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Abstract

The improvement in the mesh quality without changing its connectivity is bounded. This
bound is associated with the topology of the mesh and with the constraints imposed by the
boundary of the domain. To solve this problem, we propose in this work to combine the
tetrahedral mesh optimization technique introduced in [1,2] with the local mesh refinement
algorithm presented in [3]. The main idea consists in increasing the node number, and thus,
the degrees of freedom, in the neighbourhood of the regions where the elements have poor
quality. Then, we refine all the elements whose quality are below to a certain threshold.
Once it is done, we initiate another stage of optimization until the quality of the mesh
reaches a limit.

Key words: Mesh smoothing, mesh untangling, mesh generation, adaptive refinement,
nested meshes, 3-D finite element method.

1 Introduction

There are two basic ways to improve the quality of a pre-existing mesh. The first,
usually named mesh optimization, consists in moving each node to a new position
that improves the quality of the surrounding elements. This technique preserves
the topology of the mesh, that is, it does not modify the connectivity of the nodes.
The second one involves some changes in the node connections. For example, edge
swapping is a well known technique included in this category. In this work we
propose an hybrid method that combines both approaches.
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Firstly, we focus in tetrahedral mesh optimization. The quality improvement in
mesh optimization may be obtained by an iterative process in which each node of
the mesh is moved to a new position that minimises a certain objective function. The
objective function is derived from some quality measure [4] of the local submesh,
that is, the set of tetrahedra connected to the adjustable or free node. Among the
many objective functions described in the literature [5] those having barriers are
specially indicated to improve the quality of a valid mesh in which there are non in-
verted elements. In this case, the barrier avoids the possible appearance of inverted
elements in the optimization process. Nevertheless, the existence of barriers pre-
vents these objective functions from working properly when the mesh is tangled.
For example, if the free node is out of the feasible region (the positions where the
free node must be located to get a valid submesh) the barrier avoids reaching the
appropriate minimun. It can even happen that the feasible region does not exist,
for example, when the fixed boundary of the local submesh is tangled. In all these
situations these objective functions are not well defined on all R

3 and, therefore,
they are not suitable to improve the quality of the mesh. To overcome this problem
we can proceed as Freitag et al in [6,7], where an optimization method consisting
of two stages is proposed. In the first one, the inverted elements are untangled by
an algorithm that maximises their negative Jacobian determinants; in the second,
the resulting mesh from the first stage is smoothed using a objective function with
barrier, based on the element condition number.

In this paper we propose an alternative to these procedures, such that the untangling
and smoothing are carried out in the same stage. In order to do this, we substitute
the objective functions by modified versions that are defined and regular on all R

3.
With these modifications, the optimization process is also directly applicable to
meshes with inverted elements, making a previous untangling procedure unneces-
sary [1,2]. This simultaneous procedure allows the number of iterations for reach-
ing a prescribed quality to be reduced. Nevertheless, the improvement in the mesh
quality without changing its connectivity is bounded. This bound is associated with
the topology of the mesh and with the constraints imposed by the boundary of the
domain. In practice, we observe that both average and minimum quality tends to
become steady to its respective bounds as the number of iteration increases. As re-
sult, once a sufficient number of iterations has been done, the mesh quality will not
improve significatively and the process must then automatically stop.

In this work we propose to combine the above optimization techniques with the
mesh refinement algorithm based on 8-subtetrahedron subdivision [8–10] and pre-
sented in [3]. The main idea consists in increasing the node number, and thus, the
degrees of freedom, in the neighbourhood of the regions where the elements have
poor quality. Then, we refine all the elements whose quality are below to a certain
threshold. Once it is done, we initiate another stage of optimization until the quality
of the mesh reaches a limit. The overall process can be repeated several times until
the required quality is obtained or no additional improvement is got.



A promising field of study would combine the 3-D refinement/derefinement of
nested meshes with node movement, where the ideas presented here could be in-
troduced. Good recent results have been obtained in [11] and [12] using these tech-
niques, for determining the shape and size of the elements in anisotropic problems.

We summarize the optimization techniques in Section 2 and the refinement algo-
rithm in Section 3. To illustrate the effectiveness of our approach, we present in
Section 4 several applications where it can be seen the validity of the proposed
strategies. Finally, conclusions are presented in Section 5.

2 Mesh Optimization with Improved Objective Functions

In finite element simulation the mesh quality is a crucial aspect for good numeri-
cal behaviour of the method. In a first stage, some automatic 3-D mesh generator
constructs meshes with poor quality and, in special cases, for example when node
movement is required, inverted elements may appear. So, it is necessary to develop
a procedure that optimizes the pre-existing mesh. This process must be able to
smooth and untangle the mesh.

The most usual techniques to improve the quality of a valid mesh, that is, one that
does not have inverted elements, are based upon local smoothing. In short, these
techniques consist of finding the new positions that the mesh nodes must hold, in
such a way that they optimize an objective function. Such a function is based on a
certain measurement of the quality of the local submesh, N (v), formed by the set of
tetrahedra connected to the free node v. As it is a local optimization process, we can
not guarantee that the final mesh is globally optimum. Nevertheless, after repeating
this process several times for all the nodes of the current mesh, quite satisfactory
results can be achieved. Usually, objective functions are appropriate to improve
the quality of a valid mesh, but they do not work properly when there are inverted
elements. This is because they present singularities (barriers) when any tetrahedron
of N (v) changes the sign of its Jacobian determinant. To avoid this problem we can
proceed as Freitag et al in [6,7], where an optimization method consisting of two
stages is proposed. In the first one, the possible inverted elements are untangled
by an algorithm that maximises their negative Jacobian determinants [7]; in the
second, the resulting mesh from the first stage is smoothed using another objective
function based on a quality metric of the tetrahedra of N (v) [6]. One of these
objective functions are presented in Section 2.1. After the untangling procedure,
the mesh has a very poor quality because the technique has no motivation to create
good-quality elements. As remarked in [6], it is not possible to apply a gradient-
based algorithm to optimize the objective function because it is not continuous all
over R

3, making it necessary to use other non-standard approaches.

In Section 2.2 we propose an alternative to this procedure, such that the untangling



and smoothing are carried out in the same stage. For this purpose, we use a suitable
modification of the objective function such that it is regular all over R

3. When a
feasible region (subset of R

3 where v could be placed, being N (v) a valid sub-
mesh) exists, the minima of the original and modified objective functions are very
close and, when this region does not exist, the minimum of the modified objective
function is located in such a way that it tends to untangle N (v). The latter occurs,
for example, when the fixed boundary of N (v) is tangled. With this approach, we
can use any standard and efficient unconstrained optimization method to find the
minimum of the modified objective function, see for example [13].

In this work we have applied the proposed modification to one objective function
derived from an algebraic mesh quality metric studied in [4], but it would also
be possible to apply it to other objective functions which have barriers like those
presented in [5].

2.1 Objective Functions

Several tetrahedron shape measures [14] could be used to construct an objective
function. Nevertheless those obtained by algebraic operations are specially indi-
cated for our purpose because they can be computed very efficiently. The above
mentioned algebraic mesh quality metric and the corresponding objective function
are shown in this Section.

Let T be a tetrahedral element in the physical space whose vertices are given by
xk = (xk, yk, zk)

T ∈ R
3, k = 0, 1, 2, 3 and TR be the reference tetrahedron with

vertices u0 = (0, 0, 0)T , u1 = (1, 0, 0)T , u2 = (0, 1, 0)T and u3 = (0, 0, 1)T .
If we choose x0 as the translation vector, the affine map that takes TR to T is
x =Au + x0, where A is the Jacobian matrix of the affine map referenced to node
x0, and expressed as A = (x1 − x0,x2 − x0,x3 − x0).

Let now TI be an equilateral tetrahedron with all its edges of length one and ver-
tices located at v0 = (0, 0, 0)T , v1 = (1, 0, 0)T , v2 = (1/2,

√
3/2, 0)T , v3 =

(

1/2,
√

3/6,
√

2/
√

3
)T

. Let v =Wu be the linear map that takes TR to TI , being
W = (v1,v2,v3) its Jacobian matrix.

Therefore, the affine map that takes TI to T is given by x =AW−1
v + x0, and its

Jacobian matrix is S = AW−1. This weighted matrix S is independent of the node
chosen as reference; it is said to be node invariant [4]. We can use matrix norms,
determinant or trace of S to construct algebraic quality measures of T . For exam-
ple, the Frobenius norm of S, defined by |S| =

√

tr (STS), is specially indicated

because it is easily computable. Thus, it is shown in [4] that q = 3σ
2

3

|S|2
is an al-

gebraic quality measure of T , where σ = det (S). The maximum value of these



quality measures is the unity and it corresponds to equilateral tetrahedron. Besides,
any flat tetrahedron has quality measure zero. We can derive an optimization func-
tion from this quality measure. Thus, let x = (x, y, z)T be the free node position
of v, and let Sm be the weighted Jacobian matrix of the m-th tetrahedron of N (v).
We define the objective function of x, associated to an m-th tetrahedron as

ηm =
|Sm|2

3σ
2

3
m

(1)

Then, the corresponding objective function for N (v) can be constructed by using
the p-norm of (η1, η2, . . . , ηM) as

|Kη|p (x) =

[

M
∑

m=1

ηp
m (x)

]

1

p

(2)

where M is the number of tetrahedra in N (v). The objective function |Kη|1 was
deduced and used in [15] for smoothing and adapting of 2-D meshes. The same
function was introduced in [16], for both 2 and 3-D mesh smoothing, as a result
of a force-directed method. Finally, this function, among others, is studied and
compared in [5]. We note that the cited authors only use this objective function
for smoothing valid meshes.

Although this optimization function is smooth in those points where N (v) is a
valid submesh, it becomes discontinuous when the volume of any tetrahedron of
N (v) goes to zero. It is due to the fact that ηm approaches infinity when σm tends
to zero and its numerator is bounded below. In fact, it is possible to prove that
|Sm| reaches its minimum, with strictly positive value, when v is placed in the
geometric centre of the fixed face of the m-th tetrahedron. The positions where v
must be located to get N (v) to be valid, i.e., the feasible region, is the interior of

the polyhedral set P defined as P =
M
⋂

m=1
Hm, where Hm are the half-spaces defined

by σm (x) > 0. This set can occasionally be empty, for example, when the fixed
boundary of N (v) is tangled. In this situation, function |Kη|p stops being useful
as optimization function. On the other hand, when the feasible region exists, that
is int P 6= ∅, the objective function tends to infinity as v approaches the boundary
of P . Due to these singularities, a barrier is formed which avoids reaching the
appropriate minimum by using gradient-based algorithms, when these start from a
free node outside the feasible region. In other words, with these algorithms we can
not optimize a tangled mesh N (v) with the above objective function.

2.2 Modified Objective Functions

We propose a modification in the previous objective function (2), so that the barrier
associated with its singularities will be eliminated and the new function will be



smooth all over R
3. An essential requirement is that the minima of the original and

modified functions are nearly identical when int P 6= ∅. Our modification consists
of substituting σ in (2) by the positive and increasing function

h(σ) =
1

2
(σ +

√
σ2 + 4δ2) (3)

being the parameter δ = h(0). We represent in Figure 1 the function h(σ). Thus,
the new objective function here proposed is given by

∣

∣

∣K∗
η

∣

∣

∣

p
(x) =

[

M
∑

m=1

(η∗
m)p (x)

]

1

p

(4)

where

η∗
m =

|Sm|2

3h
2

3 (σm)
(5)

is the modified objective function for the m-th tetrahedron.

The behaviour of h(σ) in function of δ parameter is such that, lim
δ→0

h(σ) = σ,

∀σ ≥ 0 and lim
δ→0

h(σ) = 0, ∀σ ≤ 0. Thus, if int P 6= ∅, then ∀x ∈ int P we

have σm (x) > 0, for m = 1, 2, . . . , M and, as smaller values of δ are chosen,
h (σm) behaves very much as σm, so that, the original objective function and its
corresponding modified version are very close in the feasible region. Particularly,
in the feasible region, as δ → 0, function

∣

∣

∣K∗
η

∣

∣

∣

p
converges pointwise to |Kη|p. Be-

sides, by considering that ∀σ > 0, lim
δ→0

h′(σ) = 1 and lim
δ→0

h(n)(σ) = 0, for n ≥ 2,

it is easy to prove that the derivatives of this objective function verify the same
property of convergence. As a result of these considerations, it may be concluded
that the positions of v that minimise original and modified objective functions are
nearly identical when δ is small. Actually, the value of δ is selected in terms of
point v under consideration, making it as small as possible and in such a way that
the evaluation of the minimum of modified functions does not present any com-
putational problem. Suppose that int P = ∅, then the original objective function,

σ

h

δ

Fig. 1. Representation of function h (σ).



|Kη|p, is not suitable for our purpose because it is not correctly defined. Neverthe-
less, modified function is well defined and tends to solve the tangle. We can reason
it from a qualitative point of view by considering that the dominant terms in

∣

∣

∣K∗
η

∣

∣

∣

p

are those associated to the tetrahedra with more negative values of σ and, therefore,
the minimisation of these terms imply the increase of these values. It must be re-
marked that h (σ) is an increasing function and

∣

∣

∣K∗
η

∣

∣

∣

p
tends to ∞ when the volume

of any tetrahedron of N (v) tends to −∞, since lim
σ→−∞

h (σ) = 0.

In conclusion, by using the modified objective function, we can untangle the mesh
and, at the same time, improve its quality. More details about this mesh optimiza-
tion procedure can be seen in reference [2].

3 Local Refinement Algorithm

We propose a local refinement algorithm [3] based on the 8-subtetrahedron subdi-
vision developed in [10]. Consider an initial triangulation τ1 of the domain given
by a set of n1 tetrahedra t11, t12, ..., t

1
n1

. Our goal is to build a sequence of m levels of
nested meshes T = {τ1 < τ2 < ... < τm}, such that the level τj+1 is obtained from
a local refinement of the previous level τj . The error indicator εj

i will be associated
to the element tji ∈ τj . Once the error indicator εj

i is computed, such element must
be refined if εj

i ≥ θεj
max, being θ ∈ [0, 1] the refinement parameter and εj

max the
maximal value of the error indicators of the elements of τj . From a constructive
point of view, initially we shall obtain τ2 from the initial mesh τ1, attending to the
following considerations:

a) 8-subtetrahedron subdivision. A tetrahedron t1i ∈ τ1 is called of type I if ε1
i ≥

γε1
max. Later, this set of tetrahedra will be subdivided into 8 subtetrahedra as Fig-

ure 2(a) shows; 6 new nodes are introduced in the middle point of its edges and
each one of its faces are subdivided into four subtriangles following the division
proposed by Bank [17]. Thus, four subtetrahedra are determinated from the four
vertices of t1i and the new edges. The other four subtetrahedra are obtained by join-
ing the two nearest opposite vertices of the octohedron which result inside t1

i . This
simple strategy is that proposed in [10] or in [8], in opposite to others based on afin
transformations to a reference tetrahedron, as that analysed in [9] which ensures
the quality of the resulting tetrahedra. However, similar results were obtained by
Bornemann et al. [8] with both strategies in their numerical experiments. On the
other hand, for Lohner and Baum [10], this choice produces the lowest number of
distorted tetrahedra in the refined mesh. Evidently, the best of the three existing op-
tions for the subdivision of the inner octohedron may be determined by analysing
the quality of its four subtetrahedra, but this would augment the computational cost
of the algorithm.



Once the type I tetrahedral subdivision is defined, we can find neighbouring tetra-
hedra which may have 6, 5, ..., 1 or 0 new nodes introduced in their edges that must
be taken into account in order to ensure the mesh conformity. In the following we
analyse each one of these cases. We must remark that in this process we only mark
the edges of the tetrahedra of τ1 in which a new node has been introduced. The
corresponding tetrahedron is classified depending on the number of marked edges.
In other words, until the conformity of τ2 is not ensured by marking edges, this new
mesh will not be defined.

b) Tetrahedra with 6 new nodes. Those tetrahedra that have marked their 6 edges
for conformity reason, are included in the set of type I tetrahedra.

c) Tetrahedra with 5 new nodes. Those tetrahedra with 5 marked edges are also
included in the set of type I tetrahedra. Previously, the edge without new node must
be marked.

d) Tetrahedra with 4 new nodes. In this case, we mark the two free edges and it is
considered as type I.

Proceeding as in (b), (c) and (d), we improve the mesh quality and simplify the
algorithm considerably due to the global refinement defined in (a) by the error
indicator. One may think that this procedure can augment the refined region, but
we must take into account that only 1 or 2 new nodes are introduced from a total
of 6. Note that this proportion is less or equal to that arising in the 2-D refinement
with the 4-T Rivara algorithm, see for example References [18,19], in which the
probability of finding a new node introduced in the longest edge of a triangle is
1/3. This fact is accentuated in the proposed algorithm as its generalization in 3-D.

e) Tetrahedra with 3 new nodes. In this case, we must distinguish two situations:

e.1) If the 3 marked edges are not located on the same face, then we mark the
others and the tetrahedron is introduced in the set of type I tetrahedra. Here, we can
make the previous consideration too, if we compare this step with other algorithms
based on the bisection by the longer edge.

In the following cases, we shall not mark any edge, i.e., any new node will not
be introduced in a tetrahedron for conformity. We shall subdivide them creating
subtetrahedra which will be called transient subtetrahedra.

e.2) If the 3 marked edges are located on the same face of the tetrahedron, then 4
transient subtetrahedra are created as Figure 2(b) shows. New edges are created by
connecting the 3 new nodes one another and these with the vertex opposite to the
face containing them. The tetrahedra of τ1 with these characteristics will be inserted
in the set of type II tetrahedra.

f) Tetrahedra with 2 new nodes. Also here, we shall distinguish two situations:



f.1) If the two marked edges are not located on the same face, then 4 transient
subtetrahedra will be constructed from the edges conecting both new nodes and
these with the vertices opposite to the two faces which contain each one of them.
This tetrahedra are called type III.a; see Figure 2(c).

f.2) If the two marked edges are located on the same face, then 3 transient
subtetrahedra are generated as Figure 2(d) shows. The face determinated by both
marked edges is divided into 3 subtriangles, connecting the new node located in
the longest edge with the vertex opposite and with the another new node, such that
these three subtriangles and the vertex opposite to the face which contains them
define three new subtetrahedra. We remark that from the two possible choices, the
longest marked edge is fixed as reference in order to take advantage in some cases
of the properties of the bisection by the longest edge. These tetrahedra are called
type III.b.

g) Tetrahedra with 1 new node. Two transient subtetrahedra will be created as we
can see in Figure 1(e). The new node is connected to the other two which are not
located in the marked edge. This set of tetrahedra is called type IV.

h) Tetrahedra without new node. These tetrahedra of τ1 are not divided and they
will be inherit by the refined mesh τ2. We call them type V tetrahedra; see Figure
2(f).

This classification process of the tetrahedra of τ1 is carried out by marking their
edges simply. The mesh conformity is ensured in a local level analysing the neigh-
bourhood between the tetrahedra which contain a marked edge by an expansion
process that starts in the type I tetrahedra of paragraph (a). Thus, when the run
along this set of type I tetrahedra is over, the resulting mesh is conformal and lo-
cally refined.

Moreover, this is a low computational cost process, since the local expansion stops
when we find tetrahedra whose edges have not to be marked. Implementations de-
tails in C++ are discussed in [3].

Generally, when we want to refine the level τj in which there already exist transient
tetrahedra, we shall perform it in the same way as from τ1 to τ2, except for the
following variation: if an edge of any transient tetrahedron must be marked, due to
the error indicator or even to conformity reasons, then all the transient tetrahedra
are eliminated from their parent (deleting process), all the parent edges are marked
and this tetrahedron is introduced into the set of type I tetrahedra. We must remark
that it will be only necessary to define a variable which determines if a tetrahedron
is transient or not.



(a) Type I (b) Type II

(c) Type III.a (d) Type III.b

(e) Type IV (f) Type V

Fig. 2. Subdivision classification of a tetrahedron in function of the new nodes (white cir-
cles).



4 Numerical Experiments

In order to show the effectiveness of the refinement/smoothing combination, we
consider the following test problem. We start from an initial mesh M0 with 1364
nodes and 5387 tetrahedra. The mesh has been generated using our code studied
in [1,20] and it contains 43 inverted tetrahedra. This mesh generator is based on
2-D refinement/derefinement techniques [19] and a version of the 3-D Delaunay
triangulation [21]. Figure 3(a) shows a detail of the mesh with inverted and poor
quality elements.

Figure 3(b) represents the mesh untangled and smoothed mesh M ′
0 resulting from

applying a number of steps of the optimization process until the values of average
and minimum quality tend to become steady to qavg = 0.6714 y qmin = 0.0925,
respectively. In this optimization process we have not allowed any node movement
over the lower boundary of the domain. In the mesh M ′

0 we can observe elements
with poor quality in the neighbourhood of the sharp surface. We remark that the
quality of these elements can not be improved if we maintain the same topology
of the mesh M0 during the optimization process. So, we propose to proceed as
follows.

Elements of M ′
0 with a quality measure near to qmin = 0.0925 are subdivided by

8-subtetrahedra and conformity of the mesh is assured. After this local refinement
step, it yields the mesh M1, with 1438 nodes and 5758 tetrahedra, see Figure 4(a).
Obviously, the quality of this refined mesh is less than the one before applying the
refinement process. In fact, we obtain qavg = 0.6432 and qmin = 0.0702 for M1.

Nevertheless, due to the increasing of the node number in the neighbourhood of the
regions where elements of M ′

0 have the worst quality, we can improve the value of
minumum quality after applying the smoothing procedure over M1. Then, we ob-
tain the smoothed mesh M ′

1 in which qavg = 0.6499 and qmin = 0.1106. Therefore,
the value of qmin increases with respect to the corresponding value in M ′

0, but the
value of qavg decreases. Actually, in most cases it is more suitable to increase the
minimum quality, that is to improve the quality of distorted elements. Besides, the
relative increase obtained in qmin is superior than the relative decrease in qavg . In
Figure 4(b) it is shown a detail of the mesh M ′

1 in which an improvement of quality
near the sharp surface can be observed.

If we now repeat the refinement/smoothing process starting from the mesh M ′
1,

it results the mesh M2 after refinement with 1475 nodes, 5925 tetrahedra, qavg =
0.6396 and qmin = 0.0924. Once the smoothing procedure is applied over this
mesh, we get the mesh M ′

2 with qmed = 0.6464 and qmin = 0.1214.

This last result implies that in the step from M0 to M ′
2 the minimum quality of M0

have been improved in a 31.2% with the introduction of a few new nodes. On the
other hand, the average quality have only made worse in a 3.7%. The meshes M2 y



(a) M0: initial tangled mesh

(b) M
′
0: untangled and smoothed mesh

Fig. 3. (a) M0: initial mesh with 43 inverted tetrahedra and (b) M
′
0: resulting untangled

mesh after applying the optimization process over M0.



(a) M1: refined mesh

(b) M
′
1: smoothed mesh

Fig. 4. (a) M1: resulting mesh after refining M0 and (b) M
′
1: mesh obtained after smoothing

M1.



(a) M2: refined mesh

(b) M
′
2: smoothed mesh

Fig. 5. (a) M2: resulting mesh after refining M
′
1 and (b) M

′
2: mesh obtained after smoothing

M2.



M ′
2 can been observed in Figures 5(a) and 5(b), respectively. Finally, let us remark

several comments about the refinement/smoothing procedure:

a) We have used the following strategy to asure the conformity of the refined
meshes. If an any transient tetrahedron must be generated, due to conformity rea-
sons, with a quality measure less than the stablished threshold for refinement, then
this transient tetrahedron and all his brothers are not created from their parent, all
the parent edges are marked and this tetrahedron is introduced into the set of type
I tetrahedra. Besides, each time that refinement algorithm is applied over a mesh,
we considere all tetrahedra of this mesh as non-transient. We have obtained better
results using these modifications of the refinement procedure presented in Section
3.

b) We have applied the refinement/smoothing procedure once the mesh have been
untangled. We propose in future works to analyze the behaviour of this procedure
when it is directly used over tangled meshes.

c) In the proposed test problem we have not permitted node movement over the
lower boundary of the domain. Obviously, if we allow node recollocation over this
surface, the final mesh quality would be better.

5 Conclusions

The combination of smoothing techniques and local refinement algorithms is useful
to improve the minimum quality of the elements of tetrahedral meshes with very
poor quality. Besides, as the proposed strategy refines a few elements in each refine-
ment step, then the number of new nodes introduced in the initial mesh is much less
than the total number. Obviously, we can repeat the refinement/smoothing combi-
nation until the required quality is obtained or no additional improvement is got.
The bound of quality is associated with the topology of the initial mesh and with
the constrains imposed by the boundary of the domain.
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