Abstract

Refinement technique is used to adapt meshes to the sirigadaf the numerical
solution of any problem. Local refinement is applied is mesgtas where then so-
lution must be accurate and it is necessary to dispose @ibtelierror indicators or
estimators which define the elements that must be refinedallysthis indicators
or estimators are difficult to obtain. On the other hand, filegenent is used to re-
move mesh elements on which the numerical solution can Iy edsrpolated. This
process can be guided by a parameter that indicates theedquecision for the nu-
merical solution. This paper is about of using refinememgfil@ement techniques to
adapt meshes to the numerical solution but using globalemfamt instead of local
ones. No error estimators or indicators are needed, anduwencal parameters are
used to automatize the process.

Keywords: 3-D triangulations, finite element, adaptive meshes, olggented me-
thod, adaptive refinement/derefinement, data structuiied, field models.

1 Introduction

Refinement/derefinement techniques are used when it issayge® adapt meshes
to the singularities of the numerical solution. Usuallycdbrefinement is applied
to elements where the solution must be adjusted. Previotms$/elements must be
determined using any kind of error indicator or estimatar. &ach mesh element, an
error indicator must be computed, and thus it is possiblstiadish mesh zones where
must be carried out the refinement. Depending on the prolilererror indicator or
estimator can be more or less difficult to obtain. Moreoverpuld be impossible to
get a reliable one.

On the other hand, derefinement algorithms removes meslerteswhere the nu-



merical solution can be obtained with the desired preciBmm neighbour elements.
Comparing the numerical solution of an element with therpa&ted solution, and
if it is enough accurate, the element could be removed. Nwtein this case we are
dealing with numerical parameters that gives us the degredision, and they are
always possible to establish.

In this paper we propose a simple method to carry out mesltadattbn without
error indicators or estimators using global refinementhwibbal refinement all mesh
elements divided, so indicators are not needed. After thaerefinement process
will remove elements which are not necessary. Each iteratighis method implies
higher computational cost than local refinement, but thel tnamber of iterations of
the proposed method could be much less if we not chose a dpéfitement strategy.

In section 2 the algorithm for refinement/derefinement wdllriefly presented.
Details can be found in [2, 3]. In section 3, a wind field modetommented. It has
been used for implementing the algorithm and compare thegsed method with the
traditional refinement. This model uses the gradient of theat®n as error indicator,
and itis detailed in [1, 6]. In section 4 the implementatitgoaithm is explained, and
we present different situations that has been useful teeaeht. In section 5 can be
found a problem on which the algorithm has been tested. Besalreal problem has
been implemented with a mesh of the south part of La Palmadsl@his mesh has
been generated with [4]. Finally, in the section 6 a brief panson between methods
is commented.

2 Refinement/Derefinement

The refinement algorithm is based on 8-subtetrahedral gisbmh, and it has been
presented in [2]. From an initial triangulatiop, the goal is to build a sequence of
nested meshe¥ = {1p < 74 < » < .. < 7}, Wherer;,, is obtained from
refinement of-j. Each element; € 75 will have associated an error indicatqu, and

it will be refined if:

> (1)

n’ . 1S the maximal value of the error indicator of elements;in~y is the refine-
ment parameter and € [0, 1].

The derefinement algorithm is the inverse of the refinemeias been presented
in [3], and it takes into account the numerical solution ia thesh nodes. Any node
n; € 7; will have computed a numerical solutief. If we considem, andn, nodes
of the surrounding edge af;, thenn; can be removed if:

i vty

v; —

<e (2)

The derefinement parameteis used to establish the desired precision of the solu-



tion in nodes.

3 Wind Field Model: Mass Consistent Model in 3-D

This model [6] is based on the continuity equation for an mpeessible flow where
the air density is constant in the domé&ilrandno-flow-throughconditions ol (ter-
rain and top) are considered

Vi =0 in 3)
n-u 0 on I 4)

We formulate a least-square problentimwith «(u, v, w) to be adjusted
E(d) = / [of (@ — up)* 4 (U — U0)2> + a3 (W — wO)Q} aQ (5)
Q

where the interpolated wing) = (uo, v, wy) is obtained from experimental measure-
ments, andy,, a, are the Gauss precision moduli.

We consider Dirichlet condition for open fow-throughboundaries and Neumann
condition for terrain and top

¢ = 0on T, (6)
i-TVu = —it-0 onT, (7)

This problem can be solved using tetrahedral finite elem@ets [5]) which leads
to a set oft x 4 elemental matrices andx 1 elemental vectors. These are assembled
to form a symmetric linear system of equations which is sl a preconditioned
conjugate gradient method.

The construction of the interpolated wind is a two step psecehorizontal and
vertical interpolation. Both processes are detailed irf6]1,

In the generation of adaptive meshes, the local refinemetiteoflomain is nec-
essary due, on one hand, to the geometry and, on the othey toatice numerical
solution. The computation of error estimators or at leagable error indicators of
the numerical solution is carried out to determine the el@mw® be refined or dere-
fined in a mesh. In this wind model we use one error indicatop@sed in [1], which
takes into account the gradient of the solution in each ekme

4 Implementation

To obtain the desired mesh, it will be necessary to comparerash parameter. We
have chosen the number of nodes, and we definas the number of nodes ar.
This parameter is used because it indicates the number wfsgbiat will be used for
computing the numerical solution.



The first implementation can be seen in the Algorithm 1. It wasied out at-
tending to thee parameter. The stop criteria consist on obtaining a mgssuch
w, = wy,_1. This implies that all new elements added by refinement,of have
been removed by derefinement, so the numerical solutionusted in7,, according
to thee parameter. The Figure 1 represents the expected evolution i the re-
sulting meshes. This number would increase slower in nepissiue to it could have
mesh zones with the desired precision in their numericaitsol.

Algorithm 1 Initial approach
Be 7y the initial mesh
n=0
repeat
n=n+1
7! =T1,_1 globally refined
Compute numerical solution af,
T, = 7,, derefined according toparameter
until w,, = w,_1

mesh

Figure 1. Expected evolution ar

In the first tests the obtained results were good with valieg@latively hight (6
m/s). But with lower values of (2 m/s) the algorithm does not work properly. In
Figure 2 we can see its behavior.

Note that:

1. There are meshes with, < w;_;. Refinements improve the numerical solu-
tion in certain zones and derefinement removes elementslinted many steps
before.

2. There are two groups of meshes:

® Wi — W13 = W15 = ...

® W19 = W14 = W16 = - - -
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Figure 2:w for test withe =2 m/s

The second aspect implies that the condition of the Algorithw,, = w,,_1, will
be never reached. To solve this problem, we have redefinetbthparison between
meshes. The stop criteria can not be the mentioned befatealeh of that, two meshes
will be considered similar if the difference betweep andw, (k < n) is lesser than
a user defined percentage, that is, it will be compargdvith all the previousw to
find two similar meshes.

In final test, withe = 1.5 m/s, we have obtained graphics like Figure 3. This means
that the numerical solution will be never adjusted. Thishpem is a particular case
of the wind field model, in elements close the terrain. Theedtince between the nu-
merical solution of the terrain elements and their adjapeegents low variation with
refinements. If new elements are introduced, the differentethis elements is sim-
ilar than previous, so the numerical solution is not beingroved. The derefinement
process would not remove that elements, and they will beaefiime and again.

mesh

Figure 3:w for test withe = 1.5 m/s

To prevent this, we introduce a new parametelt indicates the minimal size for
the edges of any mesh. The derefinement process will be dauteattending to both,
e andy parameters. If an element has any edge lesserdthawill be removed. The
final implementation can be seen in Algorithm 2.



Algorithm 2 Implemented

Be 7y the initial mesh

n=0

loop
n=n+1
7! = 1,1 globally refined
Compute numerical solution of,
T, = 7,, derefined according t®ande parameters
for i=0 to n-1do

Exit whenw,, ~ w;
end for
end loop

5 Applications

All the executions were run in a XEON dual processor, with 2d6RAM, under
linux and programs compiled with GNU C++. To stop the procgeshave defined

that two meshes are similar if their; are different in less than 1%:

Uk 10.99,1.01],k < n (8)

Wn,
The first mesh used is a 3D gauss curve as shown in Figure 4ndtsts on 1680
nodes and 7645 elements for a simulated domaird@f0 x 10000 x 10000 m?>.
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Figure 4:7

The first test was made with parameters 2 m/s and = 40 m. Five steps were
necessary to reach the adjusted mesh (only few meshes ava shigure 6(a) and



6(b)). In Figure 1 it can be seen the graphicdgrand in Table 1(b) are printed CPU
time for each process.

Figure 5: Meshes obtained from with e =2 m/s and) =40 m
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Table 1. Data fory with e =2 m/s and = 40 m (Figure 5)
(a) Evolution ofw

2200

2100
2000
1900
= 1800

1700
1600 |- .
1500 |- .

1400 ' ' ' '

mesh
(b) CPU Time in seconds

Initial 7,1 | w,—1 | Refine w; Compute| Derefine| Final 7, W,
To 1680| 3.72| 11787 5.93 2.68 T 2017
T 2017| 5.18]| 12591 5.31 3.16 Ty 2058
Ty 2058 | 5.39| 12865 5.52 3.45 T3 2096
T3 2096| 5.76| 13084 5.51 3.83 T4 2135
T4 2135 6.09 | 13326 5.98 4.00 T 2107

Another test was made with parameters1.5 m/s and = 80 m. For this problem,
twelve steps were necessary to adjust the mesh (Figure Gadohel 4).

In both test the algorithm worked properly, and they werdulde validate and
adjust the method.



Figure 6: Meshes obtained frorg with e = 1.5 m/s and =80 m
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Table 2: Data for, with e = 1.5 m/s and = 80 m (Figure 6)
(a) Evolution ofw

4500

4000

3500

3000

2500

2000

1500 1 1 1 1 1
0 2 4 6 8 10 12

mesh

(b) CPU Time in seconds

Initial 7,,_1 | w,_1 | Refine w, | Compute| Derefine| Finalz, | w,
70 1680 3.78 | 11787 6.01 2.94 i 2644
s 2644 6.84 | 15857 7.43 457 T9 3075
T 3075 8.32| 18775 9.69 7.05 T3 3498
T3 3498 9.82 | 21564 11.67 8.02 T4 3987
T4 3987 | 11.73| 24532 14.40 8.15 T 4178
T 4178| 12.26| 25982 16.70 10.46 T6 4372
T6 4372 | 13.36| 27250 16.85 10.77 7 4440
T7 4440| 13.96| 27597 18.23 11.43 TS 4647
T 4647 | 14.64| 29158 20.26 12.35 T9 4492
Tgy 4492 | 14.76| 28123 18.52 11.49 T10 4743
T10 4743 | 16.12| 29617 18.55 12.43 Ti1 4277
11 4277 | 14.60| 26783 16.73 11.61 T19 4713

We have also used a real geometry generated with [4, 5]. lesepts part of the
south of La Palma island, which can be seen in Figure 7. Itistsmen 4535 nodes
and 21137 elements for a real domaintd600 x 31200 x 6000 m?>.



Figure 7:lp,

The goal was to obtain an adjusted mesh accordirgté m/s andd =40 m. Only
five steps were necessary. In Figure 8 we can see meshestgednand in Table 3
information about the process.

On the other hand, we have used the same mgshith the traditional method, that
is, local refinement - error estimation - derefinement. Jiparameter for refinement
was adjusted to 0.6 ardparameter was equal than the above run (4 mi/parameter
was not necessary. Meshes obtained are similar that shokigumne 8, but in Tables
4 and 5 we can see that number of steps is higher.

6 Conclusion

To adjust meshes to a numerical solution with local refindrsenecessary to estab-
lish any error indicator or estimator, and not always is eaBye number of steps
depends on both, position and number of singularities oferigal solution. The
computational cost in each step is lower than the propos¢dade&ue to the number
of elements treated.

With global refinement all singularities are treated simuoéously. We avoid the
error estimation and the method only depends on numericahpeterse and, in our
case,y. Of course, due to all mesh elements are involved in eachtseepomputa-
tional cost is higher, but the number of steps is lower.

If the number of step is very high with local refinement, thisthod could be
advantageous not only for using numeric parameters but GRé&J t



Figure 8: Meshes obtained froip, with ¢ = 4 m/s and) =40 m
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Table 3: Data foip, with ¢ = 4 m/s and) = 40 m (Figure 8)
(a) Evolution ofw

30000 T T T T

25000
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10000

mesh
(b) CPU Time in seconds

7

Initial Ip,,_; | wp—1 | Refine w,, | Compute| Derefine| Finallp,, W,
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Table 4: Data foip, with v = 0.6 ande =4 m/s

Initial Ip,,_, | wn—1 | Refine w,, | Compute| Derefine| Finallp,, Wy,
Ipg 4535| 5.90| 18200 10.59 5.03 Ipy 12768
Ipy 12768| 19.75| 44340 35.01 19.00 Ipy 17593
Ipy 17593 | 28.38| 45780 39.78 19.62 Ips 18773
Ips 18773| 37.23| 42330 33.26 22.35 Ipy 19108
Ipy 19108 | 38.88| 41944 31.12 23.72 Ips 19304
Ips 19304 | 45.69| 49265 44.49 27.29 Ipg 19519
Ipg 19519 | 48.27| 52984 50.30 29.66 lp; 20058
lp; 20058| 56.93| 55388 57.96 31.93 Ipg 20294
Ipg 20294 | 59.61| 54401 45.93 32.72 Ipy 20536
Ipy 20536| 52.58| 51416 49.49 32.04| Ipy 20505

Table 5: Evolution ofw in adjusting of/p, using global (Table 3) and local (Table 4)
refinement

Global Ref. —e—
Local Ref. —x—

25000

20000

= 15000

10000

5000
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