
Abstract

Refinement technique is used to adapt meshes to the singularities of the numerical
solution of any problem. Local refinement is applied is mesh areas where then so-
lution must be accurate and it is necessary to dispose of reliable error indicators or
estimators which define the elements that must be refined. Usually, this indicators
or estimators are difficult to obtain. On the other hand, derefinement is used to re-
move mesh elements on which the numerical solution can be easily interpolated. This
process can be guided by a parameter that indicates the required precision for the nu-
merical solution. This paper is about of using refinement/derefinement techniques to
adapt meshes to the numerical solution but using global refinement instead of local
ones. No error estimators or indicators are needed, and two numerical parameters are
used to automatize the process.

Keywords: 3-D triangulations, finite element, adaptive meshes, object oriented me-
thod, adaptive refinement/derefinement, data structures, wind field models.

1 Introduction

Refinement/derefinement techniques are used when it is necessary to adapt meshes
to the singularities of the numerical solution. Usually, local refinement is applied
to elements where the solution must be adjusted. Previously, this elements must be
determined using any kind of error indicator or estimator. For each mesh element, an
error indicator must be computed, and thus it is possible to establish mesh zones where
must be carried out the refinement. Depending on the problem,the error indicator or
estimator can be more or less difficult to obtain. Moreover, it could be impossible to
get a reliable one.

On the other hand, derefinement algorithms removes mesh elements where the nu-

1

merical solution can be obtained with the desired precisionfrom neighbour elements.
Comparing the numerical solution of an element with the interpolated solution, and
if it is enough accurate, the element could be removed. Note that in this case we are
dealing with numerical parameters that gives us the desiredprecision, and they are
always possible to establish.

In this paper we propose a simple method to carry out meshes adaptation without
error indicators or estimators using global refinement. With global refinement all mesh
elements divided, so indicators are not needed. After that,a derefinement process
will remove elements which are not necessary. Each iteration of this method implies
higher computational cost than local refinement, but the total number of iterations of
the proposed method could be much less if we not chose a optimal refinement strategy.

In section 2 the algorithm for refinement/derefinement will be briefly presented.
Details can be found in [2, 3]. In section 3, a wind field model is commented. It has
been used for implementing the algorithm and compare the proposed method with the
traditional refinement. This model uses the gradient of the solution as error indicator,
and it is detailed in [1, 6]. In section 4 the implementation algorithm is explained, and
we present different situations that has been useful to achieve it. In section 5 can be
found a problem on which the algorithm has been tested. Besides, a real problem has
been implemented with a mesh of the south part of La Palma island. This mesh has
been generated with [4]. Finally, in the section 6 a brief comparison between methods
is commented.

2 Refinement/Derefinement

The refinement algorithm is based on 8-subtetrahedral subdivision, and it has been
presented in [2]. From an initial triangulationτ0, the goal is to build a sequence of
nested meshesT = {τ0 < τ1 < τ2 < ... < τm}, whereτj+1 is obtained from
refinement ofτj. Each elementti ∈ τj will have associated an error indicatorη

j
i , and

it will be refined if:

η
j
i ≥ γηj

max (1)

ηj
max is the maximal value of the error indicator of elements inτj . γ is the refine-

ment parameter andγ ∈ [0, 1].

The derefinement algorithm is the inverse of the refinement. It has been presented
in [3], and it takes into account the numerical solution in the mesh nodes. Any node
ni ∈ τj will have computed a numerical solutionvj

i . If we considernp andnq nodes
of the surrounding edge ofni, thenni can be removed if:

∣∣∣∣v
j
i −

vj
p + vj

q

2

∣∣∣∣ < ε (2)

The derefinement parameterε is used to establish the desired precision of the solu-

2

tion in nodes.

3 Wind Field Model: Mass Consistent Model in 3-D

This model [6] is based on the continuity equation for an incompressible flow where
the air density is constant in the domainΩ andno-flow-throughconditions onΓb (ter-
rain and top) are considered

~∇ · ~u = 0 in Ω (3)

~n · ~u = 0 on Γb (4)

We formulate a least-square problem inΩ with ~u(ũ, ṽ, w̃) to be adjusted

E(~u) =

∫

Ω

[
α2

1

(
(ũ − u0)

2 + (ṽ − v0)
2
)

+ α2
2 (w̃ − w0)

2
]

dΩ (5)

where the interpolated wind~v0 = (u0, v0, w0) is obtained from experimental measure-
ments, andα1, α2 are the Gauss precision moduli.

We consider Dirichlet condition for open orflow-throughboundaries and Neumann
condition for terrain and top

φ = 0 on Γa (6)

~n · T ~∇µ = −~n · ~v0 on Γb (7)

This problem can be solved using tetrahedral finite elements(see [5]) which leads
to a set of4× 4 elemental matrices and4× 1 elemental vectors. These are assembled
to form a symmetric linear system of equations which is solved by a preconditioned
conjugate gradient method.

The construction of the interpolated wind is a two step process: horizontal and
vertical interpolation. Both processes are detailed in [1,6].

In the generation of adaptive meshes, the local refinement ofthe domain is nec-
essary due, on one hand, to the geometry and, on the other hand, to the numerical
solution. The computation of error estimators or at least suitable error indicators of
the numerical solution is carried out to determine the elements to be refined or dere-
fined in a mesh. In this wind model we use one error indicator, proposed in [1], which
takes into account the gradient of the solution in each element.

4 Implementation

To obtain the desired mesh, it will be necessary to compare any mesh parameter. We
have chosen the number of nodes, and we definewn as the number of nodes orτn.
This parameter is used because it indicates the number of points that will be used for
computing the numerical solution.

3

The first implementation can be seen in the Algorithm 1. It wascarried out at-
tending to theε parameter. The stop criteria consist on obtaining a meshτn such
wn = wn−1. This implies that all new elements added by refinement ofτn−1 have
been removed by derefinement, so the numerical solution is adjusted inτn according
to theε parameter. The Figure 1 represents the expected evolution of wi in the re-
sulting meshes. This number would increase slower in next steps due to it could have
mesh zones with the desired precision in their numerical solution.

Algorithm 1 Initial approach
Be τ0 the initial mesh
n=0
repeat

n=n+1
τ ′

n = τn−1 globally refined
Compute numerical solution ofτ ′

n

τn = τ ′

n derefined according toε parameter
until wn = wn−1

 0 1 2 3 4 5 6 7 8

w

mesh

Figure 1: Expected evolution orw

In the first tests the obtained results were good with values of ε relatively hight (6
m/s). But with lower values ofε (2 m/s) the algorithm does not work properly. In
Figure 2 we can see its behavior.

Note that:

1. There are meshes withwk < wk−1. Refinements improve the numerical solu-
tion in certain zones and derefinement removes elements introduced many steps
before.

2. There are two groups of meshes:

• w11 = w13 = w15 = . . .

• w12 = w14 = w16 = . . .

4

 0 2 4 6 8 10 12 14

w

mesh

Figure 2:w for test withε = 2 m/s

The second aspect implies that the condition of the Algorithm 1,wn = wn−1, will
be never reached. To solve this problem, we have redefined thecomparison between
meshes. The stop criteria can not be the mentioned before. Instead of that, two meshes
will be considered similar if the difference betweenwn andwk (k < n) is lesser than
a user defined percentage, that is, it will be comparedwn with all the previousw to
find two similar meshes.

In final test, withε = 1.5 m/s, we have obtained graphics like Figure 3. This means
that the numerical solution will be never adjusted. This problem is a particular case
of the wind field model, in elements close the terrain. The difference between the nu-
merical solution of the terrain elements and their adjacentpresents low variation with
refinements. If new elements are introduced, the differencewith this elements is sim-
ilar than previous, so the numerical solution is not being improved. The derefinement
process would not remove that elements, and they will be refined time and again.

 0 1 2 3 4 5 6

w

mesh

Figure 3:w for test withε = 1.5 m/s

To prevent this, we introduce a new parameterδ. It indicates the minimal size for
the edges of any mesh. The derefinement process will be carried out attending to both,
ε andδ parameters. If an element has any edge lesser thanδ, it will be removed. The
final implementation can be seen in Algorithm 2.

5

Algorithm 2 Implemented
Be τ0 the initial mesh
n=0
loop

n=n+1
τ ′

n = τn−1 globally refined
Compute numerical solution ofτ ′

n

τn = τ ′

n derefined according toδ andε parameters
for i=0 to n-1do

Exit whenwn ≈ wi

end for
end loop

5 Applications

All the executions were run in a XEON dual processor, with 2 Gbof RAM, under
linux and programs compiled with GNU C++. To stop the processwe have defined
that two meshes are similar if theirwi are different in less than 1%:

wk

wn

∈ [0.99, 1.01] , k < n (8)

The first mesh used is a 3D gauss curve as shown in Figure 4. It consists on 1680
nodes and 7645 elements for a simulated domain of10000 × 10000 × 10000 m3.

Figure 4:τ0

The first test was made with parametersε = 2 m/s andδ = 40 m. Five steps were
necessary to reach the adjusted mesh (only few meshes are shown in Figure 6(a) and

6

6(b)). In Figure 1 it can be seen the graphic forw, and in Table 1(b) are printed CPU
time for each process.

Figure 5: Meshes obtained fromτ0 with ε = 2 m/s andδ = 40 m

(a) Meshτ3 (b) Meshτ5

Table 1: Data forτ0 with ε = 2 m/s andδ = 40 m (Figure 5)
(a) Evolution ofw

1400

1500

1600

1700

1800

1900

2000

2100

2200

 0 1 2 3 4 5

w

mesh

(b) CPU Time in seconds

Initial τn−1 wn−1 Refine w
′

n Compute Derefine Final τn wn

τ0 1680 3.72 11787 5.93 2.68 τ1 2017
τ1 2017 5.18 12591 5.31 3.16 τ2 2058
τ2 2058 5.39 12865 5.52 3.45 τ3 2096
τ3 2096 5.76 13084 5.51 3.83 τ4 2135
τ4 2135 6.09 13326 5.98 4.00 τ5 2107

Another test was made with parametersε = 1.5 m/s andδ = 80 m. For this problem,
twelve steps were necessary to adjust the mesh (Figure 6 and Table 2).

In both test the algorithm worked properly, and they were useful to validate and
adjust the method.

7

Figure 6: Meshes obtained fromτ0 with ε = 1.5 m/s andδ = 80 m

(a) Meshτ6 (b) Meshτ9 (c) Meshτ12

Table 2: Data forτ0 with ε = 1.5 m/s andδ = 80 m (Figure 6)
(a) Evolution ofw

1500

2000

2500

3000

3500

4000

4500

 0 2 4 6 8 10 12

w

mesh

(b) CPU Time in seconds

Initial τn−1 wn−1 Refine w
′

n Compute Derefine Final τn wn

τ0 1680 3.78 11787 6.01 2.94 τ1 2644
τ1 2644 6.84 15857 7.43 4.57 τ2 3075
τ2 3075 8.32 18775 9.69 7.05 τ3 3498
τ3 3498 9.82 21564 11.67 8.02 τ4 3987
τ4 3987 11.73 24532 14.40 8.15 τ5 4178
τ5 4178 12.26 25982 16.70 10.46 τ6 4372
τ6 4372 13.36 27250 16.85 10.77 τ7 4440
τ7 4440 13.96 27597 18.23 11.43 τ8 4647
τ8 4647 14.64 29158 20.26 12.35 τ9 4492
τ9 4492 14.76 28123 18.52 11.49 τ10 4743
τ10 4743 16.12 29617 18.55 12.43 τ11 4277
τ11 4277 14.60 26783 16.73 11.61 τ12 4713

We have also used a real geometry generated with [4, 5]. It represents part of the
south of La Palma island, which can be seen in Figure 7. It consists on 4535 nodes
and 21137 elements for a real domain of45600 × 31200 × 6000 m3.

8

Figure 7:lp0

The goal was to obtain an adjusted mesh according toε = 4 m/s andδ = 40 m. Only
five steps were necessary. In Figure 8 we can see meshes generated and in Table 3
information about the process.

On the other hand, we have used the same meshlp0 with the traditional method, that
is, local refinement - error estimation - derefinement. Theγ parameter for refinement
was adjusted to 0.6 andε parameter was equal than the above run (4 m/s).δ parameter
was not necessary. Meshes obtained are similar that shown inFigure 8, but in Tables
4 and 5 we can see that number of steps is higher.

6 Conclusion

To adjust meshes to a numerical solution with local refinement is necessary to estab-
lish any error indicator or estimator, and not always is easy. The number of steps
depends on both, position and number of singularities of numerical solution. The
computational cost in each step is lower than the proposed method due to the number
of elements treated.

With global refinement all singularities are treated simultaneously. We avoid the
error estimation and the method only depends on numerical parameters:ε and, in our
case,δ. Of course, due to all mesh elements are involved in each stepthe computa-
tional cost is higher, but the number of steps is lower.

If the number of step is very high with local refinement, this method could be
advantageous not only for using numeric parameters but CPU time.

9

Figure 8: Meshes obtained fromlp0 with ε = 4 m/s andδ = 40 m

(a) Meshlp
1

(b) Meshlp
2

(c) Meshlp
3

(d) Meshlp
5

Acknowledgements

This work has been supported by the Spanish Government, “Ministerio de Educacin y
Ciencia” and FEDER, grant contacts: CGL2004-06171-C03-02/CLI.

References

[1] G. Montero, E. Rodrı́guez, R. Montenegro, J.M. Escobar and J.M. González-
Yuste, “Genetic Algorithm for an Improved Parameter Estimation with Local
Refinement of Tetrahedral Meshes in a Wind Model”, Advances in Engineering
Software, 2005; 36:3-10.

[2] J.M. González-Yuste, R. Montenegro, J.M. Escobar, G. Montero and E. Ro-
drı́guez,“Local Refinement of 3-D Triangulations Using Object-Oriented Meth-
ods”, Advances in Engineering Software, 2004; 35:639-702.

[3] J.M. González-Yuste, R. Montenegro, J.M. Escobar, G. Montero and E. Ro-
drı́guez,“Implementation of a Refinement/Derefinement Algorithm forTetrahe-
dral Meshes”, Proceedings of the The Fourth International Conference onEngi-
neering Computational Technology, Lisbon 2004.

10

Table 3: Data forlp0 with ε = 4 m/s andδ = 40 m (Figure 8)
(a) Evolution ofw

0

5000

10000

15000

20000

25000

30000

 0 1 2 3 4 5

w

mesh

(b) CPU Time in seconds

Initial lpn−1 wn−1 Refine w
′

n Compute Derefine Final lpn wn

lp0 4535 9.04 32139 23.16 8.37 lp1 12898
lp1 12898 29.83 83648 99.84 27.71 lp2 20426
lp2 20426 46.58 125989 177.27 42.19 lp3 22887
lp3 22887 52.47 139159 211.89 53.05 lp4 24806
lp4 24806 57.92 150243 203.95 59.67 lp5 24845

[4] J.M. Escobar, E. Rodrı́guez, R. Montenegro, G. Montero and J.M. González-
Yuste,“Simultaneous Untangling and Smoothing of Tetrahedral Meshes”, Com-
puter Methods in Applied Mechanics and Engineering, 2003; 192:2775-87.

[5] R. Montenegro, G. Montero, J.M. Escobar, E. Rodrı́guez,and J.M. González-
Yuste,“Tetrahedral Mesh Generation for Environmental Problems over Com-
plex Terrains”, Lecture Notes in Computer Science, 2002; 2329:335-44.

[6] G. Montero, R. Montenegro and J.M. Escobar,“A 3-D Model for Wind Field
Adjustment”, Journal of Wind Engineering and Industrial Aerodynamics,1998;
74-76:249-261

11

Table 4: Data forlp0 with γ = 0.6 andε = 4 m/s
Initial lpn−1 wn−1 Refine w

′

n Compute Derefine Final lpn wn

lp0 4535 5.90 18200 10.59 5.03 lp1 12768
lp1 12768 19.75 44340 35.01 19.00 lp2 17593
lp2 17593 28.38 45780 39.78 19.62 lp3 18773
lp3 18773 37.23 42330 33.26 22.35 lp4 19108
lp4 19108 38.88 41944 31.12 23.72 lp5 19304
lp5 19304 45.69 49265 44.49 27.29 lp6 19519
lp6 19519 48.27 52984 50.30 29.66 lp7 20058
lp7 20058 56.93 55388 57.96 31.93 lp8 20294
lp8 20294 59.61 54401 45.93 32.72 lp9 20536
lp9 20536 52.58 51416 49.49 32.04 lp10 20505

Table 5: Evolution ofw in adjusting oflp0 using global (Table 3) and local (Table 4)
refinement

5000

10000

15000

20000

25000

 0 2 4 6 8 10

w

mesh

Global Ref.
Local Ref.

12

