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Abstract timal position of the free node on the curve is determined
attending to the quality of the local submesh.

In this work we focus our attention on two aspects related toSometimes we lack an analytic expression of the curve to

the node movement in surface meshes: smoothing of trig-interpolated and, instead, it is given by a set of aligned

gular meshes defined on surfaces and the adaption of thHégigts with a density high enough. This is the case, for

meshes to match given curves or contours. example, of data supplied by digitalized maps describing
The quality improvement of the mesh is obtained by &9astal shores or river banks.

iterative process in which each node of the mesh is moved\ll these questions will be conveniently supported by ex-

to a new position that minimizes a certain objective funé&Mmples.

tion. The objective function is derived from some algebraic

quality measure [1, 2] of theocal submesh, that is, the set ;

of triangles connected to the adjustabldree node. Introduction

When we deal with mgshes defined on surfaces we hg¥g 2_p or 3-D meshes the quality improvement [1] can be
to impose some restrictions to the movement of the frggtained by an iterative process in which each node of the
node. Firstly, is clear that such node must be sited on {h@sh is moved to a new position that minimizes an objec-
surface after optimizing. But, this is not the only consitai tjye function [2]. This function is derived from a quality
If we allow the free node to move on the surface withowieasure of the local mesh. We have chosen, as a starting
imposing any other restriction, only guided by the improveyint in section 2, a 2-D objective function that presents a
ment of the quality, the optimization procedure can CoBxrier in the boundary of thieasible region (set of points
struct a high-quality local mesh, but with this node in aphere the free node could be placed to getatid local
unacceptable position. To avoid this problem the optimiza-mesh, that is, withouitverted elements). This barrier has
tion is done in theparametric mesh, where the presence ofy, jmportant role because it avoids the optimization algo-
barriers in the objective function maintains the free Nodgnm to create a tangled mesh when it starts with a valid
inside the feasible region. In this way, the original prablegne. Nevertheless, objective functions constructed bg-alg
on the surface' is transformed into a two—dlmens!onal OBfaic quality measures are only directly applicable to inne
on theparametric space. In our case, the parametric Spacfodes of 2-D or 3-D meshes, but not to its boundary nodes.
is a plane, chosen in terms of the local mesh, in such a Wgyovercome this problem, the local mesl(p), sited on a
that this mesh can be optimally projected performingled gy faces, is orthogonally projected on a plaf(the exis-
mesh, that is, without inverted elements. tence and search of this plane will be discuss in section 3) in

We use the flexibility that provides this techniques t&uch a way that it performs a valid local meSHtgq). There-
adapt a given surface mesh to a curve defined on it. Tiage, it can be said thal/(p) is geometrically conforming
idea consists on displacing the nodes close to the curveieh respect taP. Herep is the free node ol andg is its
positions sited on the curve. The process is repeated uptjection onP. The optimization ofM (p) is got by the
the it is correctly approximated (interpolated) by a set @ppropriated optimization a¥ (¢). To do this we try to get
linked edges of the mesh. ideal triangles inN(q) that become equilateral it/ (p). In

The determination of which nodes can be projected general, when the local mest (p) is on a surface, each
the curve is accomplished by analyzing if there is a positangle is placed on a different plane and it is not possible
tion on the curve on which the free node can be projectiddefine a feasible region ai Nevertheless, this region is
without inverting any triangle of its local submesh. The opperfectly defined inV(q) as it is analyzed in section 2.1.



To construct the objective function i¥i(¢), itis firstnec- 1~ Construction of the Objective
essary to define the objective functionifi(p) and, after- Function
ward, to establish the connection between them. A crucial
aspect for this construction is to keep the barrier of the 2-D | ) ) .
objective function. This is done with a suitable approxim4'S It IS shown in [2], [7], and [8] we can derive optimiza-

tion in the process that transforms the original problem A" functions fromalgebraic quality measures of the ele-

5> into an entirely two-dimensional one i We develop ments belonging to a local mesh. Let us consider a triangu-
this approximation in section 2.2 lar mesh defined iR? and lett be an triangle in the physical

space whose vertices are givendy = (x4, yx)" € R2,

k = 0,1,2. First, we are going to introduce an algebraic

_ The optimization ofN'(¢) becomes a two-dimensionaly ajity measure fot. Let 5 be the reference triangle with
iterative process. The optimal solutions of each t""%rticeSuo = (0,0)T, u; = (1,0)7, andu, = (0,1)7.

) . - .
dimensional problem form a se_quen{:e } of points be- 1t e choosex, as the translation vector, the affine map
longing toP. We have checked in many numerical test thfﬂat takestp to £ is x —Au + xo, Where 4 is the Jaco-

Pl o
{x*} is always a convergent sequence. It is important {9,y matrix of the affine map referenced to nodg given
underline that this iterative process only takes into antoy,, 4 — (X1 — X0, X5 — Xo). We will denote this type of

the position of the free node in a discrete set of points, thﬁ_ ¢ A1 Let ‘b ideal trianal

points onX corresponding tdx* } and, therefore, it is not 2\N€ Maps asp — . LELNOWis D€ anl rlang2e
necessary that the surface is smooth. Indeed, the surface( { necessarily equilateral) whose vertices aje € R,
termined by the piecewise linear interpolation of the aiti (* = 01,2) and letl; = (w1 — wo, wa — wo) be the

mesh is used as a reference to define the geometry of‘lﬁ(éevb'an matrix, referenced to nodg, of the affine map

domain. tr — tr; then, we defineS = AW, ' as the weighted

Jacobian matrix of the affine map S ¢ Inthe partic-

If the node movement only responds to an improveme#ir case that; was the equilateral triangigz, the Jaco-
of the quality of the mesh, it can happen that the optimiz8in matrix; = W will be defined byw, = (0,0)",
mesh loses details of the original surface. To avoid ths = (1,0)" andws = (1/2,v/3/2).
problem, every time the free nogeis moved onx, the  We can use matrix norms, determinant or tracesdb
optimization process only allows a small distance betweeonstruct algebraic quality measureg oFor example, the
the centroid of the triangles df/(p) and the underlaying Frobenius norm of, defined by|S| = /tr (STS5), is spe-
surface (the true surface, if it is known, or the piece-wisially indicated because it is easily computable. Thus it
linear interpolation, if it is not). shown in [1] thalg, = é,% is an algebraic quality measure

of ¢ , wheres = det (S). We use this quality measure to

There are several alternatives to the previous method. Eonstruct an objective function. Let= (z,y)” be the po-
example, Garimella et al. [3] develop a method to optimizdtion vector of the free node, and 16}, be the weighted
meshes in which the nodes of the optimized mesh are képtobian matrix of the:-th triangle of a valid local mesh of
close to the original positions by imposing the Jacobiang triangles. The objective function associatedrieth tri-
of the current and original meshes to be also close. Fegygle isy,, = [Sim |* , and the corresponding objective func-

20m
et al. [4] get a control of the gap between the mesh afign for the local mesh is the-norm of (1, M2, ..., s,

the surface by modifying the element-size (subdividing the
longest edges and collapsing the shortest ones) in terms of M 1
an approximation of the smallest principal curvaturesusdi K| (x) = lz . (X)] 1)
associated to the nodes. Rassineux et al. [5] also use the in "
smallest principal curvatures radius to estimate the etéme
size compatible with a prescribed gap error. They construgiis objective function presents a barrier in the boundéry o
a geometrical model by using the Hermite diffuse interpghe feasible region that avoids the optimization algoritom
lation in which local operations like edge swapping, nodgeate a tangled mesh when it starts with a valid one.
removing, edge splitting, etc. are made to adapt the meskbreyious considerations and definitions are only directly
size and shape. More accurate approaches, that have érbtﬂicable for 2-D (or 3-D) meshes, but some of them must
account the directional behavior of the surface, have bet?é‘properly adapted when the meshes are located on an ar-
considered by Frey in [6]. bitrary surface. For example, the concept of valid mesh is
not clear in this situation because neither the concept-of in
Application of our proposed optimization technique igerted element is. We will deal with these questions in next
shown in section 4. subsections.

m=1



1.1 Similarity Transformation for Surface- () as the matrix of the affine mag; % 75 and R as the
and Parametric Meshes 2 x 2 Jacobian matrix of the affine map = 7 (see Figure

Suppose that for each local meah(p) placed on the sur-1). Astr "¢ {1, andQ is an orthogonal matrix that keeps
faceX, that is, with all its nodes o, it is possible to find the angles and norms of the vectors, then % 5 and,

a planeP such that the orthogonal projection df (p) on therefore

P is a valid meshV(q). Moreover, suppose that we define QWg = AR 'Wg (5)
the axes in such a way that they-plane coincide withP.

If, in the feasible region o (¢), it is possible to define theis the3 x 2 Jacobian matrix of affine maf; e 1y, On
surfaceX by the parametrizatios(z, y) = (z,y, f(z,y)), theotherhand, we define on the plane

where f is a continuous function, then, we can optimize 1

M (p) by an appropriate optimization &¥(g). We will re- S =RWg (6)
fer to N (¢) as theparametric mesh. The basic idea conS|sts
on finding the positio in the feasible region aV(q) that
makesM (p) be an optimum local mesh. To do this, we

searchideal elements inV(q) that become equilateral iniS: 75 5
M (p). LetT € M (p) be a triangular element of whose We have chosen as ideal trianglerirthe equilateral one

vertices are given by, — (s Zk) (= 0,1,2) (n = 7g), then, the Jacobian matri¥’; of the affine map
andty be the reference triangle iRt (see Flgure 1). If we tr "2 t; is calculated by imposing the conditiaRiV; =

TW; QWg
choosey as the translation vector, the affine rrrap—> r QWg, becaQSQR — 17 andtg “—" 7. Taking into
isy = A;u+y,, whereA, is its Jacobian matrix, givenaccount (5), it yields

by

as the2 x 2 weighted Jacobian matrix of the affine map that
transforms the equilateral triangle into the physical dinat,

_ —1
1 — o Ty — &g TW; = AR~ " Wg 7
Ar=1 1%  ®2-w @) and, from (4), we obtain
21 — 20 22 — 20
-1
Now, consider that € N(q) is the orthogonal projection of Wr=ApR™Wg (8)

7 on P. Then, the vertices afarex;, = Iy, = (zy, yk)T,
(k =0,1,2), wherell = (el,eg)T is 2 x 3 matrix of the
affine mapr LA t, being{ei, ez, e3} the canonical basis
in R? (the associated projector frol® to P, considered Sy = APW;RA? 9)
as a subspace d@?, is II”1I). Takingx, as translation
vector, the affine mapg A2 1isx = Apu + xq, Where
Ap =1IIA, is its Jacobian matrix

so we define o theideal-weighted Jacobian matrix of the
affine mapt; 51y assSy = APW;l. From (8) it results

and, from (6)

St = ApWg'SWgAp!

_ _1y—1 _
Ap = ( T —xo Ty — T > 3) = ApWi'S(ApWg') = SgSS;' (10)

Y1 — Yo Y2 — Yo
whereSy = ApW ' is theequilateral-weighted Jacobian

Therefore, th& x 2 matrix of the affine map E) Tis matrix of the affine map g Sj) t. Fina"y, from (10), we
. obtain the next similarity transformation.

T=A:Ap 4

S =8,'S1Sk (11)

Let V. be the subspace spanned by the column vectors of
A and letr be the plane defined b, and the pointy,. Therefore, it can be said that the matricesind S; are
Our goal is to find thédeal trianglet; € P, movinggon P, similar.
such that; is mapped byf" into an equilateral oneg C .
In general, the strict fulfillment of this requirement is wynl
possible ifN (¢) is formed by a unique triangle.

Due to rankA,) = rankAp) = 2, it exists a unique It might be used, as itis defined in (6), to construct the ob-
factorizationA, = QR, where( is an orthogonal matrix jective function and, then, solve the optimization prohlem
(QTQ = I) andR is an upper triangular one wift®],, > 0 Nevertheless, this procedure has important disadvantages
(. = 1,2). The columns of thé x 2 matrix @ define an First, the optimization of\/(p), working on the true sur-
orthonormal basigq,q»} that spand/;, so we can seeface, would require the imposition of the constrairt .

1.2 Optimization on the Parametric Space
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definesS? (x) = Ap (x) (W?)~1, we approximate the sim-
ilarity transformation (11) as

5% (x) = Sp' (x) S (x) Sp (x) (12)

Now, the construction of the objective function is carried
out in a standard way, but usirgf instead ofS. So, we
obtain the objective function for a given trianglec =

_ |SO x)|2

209 (x) (13)

1’ (x)

wheres? (x) = det(S° (x)).

With this approach the optimization of the local mesh
M (p) is transformed into a two-dimensional problem with-
out constraints, defined oN (¢), and, therefore, it can be
solved with low computational cost. Furthermore, if we

Figure 1: Local surface mesH (p) and its associated paraWrite W7 as A% (R%)~!'Wg, whereA) = Ap (x°) and

metric mesh\V (q) R% = R (y"), itis straightforward to show thaf® can be
simplified as
-1
It would complicate the resolution of the problem because, S%(x) = R° (A}) " Se(x) (14)

in many cases; is not defined by a smooth function. More- o ) )

over, when the local mesH (p) is on a curved surface, eactd our objective function for the local meshiis
triangle is sited on a different plane and the objective func u 1

tion, constructed frond, lacks barriers. It is impossible to n !

define a feasible region in the same way as it was done at |5, () = [Z () <X)] (15)
the beginning of this section. Indeed, all the positions of
the free node, except those that make(S) = 0 for any Let now analyze the behavior of the objective function
triangle, produce correct triangulations/af(p). However, when the free node crosses the boundary of the feasible
for many purposes as, for example, to construct a 3-D meebion. If we denotevp = det (Ap), af = det (4%),

from the surface triangulation, there are unacceptable pg® — det (RO), wp = det (Wg) and taking into account

tions of the free node. - (14), we can writes? = p° (0493)71 apwy'. Note that

To overcome thesg d|ﬁ|c_ult!es we propose_to carry out tge, Y, andw; are constants, s¢’ has a singularity when
optimization of M (p) in an indirect way, working OIZN(q): ap = 0, that is, wheny is placed on the boundary of the
With this approach the movement of the free node will gasible region ofV(q). This singularity determines a bar-
restricted to the feasible region of(q), which avoids to e i the objective function that prevents the optimiaati
construct unacceptable surface triangulations. It allbél g 50rithm to take the free node outside this region. This bar
carried out using an approximate version of the similarifggr goes not appear if we use the exact weighted Jacobian
transformation given in (11). matrix S, given in (6), due talet (R) = Ry1Ras > 0.

Let us consider thak = (z,y)" is the position vector Suppose thak! = x° is the minimizing point of (15).
of the free nodey, sited on the plane®. If we suppose As this objective function has been constructed by keeping
that is parametrized by(z,y) = (z,y, f(z,y)), then, yinits initial position,y?, thenx! is only the first approxi-
the position of the free node on the surface is given bymation to our problem. This result is improved updating the
y = (z,y, f(z,9)" = (x, f(x))"" objective function ay' = (x!, f(x'))” and, then, comput-

Note thatSp = ApW' only depends orx because ing the new minimizing positions> = x!. This local op-
W is constant andip is a function ofx. Besides,S; = timization process is repeated, obtaining a seque{m’f@
APW[1 depends oly, due toW; = ApR~'Wpg, andRis of optimal points, until a convergence criteria is verified.
a function ofy. Thus, we havég (x) andSy (y). We shall We have experimentally verified in numerous tests, involv-
optimize the local mesi/ (p) by an iterative procedureing continuous functions to define the surfacethat this
maintaining constarit’; (y) in each step. To do this, at thealgorithm converges.
first step, we fix¥; (y) to its initial value, W? = W;(y°), Let us consideP as an optimal projection plane (this as-
wherey? is given by the initial position op. So, if we pect will be discussed in next section). In order to prevent

m=1
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a loss of the details of the original geometry, our optimiza- Let ®(¢, 8,v) be the Euler’s rotation matrix such that
tion algorithm evaluates the difference of heights{]) be- y’ = ®y, then, the Jacobian matrix, = (y1 — yo,y2 —
tween the centroid of the triangles 8f (p) and the refer- y,) associated to the triangle of M (p), defined in (2),
ence surface, every time a new positihis calculated. If can be spanned on the rotated coordinate syster] as
this distance exceeds a threshaldp), the movement of (y}—y{,y5—y5) = PA,. Thus, the Jacobian matrik, is
the node is aborted and the previous position is stored. T\Mstten asA, = ITA, = TIP A,.. With these conS|derat|ons
thresholdA(p) is established attending to the size of the al-is easy to proof that the value of,, is
ements ofM (p). In concrete, the algorithm evaluates the
average distance between the free node and the nodes con- @ = det(II®A;) = my sin (¢) sin(0)
nected to it, and takeA(p) as percentage of this distance. + mgsin () cos (¢) + m3 cos (0) (16)
Other possibility is to fixA(p) as a constant for all local
meshes. In the particular case in which we have an expliciwherem; is the minor obtained by deleting theh row
representation of the surface by a functipx,y), A(p) Of Ar. Note that equation (16) only depends ¢rand d
can be established as a percentage of the maximum diffgrgles, as was to be expected.
ence of heights between the original surface and the initialAlthough the above maximization problem can be solved
mesh. taken into account the constraints, we propose an uncon-
strained approach.
Let us consider, as a first attempt, the objective func-

2 Search of the Optimal Projection on Z (s, )~L(,6). The minimization of this function

Plane tends to maximize the values of, and, due to the bar-
rier that appears whem, = 0 for some triangle ofV(¢'),
The former procedure needs a plane in which the logak values ofv), are maintained positive if the minimiza-
mesh,M (p), is projected conforming a valid mesN,(q). tion algorlthm starts at an interior point, that is, a point
If this plane exists it is not unique, because a small rahatle(;so 6,) belonging to the se¥ of angles(¢,6) such that
of the coordinate system produces another valid prOJect@g (6,6) > 0 for (m = 1,...,M). On the other hand,
plane, that is, another plane in whiéi(¢) is valid. We if any o/, < 0 the barrier prevents to reach the required
have observed that the number of iterations required by Wﬁhmum In next paragraph we propose a method to find
procedure depends on the chosen plane. In general, #¥snterior point(¢y, fy) of ¥ to be used as a starting point
number is less if the plane is wédliced to M (p). We have in the minimization algorithm.
to find the rotation of reference systeny, z such thatthe | et = [gm] be the3 x M matrix formed by the vec-
new z', y'-plane, ', is optimal with respect to a suitablors,g,,,, normal to the triangles o/ (p). A solution of the
criterion. inequality system (if it exists§”g > 0 provides a direc-
We will denoteN (¢') as the projection ol (p) onto P tion, defined by vectag, such that all the triangles af (p)
andt’ the projection of the physical triangtec M (p) onto  can be projected on a plane, normal to the unitary vector
P’. Let A} = (x} — x{, x4 — x) be the matrix associatedn =& so thain, > 0for (m = 1,..., M). Then, itonly
to the affine map that takes the reference element deﬂm@gﬁa,ns to find the angles, and#é, in which the coordi-
on P’ to ¢/, then, the area of is given by [a’s| where nate system needs to be rotated to gettheis to point in

alp = det (Ap). the direction ofn. More precisely, the angles, andf, are

Our goal is to find a coordinate system rotation such thae solution of the equatio®” (¢q, 6y, 0) e3 = n, where

M T . . .
5" o) is maximum satisfying the constraints, = ©3 = (0,0, 1') . If the mequallty.system has not so.Iutlon,
m=1 then, there is not any valid projection plane for this local

det (A’Pm) > 0 for all the triangles ofN(q¢’), that is, mesh, against the premise done in section 2.1. In this case,
m = 1,..., M. In [9] a method to determine a projectionhe local optimization procedure maintains the free node
plane is considered but without the enforcement of thessits initial position.
constraints. We have observed that the previous objective function
According to Euler’s rotation theorem, any rotation mayas computational difficulties as the optimization algo-
be described using three angles. The so-callednvention rithms use discrete steps to search the optimal point. A step
is the most common definition. In this convention, the rotkeading outside the regioBi may indicate a decrease in the
tion is given by Euler anglegy, 6, v), where the first rota- value of the objective function and take to a false solution.
tion is by an angle € [0, 2] about thez-axis, the second To overcome this problem we propose a modification of the
is by an anglé € [0, 7] about thez-axis, and the third is objective function in such a way that it will be regular all
by an angle) € [0, 27] about thez-axis (again). overR? and its barrier will be "smoothed”. The modifica-



tion consists of substituting, by h(ap,,), whereh(a) is

the positive and increasing function introduced in [10] and minimize|K{70\n (x), subjecttax € C (29)
given by
1 - - The objective functionk;’| = strongly penalizes the neg-
h(a) = 5(0‘ +va?+45%) (17) " ative values o?, so that, the minimization process of (19)

leads to the construction of a local submeély) without
inverted triangles, provided it is possible. Thenxifs the
minimizing position of (19) ana’ (%) > 0 for all triangle
andlimh(a) = 0, Vo < 0. The characteristics df func-  of N(q), we conclude thaj is projectable or’ andx s its
tion and its application in the context of mesh untanglirgptimal position.

and smoothing have been studied in [10] and [11]. Thus,The projection of a free node off can give rise to a
the proposed objective function for searching the progectilocal mesh with very poor quality. This effect is partly pal-

being the parameter = h(0). The behavior ofi(a) in
function of§ parameter is such tha}ﬁl%h(a) =a,Va>0

plane is liated after smoothing the remainder nodes, following the
M 1 procedure described in section 2.2. Moreover, we have
Q(p,0) = Z —— (18) observed that the final mesh has better quality if the con-

m=1 h(ap, (6,0)) strainto? (%) > 0 is substituted by the most restrictive one

0 (% i i -
A crucial property is that the angles that minimize the (%) > e for all triangle 0fN(g), weree > 0is a decreas
L . L . . INg parameter that tends to zero as the number of global
original and modified objective functions are nearly identi

cal when is small. Details about the determination of Ite'rl'afl:leozzélr::sreaarleszeiﬁ.serted in the curve without specific cri-
value for 3-D triangulations can be found in [11]. P

terion, just according to the increasing order of its numera
tion. This produces situations in which some sections of the
: : curveC' can not be interpolated by edgeséfwithout re-
3 MatChmg curves defined on sur- moving some nodes previously projected@nThe figure
faces 2(a) shows a scheme of this problem and figures 2(b) and
(c) explain the way to solve it by a convenient displacement
Node movement provides a surface mesh the ability abthe two extreme nodes.
match an arbitrary curve. Suppose that the surface mesh,
M, is projectable on a unique pladeforming a paramet-
ric mesh,N. If C' is a curve defined oi?, our objective is
to move some nodes @¥, projecting them or, to get an
interpolation ofC' by edges ofV. Note that, associated to
this interpolation, there is a mapped interpolationién To
achieve this objective we have to decide which node¥ of
can be projected o@' without inverting any triangle of its
local submesh. More accurately, we say that a free pasle
projectable orC' if it exists any point ofC, sayq’, such that
the resulting local submesN(¢) has not any inverted tri-
angle after carrying to the position ofy’. In general, ifg is
projectable, its possible placement ©ris not unique and,
therefore, we have to determine the "best” position to relo-
cateq. To decide which is the best position of this node we
could think on minimizing the objective functii)| (x) ©
[14] subject to the constrained € C. Nevertheless, this
function only works properly wheiV (q) is not tangled. To
overcome this problem we propose to modify this objective
function following the criteria developed in [11]. This modFigure 2: The line (in bold) is non-recoverable if the two
ification consists of substituting® in (13) by the positive extreme nodes are not moved (a). The extreme nodes are
and increasing functioh(c?), so that the barrier associatedemoved from the line (b) until another one takes its place
with the singularities of K9| (x) will be eliminated and (c)

the new function will be smooth all ové&®. If |K°| (x)
is the modified objective function, the problem of finding In some applications we lack an analytic expression of
the optimal position to project the free node @ris the curve to be interpolated. Only a set of aligned points




{q.} that approximately describes a contour is availablbe free node and the nodes connected to it. The number of
This is the case, for example, of data supplied by digitalet moved nodes by the algorithm with this electior\df)
ized maps describing coastal shores or river banks. To bhpve beer®5 in the first iteration 167 in the second]87 in
proach this situation we solve a discrete version of (1%9he third, and193 in the fourth one. We remark that the
Given local submesiV(q), we analyze ifg is projectable quality curves from the first to the fourth iteration are very
on any point of{q.}, that is, we check if the conditionclose. In particular, the algorithm only needs one iteratio
o (x) > efor all triangle of N (¢) is satisfied whex cover to reach an average qualityd07.

{g.}. Among the positions that satisfy previous condition
we choose the optimal poing, as the one that minimizes
|K,°| . We must underline that this problem is correctly
defined only if the density of points df.} is high enough.
Typically, the distance between contiguous pointq @f}
must be much shorter than the distances between adjac
nodes of\N.

Usually, most of nodes aW are very far from any point

of {¢.} and, therefore, they are not projectable, so it is at
vantageous to have a previous knowledge of which nod
are candidates to be projected. A possibility is to assecie
to each node of bottv and {¢.} the square of a regular
grid in which it is included. Let us suppose that the size of o )
these SQUares i$nos X dymass DEINGdna, the maximum Figure 3: Original mesh of a screwdriver from
edge present at the mesh. We can take a quick decidigR-//www.cyberware.com.
about if the node; is candidate to be projectable ¢n.}
only by inspecting the regiors,;, formed by the square that
containsg and the surrounding squares. Firstly, we find th
subsef{q.} of points belonging td¢.} and included inS,.
If {¢.} # 0, we analyze ifq is projectable on{q.} as it
was explained above. Note that the distance betwesrd
any point of{¢.} notin S, is greater thaw,,,, and, con-
sequently, outside the feasible regionfq) (the feasible
region of N(g¢) is included in the circle of radiu,,,., and
centerg).

4  Application

L . Figure 4. Optimized mesh of the screwdriver after four it-
4.1 Application to scanned objects erations.

In this subsection the proposed technique is applied to
smooth a mesh obtained fronttp://mww.cyberware.comnv.

The object is a screwdriver (see Figure 3) w50 trian- 4 2 Mesh adaption to prescribed contours in

gles andi3577 nodes. . . . orographic surfaces
The projection plane for this surface triangulation have

been chosen in terms of the local mesh to be analyzed. Myenany cases of environmental modelling, there are some
have used the objective function (1) with= 2. contour lines which determinate certain characteristics o
The average quality for this application is increased frothe studied region. For example, in wind simulation [13] the
0.822 to 0.920 in four iterations, see Figure 4. The worsivell definition of contour lines of very steep slopes may be
500 triangles increases its average quality from86 to very important for obtaining accurate results, since a ghan
0.704. It is important to remark that the original geometrin the direction of edges of the mesh can strongly affect the
is almost preserved in the optimization process. The quebmputed wind. Thus, an accurate mesh must be adapted to
ity curves are shown in Figure 5. This curve is obtained Ifgllows these contours lines. Figure 10 shows the adaption
sorting the elements in increasing order of its qualify). of a nested mesh, related to a region of the north west of
We have fixedA(p) to 10% of average distance betweeiran Canaria Island, to the shore line (plotted by points in
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gure 8: Region defined in the surrounding of Arucas

Mountain (Gran Canaria Island). Contour is defined as an
spiral line around the mountain to which the initial mesh

In this view,
we can clearly see how the edges of the mesh end up being

placed on the curve. Figure 11 shows a 3-D view detail of

the adapted mesh.

Its main characteristic

The second example corresponds to a mesh of another
is that the original problem is transformed into a fully

Figure 9: Region defined in the surrounding of Arucas
region of Gran Canaria Island in the surrounding of Arucas

Mountain. Contour plots and adapted mesh.
two-dimensional sequence of approximate problems on the

Mountain (figure 8) that is adapted to a spiral around the
mountain (an imaginary road), see figure 9.

5 Conclusions and Future Research
We have developed an algebraic method to optimize tri-

angulations defined on surfaces.
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red). A detail of the initial and adapted meshes are shofiiyst be adapted.

Figure 5: Quality curves for the initial (red line) and opti;
in figures 6) and 7, respectively.

mized (blue line) meshes for the screwdriver.

Figure 7: A detail of the coast in the north west of Gragarametric space.

Figure 6: A detail of the coast in the north west of Gran
Canaria Island corresponding to the adapted mesh.

Canaria Island corresponding to the not adapted mesh.



Figure 10: Region defined in the north west of Gran Canaramtsl Contour plots and adapted mesh.
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Figure 11: A detail of the adapted mesh to the spiral in Aridasntain.



This characteristic allows the optimization algorithm tf2] Freitag LA, Knupp PM. Tetrahedral mesh improvement
deals with surfaces that only need to be continuous. More- via optimization of the element condition number. Int J
over, the barrier exhibited by the objective function in the Num Meth Eng. 2002;53:1377-1391.

parametric space prevents the algorithm to construct unﬁ%ﬁ-Garimella RV, Shaskov MJ, Knupp PM. Triangular

ceptable meshes. . X L
We have also introduced a procedure to find an optimal _and quadrilateral surface mesh quality optimization us-

projection plane (our parametric space) based on the mini- Ing Io.cal pfarametnzanon. Comp Meth Appl Mech Eng

mization of a suitable objective function. We have observed 2004;9-11:913-928.

that correct choice of this plane plays a relevantrole.  [4] Frey PJ, Borouchaki H. Geometric surface mesh opti-
We have shown how the technique of surface mesh mization. Comp Vis Sci 1998;1:113-121.

smoothing can be used to match an arbitrary curve. This ) ] _

last application requires the mesh can be projected in &h Rassineux A, Villon P, Savignat JM, Stab O. Surface

unique projection plane. We propose the generalization of remeshing by local Hermite diffuse interpolation. Int J

these ideas to avoid the this restriction. Also, we think tha Num Meth Eng 2000;49:31-49.

the this procedure could be extrapolated for matching SH] Frey PJ, Borouchaki H. Surface meshing using a

faces defined in 3-D meshes. geometric error estimate. Int J Num Meth Eng
The optimization process includes a control on the gap 5003:58:227-245.

between the optimized mesh and the reference surface that

avoids to lose details of the original geometry. In this wofi{] Knupp PM. Achieving finite element mesh quality via
we have used a piecewise linear interpolation to define the optimization of the Jacobian matrix norm and associ-
reference surface when the true surface is not known, but it ated quantities. Part | - A framework for surface mesh
would be also possible to use a more regular interpolation, optimization. Int J Num Meth Eng 2000;48:401-420.
for example, the proposed in [5]. Likewise, it would b
possible to introduce a more sophisticated criterion fer t
gap control, by using a local refinement/derefinement tech-
nigues, that takes into account the curvature of the surface
[4], [5], [6].

In the present work we have only considered a sole objec-
tive function obtained from an isotropic and area indepe®] Rassineux A, Britkopf P, Villon P. Simultaneous surface
dent algebraic quality metric. Nevertheless, the fram&wor and tetrahedron mesh adaption using mesh-free tech-
that establishes thedgebraic quality measures [1] provides niques. Int J Num Meth Eng 2003;57:371-389.
us the possibility to construct anisotropic and area seasit ) o
objective functions by using a suitable metric. [10] _Garan;he_l VA, Kaporin IE. Regularlzatlon_ of the bar-

In future works we will use the present smoothing tech- '€r Variational Method of Grid Generation. Comp
nique for improving the mesh quality of the boundary of Math Math Phys 1999;39:1426-1440.

3-D domain triangulations defined over complex terraifg1] Escobar JM, Rodguez E, Montenegro R, Montero
[12]. A simultaneous smoothing and untangling procedure G, Gonalez-Yuste JM. Simultaneous untangling and

[11] could be applied to inner nodes of the domain after. smoothing of tetrahedral meshes. Comp Meth Appl
Authors have developed this tetrahedral mesh generator for pjech Eng 2003;192:2775-2787.

wind field simulation in realistic problems [13].

EB] Knupp PM. Achieving finite element mesh quality via

optimization of the Jacobian matrix norm and associ-
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