 2 × 2 weighted Jacobian matrix of the affine map that transforms the equilateral

triangle into the physical one, that is, τE
S→ τ .

We have chosen as ideal triangle in π the equilateral one (τI = τE), then, the Jacobian

matrix WI of the affine map tR
WI→ tI is calculated by imposing the condition TWI = QWE,

because tR
TWI→ τI and tR

QWE→ τE. Takeing into account (5), it yields

TWI = AπR
−1WE (7)

and, from (4), we obtain
WI = APR

−1WE (8)

so we define on P the ideal-weighted Jacobian matrix of the affine map tI
SI→ t as SI =

APW
−1
I . From (8) it results

SI = APW
−1
E RA−1

P (9)

and, from (6)

SI = APW
−1
E SWEA

−1
P = APW

−1
E S

(

APW
−1
E

)−1
= SESS

−1
E (10)

where SE = APW
−1
E is the equilateral-weighted Jacobian matrix of the affine map tE

SE→ t.
Finally, from (10), we obtain the next similarity transformation.

S = S−1
E SISE (11)

Therefore, it can be said that the matrices S and SI are similar.

scale=1]fig1.eps

Figura 1: Local surface mesh M(p) and its associated parametric mesh N(q)

2.2 Optimization on the Parametric Space

It might be used S, as it is defined in (6), to construct the objective function and,
then, solve the optimization problem. Nevertheless, this procedure has important disad-
vantages. First, the optimization of M(p), working on the true surface, would require the
imposition of the constraint p ∈ Σ. It would complicate the resolution of the problem
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because, in many cases, Σ is not defined by a smooth function. Moreover, when the local
mesh M(p) is on a curved surface, each triangle is sited on a different plane and the
objective function, constructed from S, lacks barriers. It is impossible to define a feasible
region in the same way as it was done at the beginning of this section. Indeed, all the
positions of the free node, except those that make det(S) = 0 for any triangle, produce
correct triangulations of M(p). However, for many purposes as, for example, to construct
a 3-D mesh from the surface triangulation, there are unacceptable positions of the free
node.

To overcome these difficulties we propose to carry out the optimization of M(p) in an
indirect way, working on N(q). With this approach the movement of the free node will be
restricted to the feasible region of N(q), which avoids to construct unacceptable surface
triangulations. It all will be carried out using an approximate version of the similarity
transformation given in (11).

Let us consider that x = (x, y)T is the position vector of the free node q, sited on the
plane P . If we suppose that Σ is parametrized by s(x, y) = (x, y, f(x, y)), then, the
position of the free node p on the surface is given by y = (x, y, f(x, y))T = (x, f(x))T .

Note that SE = APW
−1
E only depends on x because WE is constant and AP is a

function of x. Besides, SI = APW
−1
I depends on y, due to WI = APR

−1WE, and R is a
function of y. Thus, we have SE (x) and SI (y). We shall optimize the local mesh M(p)
by an iterative procedure maintaining constant WI (y) in each step. To do this, at the
first step, we fix WI (y) to its initial value, W 0

I = WI(y
0), where y0 is given by the initial

position of p. So, if we define S0
I (x) = AP (x) (W 0

I )−1, we approximate the similarity
transformation (11) as

S0 (x) = S−1
E (x)S0

I (x)SE (x) (12)

Now, the construction of the objective function is carried out in a standard way, but using
S0 instead of S. So, we obtain the objective function for a given triangle τ ⊂ π

η0 (x) =
|S0 (x)|2

2 (σ0 (x))
2

3

(13)

where σ0 (x) = det(S0 (x)).
With this approach the optimization of the local mesh M(p) is transformed into a

two-dimensional problem without constraints, defined on N(q), and, therefore, it can be
solved with low computational cost. Furthermore, if we write W 0

I as A0
P (R0)−1WE, where

A0
P = AP (x0) and R0 = R (y0), it is straightforward to show that S0 can be simplified as

S0 (x) = R0
(

A0
P

)−1
SE (x) (14)

and our objective function for the local mesh is

∣

∣K0
η

∣

∣

n
(x) =

[

M
∑

m=1

(

η0
m

)n
(x)

]
1

n

(15)
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Let now analyze the behavior of the objective function when the free node crosses the
boundary of the feasible region. If we denote αP = det (AP ), α0

P = det (A0
P ), ρ0 =

det (R0), ωE = det (WE) and taking into account (14), we can write σ0 = ρ0 (α0
P )

−1

αPω
−1
E . Note that ρ0, α0

P , and ωE are constants, so η0 has a singularity when αP = 0,
that is, when q is placed on the boundary of the feasible region of N(q). This singularity
determines a barrier in the objective function that prevents the optimization algorithm
to take the free node outside this region. This barrier does not appear if we use the exact
weighted Jacobian matrix S, given in (6), due to det (R) = R11R22 > 0.

Suppose that x1 = x̄0 is the minimizing point of (15). As this objective function
has been constructed by keeping y in its initial position, y0, then x1 is only the first
approximation to our problem. This result is improved updating the objective function
at y1 = (x1, f(x1))T and, then, computing the new minimizing position, x2 = x̄1. This
local optimization process is repeated, obtaining a sequence

{

xk
}

of optimal points, until
a convergence criteria is verified. We have experimentally verified in numerous tests,
involving continuous functions to define the surface Σ, that this algorithm converges.

Let us consider P as an optimal projection plane (this aspect will be discussed in next
section). In order to prevent a loss of the details of the original geometry, our optimization
algorithm evaluates the difference of heights ([∆z]) between the centroid of the triangles
of M(p) and the reference surface, every time a new position xk is calculated. If this
distance exceeds a threshold, ∆(p), the movement of the node is aborted and the previous
position is stored.

3 SEARCH OF THE OPTIMAL PROJECTION PLANE

The former procedure needs a plane in which the local mesh, M(p), is projected conform-
ing a valid mesh, N(q). If this plane exists it is not unique, because a small rotation
of the coordinate system produces another valid projection plane, that is, another plane
in which N(q) is valid. We have observed that the number of iterations required by our
procedure depends on the chosen plane. In general, this number is less if the plane is well
faced to M(p). We have to find the rotation of reference system x, y, z such that the new
x′, y′-plane, P ′, is optimal with respect to a suitable criterion.

We will denote N(q′) as the projection of M(p) onto P ′ and t′ the projection of the
physical triangle τ ∈M(p) onto P ′. Let A′

P = (x′
1 −x′

0,x
′
2 −x′

0) be the matrix associated
to the affine map that takes the reference element defined on P ′ to t′, then, the area of t′

is given by 1
2
|α′

P | where α′
P = det (A′

P ).

Our goal is to find a coordinate system rotation such that
M
∑

m=1

α′
Pm

is maximum sat-

isfying the constraints α′
Pm

= det
(

A′
Pm

)

> 0 for all the triangles of N(q′), that is,
m = 1, ...,M . In [11] a method to determine a projection plane is considered but without
the enforcement of these constraints.

According to Euler’s rotation theorem, any rotation may be described using three
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angles. The so-called x-convention is the most common definition. In this convention,
the rotation is given by Euler angles (φ, θ, ψ), where the first rotation is by an angle
φ ∈ [0, 2π] about the z-axis, the second is by an angle θ ∈ [0, π] about the x-axis, and the
third is by an angle ψ ∈ [0, 2π] about the z-axis (again).

Let Φ(φ, θ, ψ) be the Euler’s rotation matrix such that y′ = Φy, then, the Jacobian
matrix Aπ = (y1 − y0,y2 − y0) associated to the triangle τ of M(p), defined in (2), can
be spanned on the rotated coordinate system as A′

π = (y′
1 − y′

0,y
′
2 − y′

0) = ΦAπ. Thus,
the Jacobian matrix A′

P is written as A′
P = ΠA′

π = ΠΦAπ. With these considerations it
is easy to proof that the value of α′

P is

α′
P = det(ΠΦAπ) = m1 sin (φ) sin(θ) +m2 sin (θ) cos (φ) +m3 cos (θ) (16)

where mi is the minor obtained by deleting the i-th row of Aπ. Note that equation (16)
only depends on φ and θ angles, as was to be expected.

Although the above maximization problem can be solved taken into account the con-
straints, we propose an unconstrained approach.

Let us consider, as a first attempt, the objective function
M
∑

m=1

(α′
Pm

)−1(φ, θ). The min-

imization of this function tends to maximize the values of α′
Pm

and, due to the barrier
that appears when α′

Pm
= 0 for some triangle of N(q′), the values of α′

Pm
are maintained

positive if the minimization algorithm starts at an interior point, that is, a point (φ0, θ0)
belonging to the set Ψ of angles (φ, θ) such that α′

Pm
(φ, θ) > 0 for (m = 1, ...,M). On

the other hand, if any α′
Pm

< 0 the barrier prevents to reach the required minimum. In
next paragraph we propose a method to find an interior point (φ0, θ0) of Ψ to be used as
a starting point in the minimization algorithm.

Let G = [gm] be the 3×M matrix formed by the vectors, gm, normal to the triangles
of M(p). A solution of the inequality system (if it exists) GTg > 0 provides a direction,
defined by vector g, such that all the triangles of M(p) can be projected on a plane,
normal to the unitary vector n = g

‖g‖
, so that α′

Pm
> 0 for (m = 1, ...,M). Then, it only

remains to find the angles φ0 and θ0 in which the coordinate system needs to be rotated
to get the z′ axis to point in the direction of n. More precisely, the angles φ0 and θ0 are
the solution of the equation ΦT (φ0, θ0, 0) e3 = n, where e3 = (0, 0, 1)T . If the inequality
system has not solution, then, there is not any valid projection plane for this local mesh,
against the premise done in section 2.1. In this case, the local optimization procedure
maintains the free node p at its initial position.

We have observed that the previous objective function has computational difficulties as
the optimization algorithms use discrete steps to search the optimal point. A step leading
outside the region Ψ may indicate a decrease in the value of the objective function and
take to a false solution. To overcome this problem we propose a modification of the
objective function in such a way that it will be regular all over R

3 and its barrier will be
”smoothed”. The modification consists of substituting α′

Pm
by h(αPm

), where h(α) is the
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positive and increasing function given by

h(α) =
1

2
(α+

√
α2 + 4δ2) (17)

being the parameter δ = h(0). The behavior of h(α) in function of δ parameter is such
that, lim

δ→0
h(α) = α, ∀α ≥ 0 and lim

δ→0
h(α) = 0, ∀α ≤ 0. The characteristics of h function

and its application in the context of mesh untangling and smoothing have been studied
in [12], [13]. Thus, the proposed objective function for searching the projection plane is

Ω(φ, θ) =
M

∑

m=1

1

h(α′
Pm

(φ, θ))
(18)

A crucial property is that the angles that minimize the original and modified objective
functions are nearly identical when δ is small. Details about the determination of δ value
for 3-D triangulations can be found in [13].

Figura 2: Original mesh of a screwdriver obtained from http://www.cyberware.com/
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4 APPLICATION TO A SCANNED OBJECT

In this section, the proposed technique is applied to smooth the mesh of a scanned ob-
ject. In particular, we have applied the optimization technique to a mesh of a screwdriver
obtained from http://www.cyberware.com/. This mesh (see Figure 2) has 27150 triangles
and 13577 nodes. The value of the average quality is 0.822 (measured with the quality
metric based on the condition number [2]). The optimized mesh is shown in Figure 3. The
projection plane is chosen in terms of the local mesh to be analyzed and the norm chosen
for the objective function (1) in this application have been n = 2. Note the poor quality
of the original mesh in several parts of the screwdriver. The optimization procedure only
needs two iterations to smooth the mesh and increases the quality to 0.917. The minimum
quality increases from 0.07 to 0.181. A more significative data is that average quality of
the worst 200 triangles increases from 0.448 to 0.652. In Figure 4 it is shown the quality
curves for the initial and optimized meshes. These curves are obtained by sorting the
elements in increasing order of its quality.

Figura 3: Optimized mesh of the screwdriver after two iterations of our procedure
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Figura 4: Quality curves for the initial and optimized meshes

5 CONCLUSIONS AND FUTURE RESEARCH

We have developed an algebraic method to optimize triangulations defined on sur-
faces. Its main characteristic is that the original problem is transformed into a fully
two-dimensional sequence of approximate problems on the parametric space. This char-
acteristic allows the optimization algorithm to deals with surfaces that only need to be
continuous. Moreover, the barrier exhibited by the objective function in the parametric
space prevents the algorithm to construct unacceptable meshes.

We have also introduced a procedure to find an optimal projection plane (our paramet-
ric space) based on the minimization of a suitable objective function. We have observed
that correct choice of this plane plays a relevant role.

The optimization process includes a control on the gap between the optimized mesh
and the reference surface that avoids to lose details of the original geometry. In this work
we have used a piecewise linear interpolation to define the reference surface when the true
surface is not known, but it would be also possible to use a more regular interpolation,
for example, the proposed in [6]. Likewise, it would be possible to introduce a more
sophisticated stopping criterion for the gap control that takes into account the curvature
of the surface [5], [6], [7], [8].

In the present work we have only considered a sole objective function obtained from
an isotropic and area independent algebraic quality metric. Nevertheless, the framework
that establishes the algebraic quality measures [1] provides us the possibility to construct
anisotropic and area sensitive objective functions by using a suitable metric.

In future works we will use the present smoothing technique for improving the mesh
quality of the boundary of 3-D domain triangulations defined over complex terrains [14].
A simultaneous smoothing and untangling procedure [13] could be applied to inner nodes
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of the domain after. Authors have developed this tetrahedral mesh generator for wind
field simulation in realistic problems [15].
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Tetrahedral mesh generation for environmental problems over complex terrains, Lect.
N. Comp. Sci., Vol. 2329, pp. 335–344, (2002).
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