
Three-dimensional Adaptive Discretization and Genetic Algorithm for
Wind Field Adjustment

R. Montenegro, G. Montero, E. Rodrı́guez, J.M. Escobar and J.M. González-Yuste
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Abstract. The efficiency of a mass consistent
model for wind field adjustment depends on sev-
eral parameters that arise in various stages of
the process. On one hand, those involved in the
construction of the initial wind field using hori-
zontal interpolation and vertical extrapolation of
the wind measures registered at meteorological
stations. On the other hand, the stability parame-
ter which allows from a strictly horizontal wind
adjustment to a pure vertical one. In general, the
values of all of these parameters are based on
empirical laws. The main goal of this work is the
estimation of these parameters using genetic al-
gorithms, such that some of the wind velocities
observed at the measurement station are regen-
erated as accurately as possible by the model.
In addition, we study the effect of the mesh re-
finement on the parameter estimation in several
numerical experiments.

1. Introduction. A three-dimensional finite el-
ement model for wind field adjustment is devel-
oped. In general, these problems are defined over
regions with complex terrain, therefore a suitable
discretization of the studied zone will be neces-
sary. Here, we have used a technique for con-
structing tetrahedral meshes which are adapted
to the terrain orography and have a higher den-
sity of nodes near the terrain surface [1]. In sec-
tion 2, our mass consistent model is presented.
It generates a velocity field for an incompress-
ible fluid which adjusts to an initial one obtained
from experimental measures and physical con-
siderations. The construction of the initial field
is developed in section 3. The first step is to car-
ry out a horizontal interpolation at the height of

the measurement stations over the terrain. From
these data, vertical profiles are constructed tak-
ing into account the atmospheric stability, the
roughness of the terrain, the geostrophic wind
and the atmospheric stratification. Once the ini-
tial field is computed, we formulate the mass con-
tinuity equation of an incompressible fluid with
non-flow-through boundary condition on the ter-
rain surface. The adjustment is carried out by a
least square function. The Lagrange multipliers
technique leads to an elliptic problem which is
solved by using the finite element method. How-
ever, there may exist some zones of the domain
where more accuracy of the numerical solution
is required due to the irregularity of the terrain as
well as to strong variations of the solution. In or-
der to improve the solution, an adaptable refine-
ment of the three-dimensional mesh is proposed
in section 4. First, for each element of the mesh to
be refined, an error indicator is computed attend-
ing to the current numerical solution. This points
out what elements must be refined. The proposed
refinement technique, based on the subdivision in
8-subtetrahedra, allows a higher discretization of
the selected zones without excessive propagation
along the mesh. This process may be repeated
until the error indicators of the numerical so-
lution satisfy the imposed tolerance. In section
5, we remark the parameters of the wind model
to be estimated which lead us to construct the
fitness function. Genetic algorithms are used to
solve this parameter estimation problem and their
properties and possibilities are briefly described
in section 6. Section 7 is devoted to solve the
same numerical experiments presented in [2] in
order to show the improvements obtained with



the mesh refinement. Finally, our conclusions are
presented in section 8.

2. Mass Consistent Model in 3-D. This mod-
el [3, 4] is based on the continuity equation for
an incompressible flow where the air density is
constant in the domain Ω and no-flow-through
conditions on Γb (terrain and top) are considered

�∇ · �u = 0 in Ω (1)

�n · �u = 0 on Γb (2)

We formulate a least-square problem in Ω
with �u(ũ, ṽ, w̃) to be adjusted

E(�u) =
∫
Ω

[
α21

(
(ũ− u0)2 + (ṽ − v0)2

)
+ α22 (w̃ − w0)2

]
dΩ (3)

where the interpolated wind �v0 = (u0, v0, w0) is
obtained from experimental measurements, and
α1, α2 are the Gauss precision moduli. This
problem is equivalent to find a saddle point (�v, φ)
of the Lagrangian (see [5])

E (�v) = min
�u∈K

[
E (�u) +

∫
Ω
φ�∇ · �u dΩ

]
(4)

being �v = (u, v,w), φ the Lagrange multiplier
and K the set of admissible functions. The La-
grange multipliers technique is used to minimise
the problem (4), whose minimum comes to form
the Euler-Lagrange equations

u = u0 + Th
∂φ

∂x

v = v0 + Th
∂φ

∂y
(5)

w = w0 + Tv
∂φ

∂z

where T = (Th, Th, Tv) is the diagonal transmis-
sivity tensor, with Th = 1

2α21
and Tv = 1

2α22
. Since

α1 and α2 are constant in Ω, the variational ap-
proach results in an elliptic problem substituting
(5) in (1)

∂2φ

∂x2
+
∂2φ

∂y2
+
Tv
Th

∂2φ

∂z2
=

− 1
Th

(
∂u0
∂x
+
∂v0
∂y
+
∂w0
∂z

)
in Ω (6)

We consider Dirichlet condition for open or
flow-through boundaries and Neumann condition
for terrain and top

φ = 0 on Γa (7)

�n · T �∇µ = −�n · �v0 on Γb (8)

The problem given by (6)-(8), is solved using
tetrahedral finite elements (see [1]) which leads
to a set of 4 × 4 elemental matrices and 4 × 1
elemental vectors. These are assembled to form
a symmetric linear system of equations which
is solved by a preconditioned conjugate gradient
method.

3. Interpolated Wind. The first step for con-
structing the interpolated wind is the so-called
horizontal interpolation. The wind speeds mea-
sured are interpolated at station height zm using
the distance and the height difference between
each point and the station [3]

�v0(zm) = ε

N∑
n=1

�vn
d2n

N∑
n=1

1
d2n

+ (1− ε)

N∑
n=1

�vn
|∆hn|

N∑
n=1

1
|∆hn|

(9)

where �vn is the velocity observed at station n,
N is the number of stations considered in the
interpolation, dn is the horizontal distance from
station n to the point where we are computing
the wind velocity, |∆hn| is the height difference
between station n and the studied point, and ε
is a weighting parameter (0 ≤ ε ≤ 1), which
allows to give more importance to one of these
interpolation criteria.

In the vertical profile of wind, we assume that
this model does not take into account the tur-
bulence phenomena near the terrain due to its
roughness. Thus, we establish

�v0(z) = 0 z ≤ z0 (10)

We have considered a logarithmic profile in the
surface layer, which takes into account the previ-
ous horizontal interpolation, as well as the effect
of roughness and the air stability (neutral, stable
or unstable atmosphere, according to the Pasquill



stability class) on the wind intensity and direc-
tion. Above the surface layer, a linear interpola-
tion is carried out using the geostrophic wind.
The logarithmic profile is given by

�v0(z) =
�v∗

k
(log
z

z0
− Φm) z0 < z ≤ zsl

(11)
where �v∗ is the friction velocity, k is von Karman
constant, z0 is the roughness length and zsl is
the height of the surface layer. The value of Φm
depends on the air stability

Φm = 0 (neutral)

Φm = −5 z
L

(stable)

Φm = log

[(
θ2 + 1
2

)(
θ + 1
2

)2]
−2 arctan θ + π

2
(unstable)

(12)
where θ = (1 − 16 zL )1/4 and 1

L = az
b
0, with

a, b, depending on the Pasquill stability class.
L is the so called Monin-Obukhov length. The
friction velocity is obtained at each point from
the interpolated measurements at the height of
the stations (horizontal interpolation)

�v∗ =
k �v0(zm)

log
zm
z0
− Φm

(13)

The height of the planetary boundary layer
zpbl above the ground is chosen such that the
wind intensity and direction are constant at that
height

zpbl =
γ |�v∗|
f

(14)

where f = 2ω sinϕ is the Coriolis parameter
(ω is the earth rotation and ϕ the latitude), and
γ is a parameter depending on the atmospher-
ic stability. The mixing height h coincides with
zpbl in neutral and unstable conditions. In stable
conditions, Zilitinkevich suggests (see [6])

h = γ′
√
|�v∗| L
f

(15)

where γ′ is another constant of proportionality.
The height of the surface layer is zsl = h

10 . From

zsl to zpbl, a linear interpolation with geostrophic
wind �vg is carried out

�v0(z) = ρ(z)�v0(zsl) + [1− ρ(z)]�vg
zsl < z ≤ zpbl (16)

ρ(z) = 1−
(
z − zsl
zpbl − zsl

)2 (
3− 2 z − zsl

zpbl − zsl

)
(17)

Finally, this model assumes

�v0(z) = �vg z > zpbl (18)

4. Adaptive Mesh Refinement. Nowadays,
most of the codes which use the finite ele-
ment methods consider adaptive techniques. In
the generation of adaptive meshes, the local re-
finement of the domain is necessary due, on one
hand, to the geometry and, on the other hand, to
the numerical solution. The computation of er-
ror estimators or at least suitable error indicators
of the numerical solution is carried out to deter-
mine the elements to be refined or derefined in a
mesh. Here we propose one error indicator which
takes into account the gradient of the solution in
each element. We obtain the initial mesh using a
non-structured mesh generator [1, 7, 8] and then
apply a refinement technique of nested meshes
based on this error indicator [9].

Some adaptive techniques in 2-D had been de-
veloped in the past which obtained good results
in several steady and non-steady problems (see,
i.e., [10, 11, 12, 5]). In these works, a version of
Rivara 4-T local refinement algorithm [13] was
used. In 3-D, the problem is substantially differ-
ent. Among the refinement algorithms developed
in 3-D, we can consider those based on the bisec-
tion of tetrahedra [14, 15, 16] and those which
use the 8-subtetrahedron subdivision [17, 18, 19].
In fact, the algorithm developed in [16] may be
understood as the generalisation of the 4-T Rivara
algorithm in 3-D. This last one is also based on
the bisection of the triangle by its longest edge.
The disadvantage of this method is the high num-
ber of possible cases in which a tetrahedron may
be divided, considering the different possibilities
of the 4-T subdivision on its four faces, during



the process of mesh conformity. However, the al-
gorithms proposed in [17, 18, 19], which gener-
alise the subdivision in 4 subtriangles of Bank
et al. [20] in 3-D, are simpler due to a lower
number of possible subdivisions of a tetrahedron.
We propose a refinement algorithm based on the
8-subtetrahedron subdivision developed in [19].
Consider an initial triangulation τ1 of the domain
given by a set of n1 tetrahedra t11, t

1
2, ..., t

1
n1 . Our

goal is to build a sequence of m levels of nested
meshes T = {τ1 < τ2 < ... < τm}, such that the
level τj+1 is obtained from a local refinement of
the previous level τj . The error indicator εji as-
sociated to the element tji ∈ τj which has been
used is gradient type and it is defined as follows,

εji = (di)
p
∣∣∣�∇φh∣∣∣ (19)

where the parameter p is generally assumed to
be 1 or 2, and di, the length of the longest edge
of tetrahedron tji . Note that if p = 1 and we con-
sider linear interpolation in the elements of τj ,
then εji represents an upper bound of the maximal
variation of φh in the element tji . Once the error
indicator εji is computed, such element must be
refined if εji ≥ θεjmax, being θ ∈ [0, 1] the refine-
ment parameter and εjmax, the maximal value of
the error indicators of the elements of τj . From a
constructive point of view, initially we shall ob-
tain τ2 from the initial mesh τ1, attending to the
following considerations:

a) 8-subtetrahedron subdivision. A tetrahe-
dron t1i ∈ τ1 is called of type I if ε1i ≥ γε1max.
Later, this set of tetrahedra will be subdivided
into 8 subtetrahedra as Figure 1(a) shows; 6 new
nodes are introduced in the middle point of its
edges and each one of its faces are subdivid-
ed into four subtriangles following the division
proposed by Bank [20]. Thus, four subtetrahedra
are determined from the four vertices of t1i and
the new edges. The other four subtetrahedra are
obtained by joining the two nearest opposite ver-
tices of the octahedron which results inside t1i .

Once the type I tetrahedral subdivision is de-
fined, we can find neighbouring tetrahedra which
may have 6, 5, ..., 1 or 0 new nodes introduced
in their edges that must be taken into account

in order to ensure the mesh conformity. In the
following we analyse each of these cases.

b) Tetrahedra with 6 new nodes. Those tetra-
hedra that have marked their 6 edges for con-
formity reason, are included in the set of type I
tetrahedra.

c) Tetrahedra with 5 new nodes. Those tetra-
hedra with 5 marked edges are also included in
the set of type I tetrahedra. Previously, the edge
without new node must be marked.

d) Tetrahedra with 4 new nodes. In this case,
we mark the two free edges and it is considered
as type I.

e) Tetrahedra with 3 new nodes. In this case,
we must distinguish two situations:

e.1. If the 3 marked edges are not located
on the same face, then we mark the others and
the tetrahedron is introduced in the set of type I
tetrahedra. Here, we can make the previous con-
sideration too, if we compare this step with other
algorithms based on the bisection of the longest
edge.

In the following cases, we shall not mark any
edge, i.e., no new node will be introduced in a
tetrahedron for conformity. We shall subdivide
them creating subtetrahedra which will be called
transient subtetrahedra.

e.2. If the 3 marked edges are located on
the same face of the tetrahedron, then 4 transient
subtetrahedra are created as Figure 1(b) shows.
New edges are created by connecting the 3 new
nodes one another and these with the vertex op-
posite to the face containing them. The tetrahedra
of τ1 with these characteristics will be inserted
in the set of type II tetrahedra.

f) Tetrahedra with 2 new nodes. Also in this
case, we shall distinguish two situations:

f.1. If the two marked edges are not located
on the same face, then 4 transient subtetrahedra
will be constructed from the edges connecting
both new nodes and these with the vertices op-
posite to the two faces which contain each one
of them. This tetrahedra are called type III.a; see
Figure 1(c).

f.2. If the two marked edges are located
on the same face, then 3 transient subtetrahedra



are generated as Figure 1(d) shows. The face de-
termined by both marked edges is divided into
3 subtriangles, connecting the new node locat-
ed in the longest edge with the vertex opposite
and with the another new node, such that these
three subtriangles and the vertex opposite to the
face which contains them define three new sub-
tetrahedra. We remark that from the two possible
choices, the longest marked edge is fixed as ref-
erence in order to take advantage in some cases
of the properties of the bisection of the longest
edge. These tetrahedra are called type III.b.

(a) Type I (b) Type II

(c) Type III.a (d) Type III.b

(e) Type IV (f) Type V

Fig. 1. Subdivision classification of a tetrahedron as
function of the new nodes (empty circles).

g) Tetrahedra with 1 new node. Two transient
subtetrahedra will be created as we can see in
Figure 1(e). The new node is connected to the
other two which are not located in the marked
edge. This set of tetrahedra is called type IV.

h) Tetrahedra without new node. These tetra-
hedra of τ1 are not divided and they will be in-

herit by the refined mesh τ2. We call them type
V tetrahedra; see Figure 1(f).

Generally, when we want to refine the level
τj in which there already exist transient tetra-
hedra, we shall perform that in the same way
as from τ1 to τ2, except for the following varia-
tion: if an edge of any transient tetrahedron must
be marked, due to the error indicator or even to
conformity reasons, then all the transient tetra-
hedra are eliminated from their parent (deleting
process), all the parent edges are marked and this
tetrahedron is introduced into the set of type I
tetrahedra.

5. Discussion on the Parameters to Be Esti-
mated. In the following we define and discuss
the four parameters of the wind model that we
are interested in estimating. First, we will con-
sider the so called stability parameter

α =
α1
α2
=

√
Tv
Th

(20)

since the minimum of the functional given by (3)
is the same if we divide it by α22. On the other
hand, for α >> 1 flow adjustment in the ver-
tical direction predominates, while for α << 1
flow adjustment occurs primarily in the horizon-
tal plane. Thus, the selection of α allows the air to
go over a terrain barrier or around it, respective-
ly [21]. Moreover, the behaviour of mass consis-
tent models in many numerical experiments has
shown that they are very sensitive to the value
chosen for α. Therefore, we shall give particu-
lar attention to this problem. In the past, many
authors have studied the parameterisation of sta-
bility, since the difficulty in determining the cor-
rect values of α have limited the possible wide
use of mass-consistent models in complex ter-
rain. Sherman [22], Kitada et al. [23] and Davis
et al. [24], proposed to take α = 10−2, i.e., pro-
portional to the magnitude of w/u. Other authors
such as Ross et al. [25] and Moussiopoulos et al.
[26] related α to the Froude number. Geai [27],
Lalas et al. [28] and Tombrou et al. [29], make
the α parameter vary in the vertical direction. Fi-
nally, Barnard et al. [30] proposed a procedure
to obtain α for each single wind field simula-
tion. The main idea is to use N observed wind



speeds to obtain the wind field and to keep the
rest, Nr, as a reference. Then, several simula-
tions are performed with different values of α.
The value which gives the best agreement with
the reference observations is taken to be the final
magnitude of the stability parameter. Since this
method provides values of α that are only reli-
able for each particular case, it cannot provide
an a priori value suitable for other simulations.
Here, we follow a version of the method proposed
in [30], using genetic algorithms as optimisation
technique which leads to an automatic selection
of α.

The second parameter to be estimated is the
weighting coefficient ε (0 ≤ ε ≤ 1) of (9). Note
that ε→ 1 signifies more importance of the hor-
izontal distance from each point to the measure-
ment stations, while ε→ 0 signifies more impor-
tance of the height difference between each point
and the measurement stations [3]. In general,
the second approach has been used for complex
terrains. On the other hand, the first approach
has been widely used for problems with regu-
lar topography or in 2-D horizontal analysis. In
realistic applications, the possibility of existing
zones with complex orography and others with
regular one, suggests that an intermediate value
of ε should be more useful.

The next parameter to discuss is γ, given
in (14) and related to the height of the plane-
tary boundary layer. There exist different versions
of where to search for this parameter. Panof-
sky et al. [31] proposed the interval [0.15,0.25].
On the other hand, Ratto [32] directly suggested
γ = 0.3 in the WINDS code, while γ is located
in [0.3,0.4] by de Baas [33]. Therefore, in our
simulations, the search space for γ must include
all these possibilities.

Finally, we are interested in obtaining suitable
values of the parameter γ′ involved in the compu-
tation of the mixing height for stable atmosphere,
see (15). Garratt [34] proposed γ′ = 0.4. Also
in the WINDS code one may find bounds of γ′

around 0.4. Thus, the value of γ′ will be searched
in the surroundings of 0.4.

6. Genetic Algorithms. Genetic algorithms
(GAs) are optimisation tools based on the nat-
ural evolution mechanism. They produce succes-
sive trials that have an increasing probability to
obtain a global optimum. This work is based on
the model developed by Levine [35]. The most
important aspects of GAs are the construction of
an initial population, the evaluation of each in-
dividual in the fitness function, the selection of
the parents of the next generation, the crossover
of those parents to create the children, and the
mutation to increase diversity.

Two population replacements are commonly
used. The first, the generational replacement, re-
places the entire population each generation [36].
The second, known as steady-state, only replaces
a few individuals each generation [37, 38, 39].
In our experiments, initial population has been
randomly generated and we use iteration limit ex-
ceeded as stopping criterion. The selection phase
allocates an intermediate population on the basis
of the evaluation of the fitness function. We have
chosen two selection schemes [35]: stochastic
universal selection (SU) and binary tournament
selection (BT). The crossover operator takes bits
from each parent and combines them to create
a child. Uniform crossover operator (U) is used
here. It depends on the probability of exchange
between two bits of the parents [40]. The muta-
tion operator is better used after crossover [41].
It allows to reach individuals in the search space
that could not be evaluated otherwise. When part
of a chromosome has been randomly selected to
be mutated, the corresponding genes belonging
to that part are changed. This happens with prob-
ability p. This work deals with two mutation op-
erators. The first is of the form ν ← ν ± p × ν,
where ν is the existing allele value, and p is se-
lected from a Gaussian distribution (G). The sec-
ond operator (R) simply replaces ν with a value
selected uniformly randomly from the initialisa-
tion range of that gene.

The fitness function plays the role of the en-
vironment. It evaluates each string of a popula-
tion. This is a measure, relative to the rest of
the population, of how well that string satisfies a
problem-specific metric. The values are mapped



to a nonnegative and monotonically increasing
fitness value. In the numerical experiments with
this wind model, we look for optimal values of α,
ε, γ and γ′. For this purpose, the average relative
error of the wind velocities given by the model
with respect to the measures at the reference sta-
tions is minimised

F (α, ε, γ, γ′) =
1
Nr

Nr∑
n=1

|�vn − �v(xn, yn, zn)|
|�vn|

(21)
where �v(xn, yn, zn) is the wind velocity obtained
by the model at the location of station n, and Nr
is the number of reference stations.

7. Numerical Experiments. We study the
same wind field problem (cases I and III) re-
lated to the southern area of La Palma Island
(Canary Islands) which was defined in [42, 2].
A 45600 × 31200 × 9000 m3 domain with real
data of the topography is discretized using the
code developed in [1]. The maximum height in
this zone of the island is 2279 m. We start from
an initial mesh M0 with 11416 nodes and 55003
tetrahedra. The refinement of M0 around the lo-
cation of the measurement stations produces a
new meshM ′0 with 11494 nodes and 55363 tetra-
hedra; see Figure 2. This local refinement process
has been developed only attending to geometri-
cal considerations. The wind measurements were
taken in four stations: MBI, MBII, MBIII and
LPA. In case I we consider softly unstable con-
ditions and in case III softly stable conditions, in
order to test the procedure for different stability
conditions of the atmosphere. Due to the small
number of available data, we have used the ob-
served wind speeds of stations MBI, MBII and
LPA to obtain the interpolated wind field (9), i.e.,
N = 3, and the measurement of MBIII is con-
sidered as reference station in the fitness function
(21), i.e., Nr = 1.

In the first application (case I), the parameter
γ′ is not involved in the modelling due to the
unstable condition of the atmosphere, i.e., h =
zpbl. Thus, only α, ε and γ will be estimated in
this case. The experiment has been divided in
two stages. First, we fix γ = 0.3 and estimate
α ∈ [10−3, 10] and ε ∈ [0, 1].

Fig. 2. Detail of the finite element mesh M ′0 used for
the numerical experiment. Only the triangulation of
the boundary is plotted in order to hold clarity.

The second column of Table 1 (Stage 1) shows
the values obtained for α and ε, which suggest a
nearly vertical wind adjustment and remark the
complexity of the terrain, respectively. Note that
we obtained with the model an error at station
MBIII about 4.96%. The strategy of GAs (BT,
U, R) corresponds to the most efficient selec-
tion, crossover and mutation operators after sev-
eral tests with different combinations. In the sec-
ond stage, α, ε and γ ∈ [0.15, 0.5] are estimat-
ed. The results are shown in the third column
of Table 1. We observe that α takes the max-
imum value of the space of search, ε remains
around 0.5 and γ is reduced, such that the er-
ror at station MBIII is 4.76%. We remark that
in this experiment the worst evaluation of the
fitness function, corresponding to values of the
parameters in the search space, yields an error
of 68.07% and 34.62% in each stage, respective-
ly. Therefore, the knowledge of suitable values
of the studied parameters is essential for the ef-
ficiency of the numerical model.

For the second experiment (case III) we
have followed a similar procedure. Now, γ′ ∈
[0.15, 0.5] must be also considered. First, a prob-
lem with two unknown parameters (α, ε) is
solved. The second column of Table 2 (Stage 1)
shows the values obtained for α, ε. Next, four
problems arising from fixing one of the parame-
ters each time, respectively, are studied (Stages
2-5). Finally, the four parameters are estimated
at the same time in Stage 6. The atmospheric
stable conditions remain the vertical adjustment
predominance arising in the previous experiment



with unstable conditions, as well as augment the
importance of the horizontal distance in the in-
terpolation of the observed wind speeds. In Stage
6, the minimum error obtained at station MBI-
II was about 11.87%, while the error related to
the worst evaluation was 994.2%. In both exper-
iments, the number of individuals of the initial
population was 100, except for stage 6 in case III
where it was 150.

Stage 1 Stage 2
GAs strategy BT, U, R SU, U, G

Iterations 88 135
CPU time (s) 10385 16194
Best Fitness 0.0496 0.0476
α 9.978 10.000
ε 0.609 0.484
γ (0.300) 0.150

Table 1. First experiment corresponding to the case
I analysed in [42, 2]. Strategy of genetic algorithms,
best evaluation of the fitness function and values of
the parameters (fixed values are written in parenthe-
sis).

Stage 1 Stage 2 Stage 3
GAs strategy SU, U, G SU, U, R SU, U, R

Iterations 81 82 93
CPU time (s) 9613 9478 10970
Best Fitness 0.1810 0.1612 0.1248
α 10.000 9.968 (9.968)
ε 0.672 0.780 0.808
γ (0.300) 0.244 0.234
γ′ (0.400) (0.400) 0.164

Stage 4 Stage 5 Stage 6
GAs strategy SU, U, R SU, U, R SU, U, R

Iterations 123 435 431
CPU time (s) 14758 50849 75692
Best Fitness 0.1213 0.1191 0.1187
α 9.922 9.995 9.999
ε (0.808) 0.810 0.808
γ 0.230 (0.230) 0.231
γ′ 0.151 0.150 0.150

Table 2. Second experiment corresponding to the case
III analysed in [42, 2]. Strategy of genetic algorithms,
best evaluation of the fitness function and values of
the parameters (fixed values are written in parenthe-
sis).

Iterations and CPU timings on a five nodes
cluster of 1.6 GHz Pentium 4 are shown in Ta-
bles 1 and 2 for each stage, running 2 processes
on each node. We also tried 3 and 4 processes
on each node, however, the strategy of running
2 processes per node was the fastest. We remark
that the evaluation of one individual of any gen-
eration means the resolution of a wind problem
by the finite element method using two adaptive
mesh refinement steps (i.e., three meshes).

If we compare the results obtained here, ap-
plying a refinement strategy for both cases, with
those obtained in [2] without using refinement,
we observe that the error has been reduced about
a half in each experiment. In addition, the values
of the parameters corresponding to the best in-
dividual also change with the domain discretiza-
tion.

Finally, as example, we consider a particular
adaptive strategy for the computation of the wind
field in the second experiment by using the val-
ues of the parameters corresponding to Stage 6.
First, we refine the mesh M ′0 using the error in-
dicator given in (19) with a refinement parameter
θ = 0.4. The resulting mesh M1, shown in Fig-
ure 3, contains 13135 nodes and 64684 tetrahe-
dra. We repeat the same refinement strategy over
M1 to obtain M2 with 19205 nodes and 99422
tetrahedra, see Figure 4. Here, the measures of
the four stations have been taken into account for
determining the interpolated wind field. Figures
5 and 6 illustrate the streamlines and the veloc-
ities of wind obtained by the model at a height
of 500 m.

Fig. 3. Detail of the refined mesh M1 obtained in the
first step of refinement.



Fig. 4. Detail of the refined meshM2 obtained in the
second step of refinement.

Fig. 5. Streamlines of wind velocities related to the
second experiment at a height of 500 m.

Fig. 6. Wind velocities related to the second experi-
ment at a height of 500 m.

8. Conclusions. We have pointed out that the
estimation of several parameters is essential for
the efficiency of a 3-D mass consistent model
for wind field adjustment. The numerical experi-
ments have shown that these codes are very sen-
sitive to the values chosen for α, ε, γ and γ′. A
methodology for solving these parameter estima-
tion problems is proposed. Genetic algorithms
have proved to be an efficient and robust tool
for these optimisation problems when several pa-
rameters are involved (see also [43]). Adaptive
mesh refinement techniques allow us to reduce

the error in the reference stations. Finally, the
resolution by GAs using a cluster of computers
leads to competitive timings compared to other
optimisation solvers.
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