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Abstract

In this work we focus our attention on two aspects related to
the node movement in surface meshes: smoothing of trian-
gular meshes defined on surfaces and the adaption of these
meshes to match given curves or contours.

The quality improvement of the mesh is obtained by an
iterative process in which each node of the mesh is moved
to a new position that minimizes a certain objective func-
tion. The objective function is derived from some algebraic
quality measure [1, 2] of thelocal submesh, that is, the set
of triangles connected to the adjustable orfree node.

When we deal with meshes defined on surfaces we have
to impose some restrictions to the movement of the free
node. Firstly, is clear that such node must be sited on the
surface after optimizing. But, this is not the only constraint.
If we allow the free node to move on the surface without
imposing any other restriction, only guided by the improve-
ment of the quality, the optimization procedure can con-
struct a high-quality local mesh, but with this node in an
unacceptable position. To avoid this problem the optimiza-
tion is done in theparametric mesh, where the presence of
barriers in the objective function maintains the free node
inside the feasible region. In this way, the original problem
on the surface is transformed into a two-dimensional one
on theparametric space. In our case, the parametric space
is a plane, chosen in terms of the local mesh, in such a way
that this mesh can be optimally projected performing avalid
mesh, that is, without inverted elements.

We use the flexibility that provides this techniques to
adapt a given surface mesh to a curve defined on it. The
idea consists on displacing the nodes close to the curve to
positions sited on the curve. The process is repeated until
the it is correctly approximated (interpolated) by a set of
linked edges of the mesh.

The determination of which nodes can be projected on
the curve is accomplished by analyzing if there is a posi-
tion on the curve on which the free node can be projected
without inverting any triangle of its local submesh. The op-

timal position of the free node on the curve is determined
attending to the quality of the local submesh.

Sometimes we lack an analytic expression of the curve to
be interpolated and, instead, it is given by a set of aligned
points with a density high enough. This is the case, for
example, of data supplied by digitalized maps describing
coastal shores or river banks.

All these questions will be conveniently supported by ex-
amples.

Introduction

For 2-D or 3-D meshes the quality improvement [1] can be
obtained by an iterative process in which each node of the
mesh is moved to a new position that minimizes an objec-
tive function [2]. This function is derived from a quality
measure of the local mesh. We have chosen, as a starting
point in section 2, a 2-D objective function that presents a
barrier in the boundary of thefeasible region (set of points
where the free node could be placed to get avalid local
mesh, that is, withoutinverted elements). This barrier has
an important role because it avoids the optimization algo-
rithm to create a tangled mesh when it starts with a valid
one. Nevertheless, objective functions constructed by alge-
braic quality measures are only directly applicable to inner
nodes of 2-D or 3-D meshes, but not to its boundary nodes.
To overcome this problem, the local mesh,M(p), sited on a
surfaceΣ, is orthogonally projected on a planeP (the exis-
tence and search of this plane will be discuss in section 3) in
such a way that it performs a valid local meshN(q). There-
fore, it can be said thatM(p) is geometrically conforming
with respect toP . Herep is the free node onΣ andq is its
projection onP . The optimization ofM(p) is got by the
appropriated optimization ofN(q). To do this we try to get
ideal triangles inN(q) that become equilateral inM(p). In
general, when the local meshM(p) is on a surface, each
triangle is placed on a different plane and it is not possible
to define a feasible region onΣ. Nevertheless, this region is
perfectly defined inN(q) as it is analyzed in section 2.1.
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To construct the objective function inN(q), it is first nec-
essary to define the objective function inM(p) and, after-
ward, to establish the connection between them. A crucial
aspect for this construction is to keep the barrier of the 2-D
objective function. This is done with a suitable approxima-
tion in the process that transforms the original problem on
Σ into an entirely two-dimensional one onP . We develop
this approximation in section 2.2.

The optimization ofN(q) becomes a two-dimensional
iterative process. The optimal solutions of each two-
dimensional problem form a sequence

{

xk
}

of points be-
longing toP . We have checked in many numerical test that
{

xk
}

is always a convergent sequence. It is important to
underline that this iterative process only takes into account
the position of the free node in a discrete set of points, the
points onΣ corresponding to

{

xk
}

and, therefore, it is not
necessary that the surface is smooth. Indeed, the surface de-
termined by the piecewise linear interpolation of the initial
mesh is used as a reference to define the geometry of the
domain.

If the node movement only responds to an improvement
of the quality of the mesh, it can happen that the optimized
mesh loses details of the original surface. To avoid this
problem, every time the free nodep is moved onΣ, the
optimization process only allows a small distance between
the centroid of the triangles ofM(p) and the underlaying
surface (the true surface, if it is known, or the piece-wise
linear interpolation, if it is not).

There are several alternatives to the previous method. For
example, Garimella et al. [3] develop a method to optimize
meshes in which the nodes of the optimized mesh are kept
close to the original positions by imposing the Jacobians
of the current and original meshes to be also close. Frey
et al. [4] get a control of the gap between the mesh and
the surface by modifying the element-size (subdividing the
longest edges and collapsing the shortest ones) in terms of
an approximation of the smallest principal curvatures radius
associated to the nodes. Rassineux et al. [5] also use the
smallest principal curvatures radius to estimate the element-
size compatible with a prescribed gap error. They construct
a geometrical model by using the Hermite diffuse interpo-
lation in which local operations like edge swapping, node
removing, edge splitting, etc. are made to adapt the mesh
size and shape. More accurate approaches, that have into
account the directional behavior of the surface, have been
considered by Frey in [6].

Application of our proposed optimization technique is
shown in section 4.

1 Construction of the Objective
Function

As it is shown in [2], [7], and [8] we can derive optimiza-
tion functions fromalgebraic quality measures of the ele-
ments belonging to a local mesh. Let us consider a triangu-
lar mesh defined inR2 and lett be an triangle in the physical
space whose vertices are given byxk = (xk, yk)

T ∈ R
2,

k = 0, 1, 2. First, we are going to introduce an algebraic
quality measure fort. Let tR be the reference triangle with
verticesu0 = (0, 0)T , u1 = (1, 0)T , andu2 = (0, 1)T .
If we choosex0 as the translation vector, the affine map
that takestR to t is x =Au + x0, whereA is the Jaco-
bian matrix of the affine map referenced to nodex0, given
by A = (x1 − x0,x2 − x0). We will denote this type of

affine maps astR
A→ t. Let now tI be anideal triangle

(not necessarily equilateral) whose vertices arewk ∈ R
2,

(k = 0, 1, 2) and letWI = (w1 − w0,w2 − w0) be the
Jacobian matrix, referenced to nodew0, of the affine map

tR
WI→ tI ; then, we defineS = AW−1

I as the weighted

Jacobian matrix of the affine maptI
S→ t . In the partic-

ular case thattI was the equilateral triangletE , the Jaco-
bian matrixWI = WE will be defined byw0 = (0, 0)T ,
w1 = (1, 0)T andw2 = (1/2,

√
3/2)T .

We can use matrix norms, determinant or trace ofS to
construct algebraic quality measures oft. For example, the
Frobenius norm ofS, defined by|S| =

√

tr (STS), is spe-
cially indicated because it is easily computable. Thus, it is
shown in [1] thatqη = 2σ

|S|2
is an algebraic quality measure

of t , whereσ = det (S). We use this quality measure to
construct an objective function. Letx = (x, y)

T be the po-
sition vector of the free node, and letSm be the weighted
Jacobian matrix of them-th triangle of a valid local mesh of
M triangles. The objective function associated tom-th tri-

angle isηm = |Sm|2

2σm

, and the corresponding objective func-
tion for the local mesh is then-norm of(η1, η2, . . . , ηM ),

|Kη|n (x) =

[

M
∑

m=1

ηn
m (x)

]

1

n

(1)

This objective function presents a barrier in the boundary of
the feasible region that avoids the optimization algorithmto
create a tangled mesh when it starts with a valid one.

Previous considerations and definitions are only directly
applicable for 2-D (or 3-D) meshes, but some of them must
be properly adapted when the meshes are located on an ar-
bitrary surface. For example, the concept of valid mesh is
not clear in this situation because neither the concept of in-
verted element is. We will deal with these questions in next
subsections.

2



1.1 Similarity Transformation for Surface-
and Parametric Meshes

Suppose that for each local meshM(p) placed on the sur-
faceΣ, that is, with all its nodes onΣ, it is possible to find
a planeP such that the orthogonal projection ofM(p) on
P is a valid meshN(q). Moreover, suppose that we define
the axes in such a way that thex, y-plane coincide withP .
If, in the feasible region ofN(q), it is possible to define the
surfaceΣ by the parametrizations(x, y) = (x, y, f(x, y)),
wheref is a continuous function, then, we can optimize
M(p) by an appropriate optimization ofN(q). We will re-
fer toN(q) as theparametric mesh. The basic idea consists
on finding the position̄q in the feasible region ofN(q) that
makesM(p) be an optimum local mesh. To do this, we
searchideal elements inN(q) that become equilateral in
M(p). Let τ ∈ M(p) be a triangular element onΣ whose
vertices are given byyk = (xk, yk, zk)

T , (k = 0, 1, 2)
andtR be the reference triangle inP (see Figure 1). If we

choosey0 as the translation vector, the affine maptR
Aπ→ τ

is y = Aπu + y0, whereAπ is its Jacobian matrix, given
by

Aπ =





x1 − x0 x2 − x0

y1 − y0 y2 − y0
z1 − z0 z2 − z0



 (2)

Now, consider thatt ∈ N(q) is the orthogonal projection of
τ onP . Then, the vertices oft arexk = Πyk = (xk, yk)

T ,
(k = 0, 1, 2), whereΠ = (e1, e2)

T is 2 × 3 matrix of the

affine mapτ
Π→ t, being{e1, e2, e3} the canonical basis

in R
3 (the associated projector fromR3 to P , considered

as a subspace ofR3, is ΠT Π). Taking x0 as translation

vector, the affine maptR
AP→ t is x = AP u + x0, where

AP = ΠAπ is its Jacobian matrix

AP =

(

x1 − x0 x2 − x0

y1 − y0 y2 − y0

)

(3)

Therefore, the3 × 2 matrix of the affine mapt
T→ τ is

T = AπA
−1

P (4)

Let Vπ be the subspace spanned by the column vectors of
Aπ and letπ be the plane defined byVπ and the pointy0.
Our goal is to find theideal triangletI ⊂ P , movingq onP ,
such thattI is mapped byT into an equilateral one,τE ⊂ π.
In general, the strict fulfillment of this requirement is only
possible ifN(q) is formed by a unique triangle.

Due to rank(Aπ) = rank(AP ) = 2, it exists a unique
factorizationAπ = QR, whereQ is an orthogonal matrix
(QTQ = I) andR is an upper triangular one with[R]ii > 0
(i = 1, 2). The columns of the3 × 2 matrixQ define an
orthonormal basis{q1,q2} that spansVπ, so we can see

Q as the matrix of the affine maptR
Q→ τR andR as the

2×2 Jacobian matrix of the affine mapτR
R→ τ (see Figure

1). As tR
WE→ tE andQ is an orthogonal matrix that keeps

the angles and norms of the vectors, thentE
Q→ τE and,

therefore
QWE = AπR

−1WE (5)

is the3 × 2 Jacobian matrix of affine maptR
QWE→ τE . On

the other hand, we define on the planeπ

S = RW−1

E (6)

as the2×2 weighted Jacobian matrix of the affine map that
transforms the equilateral triangle into the physical one,that

is, τE
S→ τ .

We have chosen as ideal triangle inπ the equilateral one
(τI = τE), then, the Jacobian matrixWI of the affine map

tR
WI→ tI is calculated by imposing the conditionTWI =

QWE , becausetR
TWI→ τI and tR

QWE→ τE . Taking into
account (5), it yields

TWI = AπR
−1WE (7)

and, from (4), we obtain

WI = APR
−1WE (8)

so we define onP theideal-weighted Jacobian matrix of the

affine maptI
SI→ t asSI = APW

−1

I . From (8) it results

SI = APW
−1

E RA−1

P (9)

and, from (6)

SI = APW
−1

E SWEA
−1

P

= APW
−1

E S
(

APW
−1

E

)−1

= SESS
−1

E (10)

whereSE = APW
−1

E is theequilateral-weighted Jacobian

matrix of the affine maptE
SE→ t. Finally, from (10), we

obtain the next similarity transformation.

S = S−1

E SISE (11)

Therefore, it can be said that the matricesS andSI are
similar.

1.2 Optimization on the Parametric Space

It might be usedS, as it is defined in (6), to construct the ob-
jective function and, then, solve the optimization problem.
Nevertheless, this procedure has important disadvantages.
First, the optimization ofM(p), working on the true sur-
face, would require the imposition of the constraintp ∈ Σ.
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Figure 1: Local surface meshM(p) and its associated para-
metric meshN(q)

It would complicate the resolution of the problem because,
in many cases,Σ is not defined by a smooth function. More-
over, when the local meshM(p) is on a curved surface, each
triangle is sited on a different plane and the objective func-
tion, constructed fromS, lacks barriers. It is impossible to
define a feasible region in the same way as it was done at
the beginning of this section. Indeed, all the positions of
the free node, except those that makedet(S) = 0 for any
triangle, produce correct triangulations ofM(p). However,
for many purposes as, for example, to construct a 3-D mesh
from the surface triangulation, there are unacceptable posi-
tions of the free node.

To overcome these difficulties we propose to carry out the
optimization ofM(p) in an indirect way, working onN(q).
With this approach the movement of the free node will be
restricted to the feasible region ofN(q), which avoids to
construct unacceptable surface triangulations. It all will be
carried out using an approximate version of the similarity
transformation given in (11).

Let us consider thatx =(x, y)
T is the position vector

of the free nodeq, sited on the planeP . If we suppose
that Σ is parametrized bys(x, y) = (x, y, f(x, y)), then,
the position of the free nodep on the surface is given by
y = (x, y, f(x, y))T = (x, f(x))T .

Note thatSE = APW
−1

E only depends onx because
WE is constant andAP is a function ofx. Besides,SI =
APW

−1

I depends ony, due toWI = APR
−1WE , andR is

a function ofy. Thus, we haveSE (x) andSI (y). We shall
optimize the local meshM(p) by an iterative procedure
maintaining constantWI (y) in each step. To do this, at the
first step, we fixWI (y) to its initial value,W 0

I = WI(y
0),

wherey0 is given by the initial position ofp. So, if we

defineS0

I (x) = AP (x) (W 0

I )−1, we approximate the sim-
ilarity transformation (11) as

S0 (x) = S−1

E (x)S0

I (x)SE (x) (12)

Now, the construction of the objective function is carried
out in a standard way, but usingS0 instead ofS. So, we
obtain the objective function for a given triangleτ ⊂ π

η0 (x) =

∣

∣S0 (x)
∣

∣

2

2σ0 (x)
(13)

whereσ0 (x) = det(S0 (x)).
With this approach the optimization of the local mesh

M(p) is transformed into a two-dimensional problem with-
out constraints, defined onN(q), and, therefore, it can be
solved with low computational cost. Furthermore, if we
write W 0

I asA0

P (R0)−1WE , whereA0

P = AP

(

x0
)

and
R0 = R

(

y0
)

, it is straightforward to show thatS0 can be
simplified as

S0 (x) = R0
(

A0

P

)−1

SE (x) (14)

and our objective function for the local mesh is

∣

∣K0

η

∣

∣

n
(x) =

[

M
∑

m=1

(

η0

m

)n
(x)

]

1

n

(15)

Let now analyze the behavior of the objective function
when the free node crosses the boundary of the feasible
region. If we denoteαP = det (AP ), α0

P = det
(

A0

P

)

,
ρ0 = det

(

R0
)

, ωE = det (WE) and taking into account

(14), we can writeσ0 = ρ0
(

α0

P

)−1
αPω

−1

E . Note that
ρ0, α0

P , andωE are constants, soη0 has a singularity when
αP = 0, that is, whenq is placed on the boundary of the
feasible region ofN(q). This singularity determines a bar-
rier in the objective function that prevents the optimization
algorithm to take the free node outside this region. This bar-
rier does not appear if we use the exact weighted Jacobian
matrixS, given in (6), due todet (R) = R11R22 > 0.

Suppose thatx1 = x̄0 is the minimizing point of (15).
As this objective function has been constructed by keeping
y in its initial position,y0, thenx1 is only the first approxi-
mation to our problem. This result is improved updating the
objective function aty1 = (x1, f(x1))T and, then, comput-
ing the new minimizing position,x2 = x̄1. This local op-
timization process is repeated, obtaining a sequence

{

xk
}

of optimal points, until a convergence criteria is verified.
We have experimentally verified in numerous tests, involv-
ing continuous functions to define the surfaceΣ, that this
algorithm converges.

Let us considerP as an optimal projection plane (this as-
pect will be discussed in next section). In order to prevent
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a loss of the details of the original geometry, our optimiza-
tion algorithm evaluates the difference of heights ([∆z]) be-
tween the centroid of the triangles ofM(p) and the refer-
ence surface, every time a new positionxk is calculated. If
this distance exceeds a threshold,∆(p), the movement of
the node is aborted and the previous position is stored. This
threshold∆(p) is established attending to the size of the el-
ements ofM(p). In concrete, the algorithm evaluates the
average distance between the free node and the nodes con-
nected to it, and takes∆(p) as percentage of this distance.
Other possibility is to fix∆(p) as a constant for all local
meshes. In the particular case in which we have an explicit
representation of the surface by a functionf(x, y), ∆(p)
can be established as a percentage of the maximum differ-
ence of heights between the original surface and the initial
mesh.

2 Search of the Optimal Projection
Plane

The former procedure needs a plane in which the local
mesh,M(p), is projected conforming a valid mesh,N(q).
If this plane exists it is not unique, because a small rotation
of the coordinate system produces another valid projection
plane, that is, another plane in whichN(q) is valid. We
have observed that the number of iterations required by our
procedure depends on the chosen plane. In general, this
number is less if the plane is wellfaced toM(p). We have
to find the rotation of reference systemx, y, z such that the
new x′, y′-plane,P ′, is optimal with respect to a suitable
criterion.

We will denoteN(q′) as the projection ofM(p) ontoP ′

andt′ the projection of the physical triangleτ ∈M(p) onto
P ′. LetA′

P = (x′
1
− x′

0
,x′

2
− x′

0
) be the matrix associated

to the affine map that takes the reference element defined
on P ′ to t′, then, the area oft′ is given by 1

2
|α′

P | where
α′

P = det (A′
P ).

Our goal is to find a coordinate system rotation such that
M
∑

m=1

α′
Pm

is maximum satisfying the constraintsα′
Pm

=

det
(

A′
Pm

)

> 0 for all the triangles ofN(q′), that is,
m = 1, ...,M . In [9] a method to determine a projection
plane is considered but without the enforcement of these
constraints.

According to Euler’s rotation theorem, any rotation may
be described using three angles. The so-calledx-convention
is the most common definition. In this convention, the rota-
tion is given by Euler angles(φ, θ, ψ), where the first rota-
tion is by an angleφ ∈ [0, 2π] about thez-axis, the second
is by an angleθ ∈ [0, π] about thex-axis, and the third is
by an angleψ ∈ [0, 2π] about thez-axis (again).

Let Φ(φ, θ, ψ) be the Euler’s rotation matrix such that
y′ = Φy, then, the Jacobian matrixAπ = (y1 − y0,y2 −
y0) associated to the triangleτ of M(p), defined in (2),
can be spanned on the rotated coordinate system asA′

π =
(y′

1
−y′

0
,y′

2
−y′

0
) = ΦAπ. Thus, the Jacobian matrixA′

P is
written asA′

P = ΠA′
π = ΠΦAπ. With these considerations

it is easy to proof that the value ofα′
P is

α′
P = det(ΠΦAπ) = m1 sin (φ) sin(θ)

+ m2 sin (θ) cos (φ) +m3 cos (θ) (16)

wheremi is the minor obtained by deleting thei-th row
of Aπ. Note that equation (16) only depends onφ andθ
angles, as was to be expected.

Although the above maximization problem can be solved
taken into account the constraints, we propose an uncon-
strained approach.

Let us consider, as a first attempt, the objective func-

tion
M
∑

m=1

(α′
Pm

)−1(φ, θ). The minimization of this function

tends to maximize the values ofα′
Pm

and, due to the bar-
rier that appears whenα′

Pm
= 0 for some triangle ofN(q′),

the values ofα′
Pm

are maintained positive if the minimiza-
tion algorithm starts at an interior point, that is, a point
(φ0, θ0) belonging to the setΨ of angles(φ, θ) such that
α′

Pm
(φ, θ) > 0 for (m = 1, ...,M ). On the other hand,

if any α′
Pm

< 0 the barrier prevents to reach the required
minimum. In next paragraph we propose a method to find
an interior point(φ0, θ0) of Ψ to be used as a starting point
in the minimization algorithm.

LetG = [gm] be the3 ×M matrix formed by the vec-
tors,gm, normal to the triangles ofM(p). A solution of the
inequality system (if it exists)GT g > 0 provides a direc-
tion, defined by vectorg, such that all the triangles ofM(p)
can be projected on a plane, normal to the unitary vector
n = g

‖g‖ , so thatα′
Pm

> 0 for (m = 1, ...,M ). Then, it only
remains to find the anglesφ0 andθ0 in which the coordi-
nate system needs to be rotated to get thez′ axis to point in
the direction ofn. More precisely, the anglesφ0 andθ0 are
the solution of the equationΦT (φ0, θ0, 0) e3 = n, where
e3 = (0, 0, 1)

T . If the inequality system has not solution,
then, there is not any valid projection plane for this local
mesh, against the premise done in section 2.1. In this case,
the local optimization procedure maintains the free nodep
at its initial position.

We have observed that the previous objective function
has computational difficulties as the optimization algo-
rithms use discrete steps to search the optimal point. A step
leading outside the regionΨ may indicate a decrease in the
value of the objective function and take to a false solution.
To overcome this problem we propose a modification of the
objective function in such a way that it will be regular all
overR

3 and its barrier will be ”smoothed”. The modifica-
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tion consists of substitutingα′
Pm

byh(αPm
), whereh(α) is

the positive and increasing function introduced in [10] and
given by

h(α) =
1

2
(α+

√

α2 + 4δ2) (17)

being the parameterδ = h(0). The behavior ofh(α) in
function ofδ parameter is such that,lim

δ→0

h(α) = α, ∀α ≥ 0

and lim
δ→0

h(α) = 0, ∀α ≤ 0. The characteristics ofh func-

tion and its application in the context of mesh untangling
and smoothing have been studied in [10] and [11]. Thus,
the proposed objective function for searching the projection
plane is

Ω(φ, θ) =

M
∑

m=1

1

h(α′
Pm

(φ, θ))
(18)

A crucial property is that the angles that minimize the
original and modified objective functions are nearly identi-
cal whenδ is small. Details about the determination ofδ
value for 3-D triangulations can be found in [11].

3 Matching curves defined on sur-
faces

Node movement provides a surface mesh the ability to
match an arbitrary curve. Suppose that the surface mesh,
M , is projectable on a unique planeP forming a paramet-
ric mesh,N . If C is a curve defined onP , our objective is
to move some nodes ofN , projecting them onC, to get an
interpolation ofC by edges ofN . Note that, associated to
this interpolation, there is a mapped interpolation onM . To
achieve this objective we have to decide which nodes ofN
can be projected onC without inverting any triangle of its
local submesh. More accurately, we say that a free nodeq is
projectable onC if it exists any point ofC, sayq′, such that
the resulting local submeshN(q) has not any inverted tri-
angle after carryingq to the position ofq′. In general, ifq is
projectable, its possible placement onC is not unique and,
therefore, we have to determine the ”best” position to relo-
cateq. To decide which is the best position of this node we
could think on minimizing the objective function

∣

∣K0
η

∣

∣

n
(x)

[14] subject to the constrainedx ∈ C. Nevertheless, this
function only works properly whenN(q) is not tangled. To
overcome this problem we propose to modify this objective
function following the criteria developed in [11]. This mod-
ification consists of substitutingσ0 in (13) by the positive
and increasing functionh(σ0), so that the barrier associated
with the singularities of

∣

∣K0
η

∣

∣

n
(x) will be eliminated and

the new function will be smooth all overR2. If
∣

∣K ′0
η

∣

∣

n
(x)

is the modified objective function, the problem of finding
the optimal position to project the free node onC is

minimize
∣

∣K ′0
η

∣

∣

n
(x) , subject tox ∈ C (19)

The objective function
∣

∣K ′0
η

∣

∣

n
strongly penalizes the neg-

ative values ofσ0, so that, the minimization process of (19)
leads to the construction of a local submeshN(q) without
inverted triangles, provided it is possible. Then, ifx̄ is the
minimizing position of (19) andσ0 (x̄) > 0 for all triangle
of N(q), we conclude thatq is projectable onC andx̄ is its
optimal position.

The projection of a free node onC can give rise to a
local mesh with very poor quality. This effect is partly pal-
liated after smoothing the remainder nodes, following the
procedure described in section 2.2. Moreover, we have
observed that the final mesh has better quality if the con-
straintσ0 (x̄) > 0 is substituted by the most restrictive one
σ0 (x̄) > ǫ for all triangle ofN(q), wereǫ > 0 is a decreas-
ing parameter that tends to zero as the number of global
iterations increases.

The nodes are inserted in the curve without specific cri-
terion, just according to the increasing order of its numera-
tion. This produces situations in which some sections of the
curveC can not be interpolated by edges ofN without re-
moving some nodes previously projected onC. The figure
2(a) shows a scheme of this problem and figures 2(b) and
(c) explain the way to solve it by a convenient displacement
of the two extreme nodes.

(b)

(a)

(c)

Figure 2: The line (in bold) is non-recoverable if the two
extreme nodes are not moved (a). The extreme nodes are
removed from the line (b) until another one takes its place
(c)

In some applications we lack an analytic expression of
the curve to be interpolated. Only a set of aligned points
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{qc} that approximately describes a contour is available.
This is the case, for example, of data supplied by digital-
ized maps describing coastal shores or river banks. To ap-
proach this situation we solve a discrete version of (19).
Given local submeshN(q), we analyze ifq is projectable
on any point of{qc}, that is, we check if the condition
σ0 (x) > ǫ for all triangle ofN(q) is satisfied whenx cover
{qc}. Among the positionsx that satisfy previous condition
we choose the optimal point,̄x, as the one that minimizes
∣

∣K ′0
η

∣

∣

n
. We must underline that this problem is correctly

defined only if the density of points of{qc} is high enough.
Typically, the distance between contiguous points of{qc}
must be much shorter than the distances between adjacent
nodes ofN .

Usually, most of nodes ofN are very far from any point
of {qc} and, therefore, they are not projectable, so it is ad-
vantageous to have a previous knowledge of which nodes
are candidates to be projected. A possibility is to associate
to each node of bothN and{qc} the square of a regular
grid in which it is included. Let us suppose that the size of
these squares isdmax × dmax, beingdmax the maximum
edge present at the mesh. We can take a quick decision
about if the nodeq is candidate to be projectable on{qc}
only by inspecting the region,Sq, formed by the square that
containsq and the surrounding squares. Firstly, we find the
subset{q′c} of points belonging to{qc} and included inSq.
If {q′c} 6= ∅, we analyze ifq is projectable on{q′c} as it
was explained above. Note that the distance betweenq and
any point of{qc} not in Sq is greater thandmax and, con-
sequently, outside the feasible region ofN(q) (the feasible
region ofN(q) is included in the circle of radiusdmax and
centerq).

4 Application

4.1 Application to scanned objects

In this subsection the proposed technique is applied to
smooth a mesh obtained fromhttp://www.cyberware.com/.
The object is a screwdriver (see Figure 3) with27150 trian-
gles and13577 nodes.

The projection plane for this surface triangulation have
been chosen in terms of the local mesh to be analyzed. We
have used the objective function (1) withn = 2.

The average quality for this application is increased from
0.822 to 0.920 in four iterations, see Figure 4. The worst
500 triangles increases its average quality from0.486 to
0.704. It is important to remark that the original geometry
is almost preserved in the optimization process. The qual-
ity curves are shown in Figure 5. This curve is obtained by
sorting the elements in increasing order of its quality,q(e).

We have fixed∆(p) to 10% of average distance between

the free node and the nodes connected to it. The number of
not moved nodes by the algorithm with this election of∆(p)
have been85 in the first iteration,167 in the second,187 in
the third, and193 in the fourth one. We remark that the
quality curves from the first to the fourth iteration are very
close. In particular, the algorithm only needs one iteration
to reach an average quality0.907.

Figure 3: Original mesh of a screwdriver from
http://www.cyberware.com/.

Figure 4: Optimized mesh of the screwdriver after four it-
erations.

4.2 Mesh adaption to prescribed contours in
orographic surfaces

In many cases of environmental modelling, there are some
contour lines which determinate certain characteristics of
the studied region. For example, in wind simulation [13] the
well definition of contour lines of very steep slopes may be
very important for obtaining accurate results, since a change
in the direction of edges of the mesh can strongly affect the
computed wind. Thus, an accurate mesh must be adapted to
follows these contours lines. Figure 10 shows the adaption
of a nested mesh, related to a region of the north west of
Gran Canaria Island, to the shore line (plotted by points in
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Figure 5: Quality curves for the initial (red line) and opti-
mized (blue line) meshes for the screwdriver.

red). A detail of the initial and adapted meshes are shown
in figures 6) and 7, respectively.

Figure 6: A detail of the coast in the north west of Gran
Canaria Island corresponding to the not adapted mesh.

Figure 7: A detail of the coast in the north west of Gran
Canaria Island corresponding to the adapted mesh.

Figure 8: Region defined in the surrounding of Arucas
Mountain (Gran Canaria Island). Contour is defined as an
spiral line around the mountain to which the initial mesh
must be adapted.

Figure 9: Region defined in the surrounding of Arucas
Mountain. Contour plots and adapted mesh.

The second example corresponds to a mesh of another
region of Gran Canaria Island in the surrounding of Arucas
Mountain (figure 8) that is adapted to a spiral around the
mountain (an imaginary road), see figure 9. In this view,
we can clearly see how the edges of the mesh end up being
placed on the curve. Figure 11 shows a 3-D view detail of
the adapted mesh.

5 Conclusions and Future Research

We have developed an algebraic method to optimize tri-
angulations defined on surfaces. Its main characteristic
is that the original problem is transformed into a fully
two-dimensional sequence of approximate problems on the
parametric space.

8



Figure 10: Region defined in the north west of Gran Canaria Island. Contour plots and adapted mesh.

Figure 11: A detail of the adapted mesh to the spiral in ArucasMountain.
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This characteristic allows the optimization algorithm to
deals with surfaces that only need to be continuous. More-
over, the barrier exhibited by the objective function in the
parametric space prevents the algorithm to construct unac-
ceptable meshes.

We have also introduced a procedure to find an optimal
projection plane (our parametric space) based on the mini-
mization of a suitable objective function. We have observed
that correct choice of this plane plays a relevant role.

We have shown how the technique of surface mesh
smoothing can be used to match an arbitrary curve. This
last application requires the mesh can be projected in a a
unique projection plane. We propose the generalization of
these ideas to avoid the this restriction. Also, we think that
the this procedure could be extrapolated for matching sur-
faces defined in 3-D meshes.

The optimization process includes a control on the gap
between the optimized mesh and the reference surface that
avoids to lose details of the original geometry. In this work
we have used a piecewise linear interpolation to define the
reference surface when the true surface is not known, but it
would be also possible to use a more regular interpolation,
for example, the proposed in [5]. Likewise, it would be
possible to introduce a more sophisticated criterion for the
gap control, by using a local refinement/derefinement tech-
niques, that takes into account the curvature of the surface
[4], [5], [6].

In the present work we have only considered a sole objec-
tive function obtained from an isotropic and area indepen-
dent algebraic quality metric. Nevertheless, the framework
that establishes thealgebraic quality measures [1] provides
us the possibility to construct anisotropic and area sensitive
objective functions by using a suitable metric.

In future works we will use the present smoothing tech-
nique for improving the mesh quality of the boundary of
3-D domain triangulations defined over complex terrains
[12]. A simultaneous smoothing and untangling procedure
[11] could be applied to inner nodes of the domain after.
Authors have developed this tetrahedral mesh generator for
wind field simulation in realistic problems [13].
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