
Abstract

In this work we focus our attention on two aspects related to the node movement in
surface meshes: smoothing of triangular meshes defined on surfaces and the adaption
of these meshes to match given curves or contours.

The quality improvement of the mesh is obtained by an iterative process in which
each node of the mesh is moved to a new position that minimizesa certain objective
function. The objective function is derived from some algebraic quality measure [1, 2]
of the local submesh, that is, the set of triangles connected to the adjustable orfree
node.

When we deal with meshes defined on surfaces we have to impose some restrictions
to the movement of the free node. Firstly, is clear that such node must be sited on the
surface after optimizing. But, this is not the only constraint. If we allow the free node
to move on the surface without imposing any other restriction, only guided by the
improvement of the quality, the optimization procedure canconstruct a high-quality
local mesh, but with this node in anunacceptable position. To avoid this problem
the optimization is done in theparametric mesh, where the presence of barriers in
the objective function maintains the free node inside the feasible region. In this way,
the original problem on the surface is transformed into a two-dimensional one on the
parametric space. In our case, the parametric space is a plane, chosen in termsof the
local mesh, in such a way that this mesh can be optimally projected performing avalid
mesh, that is, without inverted elements.

We use the flexibility that provides this techniques to adapta given surface mesh to
a curve defined on it. The idea consists on displacing the nodes close to the curve to
positions sited on the curve. The process is repeated until the it is correctly approxi-
mated (interpolated) by a set of linked edges of the mesh.

The determination of which nodes can be projected on the curve is accomplished



by analyzing if there is a position on the curve on which the free node can be projected
without inverting any triangle of its local submesh. The optimal position of the free
node on the curve is determined attending to the quality of the local submesh.

Sometimes we lack an analytic expression of the curve to be interpolated and, in-
stead, it is given by a set of aligned points with a density high enough. This is the
case, for example, of data supplied by digitalized maps describing coastal shores or
river banks.

All these questions will be conveniently supported by examples.

Keywords: Mesh smoothing; Mesh untangling; Tetrahedral mesh generation; Adap-
tive meshes; Finite elements.

1 Introduction

For 2-D or 3-D meshes the quality improvement [1] can be obtained by an iterative
process in which each node of the mesh is moved to a new position that minimizes
an objective function [2]. This function is derived from a quality measure of the local
mesh. We have chosen, as a starting point in section 2, a 2-D objective function that
presents a barrier in the boundary of thefeasible region (set of points where the free
node could be placed to get avalid local mesh, that is, withoutinverted elements).
This barrier has an important role because it avoids the optimization algorithm to
create a tangled mesh when it starts with a valid one. Nevertheless, objective functions
constructed by algebraic quality measures are only directly applicable to inner nodes
of 2-D or 3-D meshes, but not to its boundary nodes. To overcome this problem, the
local mesh,M(p), sited on a surfaceΣ, is orthogonally projected on a planeP (the
existence and search of this plane will be discuss in section3) in such a way that it
performs a valid local meshN(q). Therefore, it can be said thatM(p) is geometrically
conforming with respect toP [3]. Herep is the free node onΣ andq is its projection on
P . The optimization ofM(p) is got by the appropriated optimization ofN(q). To do
this we try to getideal triangles inN(q) that become equilateral inM(p). In general,
when the local meshM(p) is on a surface, each triangle is placed on a different plane
and it is not possible to define a feasible region onΣ. Nevertheless, this region is
perfectly defined inN(q) as it is analyzed in section 2.1.

To construct the objective function inN(q), it is first necessary to define the ob-
jective function inM(p) and, afterward, to establish the connection between them. A
crucial aspect for this construction is to keep the barrier of the 2-D objective func-
tion. This is done with a suitable approximation in the process that transforms the
original problem onΣ into an entirely two-dimensional one onP . We develop this
approximation in section 2.2.

The optimization ofN(q) becomes a two-dimensional iterative process. The op-
timal solutions of each two-dimensional problem form a sequence

{

xk
}

of points
belonging toP . We have checked in many numerical test that

{

xk
}

is always a con-
vergent sequence. It is important to underline that this iterative process only takes



into account the position of the free node in a discrete set ofpoints, the points onΣ
corresponding to

{

xk
}

and, therefore, it is not necessary that the surface is smooth.
Indeed, the surface determined by the piecewise linear interpolation of the initial mesh
is used as a reference to define the geometry of the domain.

If the node movement only responds to an improvement of the quality of the mesh,
it can happen that the optimized mesh loses details of the original surface. To avoid
this problem, every time the free nodep is moved onΣ, the optimization process only
allows a small distance between the centroid of the triangles ofM(p) and the under-
laying surface (the true surface, if it is known, or the piece-wise linear interpolation,
if it is not).

There are several alternatives to the previous method. For example, Garimella et al.
[4] develop a method to optimize meshes in which the nodes of the optimized mesh
are kept close to the original positions by imposing the Jacobians of the current and
original meshes to be also close. Frey et al. [5] get a controlof the gap between the
mesh and the surface by modifying the element-size (subdividing the longest edges
and collapsing the shortest ones) in terms of an approximation of the smallest princi-
pal curvatures radius associated to the nodes. Rassineux et al. [6] also use the smallest
principal curvatures radius to estimate the element-size compatible with a prescribed
gap error. They construct a geometrical model by using the Hermite diffuse interpola-
tion in which local operations like edge swapping, node removing, edge splitting, etc.
are made to adapt the mesh size and shape. More accurate approaches, that have into
account the directional behavior of the surface, have been considered in by Vigo [7]
and, recently, by Frey in [8].

Application of our proposed optimization technique is shown in section 4.

2 Construction of the Objective Function

As it is shown in [2], [9], and [10] we can derive optimizationfunctions fromalgebraic
quality measures of the elements belonging to a local mesh. Let us consider a triangu-
lar mesh defined inR2 and lett be an triangle in the physical space whose vertices are
given byxk = (xk, yk)

T ∈ R
2, k = 0, 1, 2. First, we are going to introduce an alge-

braic quality measure fort. Let tR be the reference triangle with verticesu0 = (0, 0)T ,
u1 = (1, 0)T , andu2 = (0, 1)T . If we choosex0 as the translation vector, the affine
map that takestR to t is x =Au + x0, whereA is the Jacobian matrix of the affine
map referenced to nodex0, given byA = (x1 − x0,x2 − x0). We will denote this

type of affine maps astR
A→ t. Let nowtI be anideal triangle (not necessarily equi-

lateral) whose vertices arewk ∈ R
2, (k = 0, 1, 2) and letWI = (w1 − w0,w2 − w0)

be the Jacobian matrix, referenced to nodew0, of the affine maptR
WI→ tI ; then, we

defineS = AW−1

I as the weighted Jacobian matrix of the affine maptI
S→ t . In the

particular case thattI was the equilateral triangletE, the Jacobian matrixWI = WE

will be defined byw0 = (0, 0)T , w1 = (1, 0)T andw2 = (1/2,
√

3/2)T .

We can use matrix norms, determinant or trace ofS to construct algebraic quality



measures oft. For example, the Frobenius norm ofS, defined by|S| =
√

tr (STS),
is specially indicated because it is easily computable. Thus, it is shown in [1] that
qη = 2σ

|S|2
is an algebraic quality measure oft , whereσ = det (S). We use this quality

measure to construct an objective function. Letx = (x, y)T be the position vector of
the free node, and letSm be the weighted Jacobian matrix of them-th triangle of a
valid local mesh ofM triangles. The objective function associated tom-th triangle is
ηm = |Sm|2

2σm
, and the corresponding objective function for the local mesh is then-norm

of (η1, η2, . . . , ηM),

|Kη|n (x) =

[

M
∑

m=1

ηn
m (x)

]
1

n

(1)

This objective function presents a barrier in the boundary of the feasible region that
avoids the optimization algorithm to create a tangled mesh when it starts with a valid
one.

Previous considerations and definitions are only directly applicable for 2-D (or 3-
D) meshes, but some of them must be properly adapted when the meshes are located
on an arbitrary surface. For example, the concept of valid mesh is not clear in this
situation because neither the concept of inverted element is. We will deal with these
questions in next subsections.

2.1 Similarity Transformation for Surfaceand Parametric Meshes

Suppose that for each local meshM(p) placed on the surfaceΣ, that is, with all its
nodes onΣ, it is possible to find a planeP such that the orthogonal projection ofM(p)
onP is a valid meshN(q). Moreover, suppose that we define the axes in such a way
that thex, y-plane coincide withP . If, in the feasible region ofN(q), it is possible
to define the surfaceΣ by the parametrizations(x, y) = (x, y, f(x, y)), wheref is
a continuous function, then, we can optimizeM(p) by an appropriate optimization
of N(q). We will refer toN(q) as theparametric mesh. The basic idea consists on
finding the position̄q in the feasible region ofN(q) that makesM(p) be an optimum
local mesh. To do this, we searchideal elements inN(q) that become equilateral
in M(p). Let τ ∈ M(p) be a triangular element onΣ whose vertices are given by
yk = (xk, yk, zk)

T , (k = 0, 1, 2) andtR be the reference triangle inP (see Figure 1).

If we choosey0 as the translation vector, the affine maptR
Aπ→ τ is y = Aπu + y

0
,

whereAπ is its Jacobian matrix, given by

Aπ =





x1 − x0 x2 − x0

y1 − y0 y2 − y0

z1 − z0 z2 − z0



 (2)

Now, consider thatt ∈ N(q) is the orthogonal projection ofτ onP . Then, the vertices
of t arexk = Πyk = (xk, yk)

T , (k = 0, 1, 2), whereΠ = (e1, e2)
T is 2 × 3 matrix

of the affine mapτ
Π→ t, being{e1, e2, e3} the canonical basis inR3 (the associated



projector fromR
3 to P , considered as a subspace ofR

3, is ΠT Π). Taking x0 as

translation vector, the affine maptR
AP→ t is x = APu + x0, whereAP = ΠAπ is its

Jacobian matrix

AP =

(

x1 − x0 x2 − x0

y1 − y0 y2 − y0

)

(3)

Therefore, the3 × 2 matrix of the affine mapt
T→ τ is

T = AπA
−1

P (4)

Let Vπ be the subspace spanned by the column vectors ofAπ and letπ be the plane
defined byVπ and the pointy0. Our goal is to find theideal triangletI ⊂ P , moving
q onP , such thattI is mapped byT into an equilateral one,τE ⊂ π. In general, the
strict fulfillment of this requirement is only possible ifN(q) is formed by a unique
triangle.

Due to rank(Aπ) = rank(AP ) = 2, it exists a unique factorizationAπ = QR, where
Q is an orthogonal matrix (QTQ = I) andR is an upper triangular one with[R]ii > 0
(i = 1, 2). The columns of the3 × 2 matrixQ define an orthonormal basis{q1,q2}
that spansVπ, so we can seeQ as the matrix of the affine maptR

Q→ τR andR as the

2 × 2 Jacobian matrix of the affine mapτR
R→ τ (see Figure 1). AstR

WE→ tE andQ

is an orthogonal matrix that keeps the angles and norms of thevectors, thentE
Q→ τE

and, therefore
QWE = AπR

−1WE (5)

is the3 × 2 Jacobian matrix of affine maptR
QWE→ τE. On the other hand, we define

on the planeπ
S = RW−1

E (6)

as the2× 2 weighted Jacobian matrix of the affine map that transforms the equilateral

triangle into the physical one, that is,τE
S→ τ .

We have chosen as ideal triangle inπ the equilateral one (τI = τE), then, the

Jacobian matrixWI of the affine maptR
WI→ tI is calculated by imposing the condition

TWI = QWE, becausetR
TWI→ τI andtR

QWE→ τE. Taking into account (5), it yields

TWI = AπR
−1WE (7)

and, from (4), we obtain
WI = APR

−1WE (8)

so we define onP the ideal-weighted Jacobian matrix of the affine maptI
SI→ t as

SI = APW
−1

I . From (8) it results

SI = APW
−1

E RA−1

P (9)

and, from (6)

SI = APW
−1

E SWEA
−1

P = APW
−1

E S
(

APW
−1

E

)−1

= SESS
−1

E (10)



whereSE = APW
−1

E is theequilateral-weighted Jacobian matrix of the affine map

tE
SE→ t. Finally, from (10), we obtain the next similarity transformation.

S = S−1

E SISE (11)

Therefore, it can be said that the matricesS andSI aresimilar.
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Figure 1: Local surface meshM(p) and its associated parametric meshN(q)

2.2 Optimization on the Parametric Space

It might be usedS, as it is defined in (6), to construct the objective function and, then,
solve the optimization problem. Nevertheless, this procedure has important disadvan-
tages. First, the optimization ofM(p), working on the true surface, would require the
imposition of the constraintp ∈ Σ. It would complicate the resolution of the problem
because, in many cases,Σ is not defined by a smooth function. Moreover, when the
local meshM(p) is on a curved surface, each triangle is sited on a different plane and
the objective function, constructed fromS, lacks barriers. It is impossible to define a
feasible region in the same way as it was done at the beginningof this section. Indeed,
all the positions of the free node, except those that makedet(S) = 0 for any triangle,
produce correct triangulations ofM(p). However, for many purposes as, for exam-
ple, to construct a 3-D mesh from the surface triangulation,there are unacceptable
positions of the free node.



To overcome these difficulties we propose to carry out the optimization ofM(p) in
an indirect way, working onN(q). With this approach the movement of the free node
will be restricted to the feasible region ofN(q), which avoids to construct unaccept-
able surface triangulations. It all will be carried out using an approximate version of
the similarity transformation given in (11).

Let us consider thatx = (x, y)T is the position vector of the free nodeq, sited on
the planeP . If we suppose thatΣ is parametrized bys(x, y) = (x, y, f(x, y)), then,
the position of the free nodep on the surface is given byy = (x, y, f(x, y))T =
(x, f(x))T .

Note thatSE = APW
−1

E only depends onx becauseWE is constant andAP is a
function ofx. Besides,SI = APW

−1

I depends ony, due toWI = APR
−1WE, andR

is a function ofy. Thus, we haveSE (x) andSI (y). We shall optimize the local mesh
M(p) by an iterative procedure maintaining constantWI (y) in each step. To do this,
at the first step, we fixWI (y) to its initial value,W 0

I = WI(y
0), wherey0 is given by

the initial position ofp. So, if we defineS0

I (x) = AP (x) (W 0

I )−1, we approximate
the similarity transformation (11) as

S0 (x) = S−1

E (x)S0

I (x)SE (x) (12)

Now, the construction of the objective function is carried out in a standard way, but
usingS0 instead ofS. So, we obtain the objective function for a given triangleτ ⊂ π

η0 (x) =
|S0 (x)|2
2σ0 (x)

(13)

whereσ0 (x) = det(S0 (x)).

With this approach the optimization of the local meshM(p) is transformed into a
two-dimensional problem without constraints, defined onN(q), and, therefore, it can
be solved with low computational cost. Furthermore, if we writeW 0

I asA0

P (R0)−1WE,
whereA0

P = AP (x0) andR0 = R (y0), it is straightforward to show thatS0 can be
simplified as

S0 (x) = R0
(

A0

P

)−1

SE (x) (14)

and our objective function for the local mesh is

∣

∣K0

η

∣

∣

n
(x) =

[

M
∑

m=1

(

η0

m

)n
(x)

]
1

n

(15)

Let now analyze the behavior of the objective function when the free node crosses
the boundary of the feasible region. If we denoteαP = det (AP ), α0

P = det (A0

P ),
ρ0 = det (R0), ωE = det (WE) and taking into account (14), we can writeσ0 =
ρ0 (α0

P )
−1
αPω

−1

E . Note thatρ0,α0

P , andωE are constants, soη0 has a singularity when
αP = 0, that is, whenq is placed on the boundary of the feasible region ofN(q). This
singularity determines a barrier in the objective functionthat prevents the optimization



algorithm to take the free node outside this region. This barrier does not appear if we
use the exact weighted Jacobian matrixS, given in (6), due todet (R) = R11R22 > 0.

Suppose thatx1 = x̄0 is the minimizing point of (15). As this objective function
has been constructed by keepingy in its initial position,y0, thenx1 is only the first ap-
proximation to our problem. This result is improved updating the objective function at
y1 = (x1, f(x1))T and, then, computing the new minimizing position,x2 = x̄1. This
local optimization process is repeated, obtaining a sequence

{

xk
}

of optimal points,
until a convergence criteria is verified. We have experimentally verified in numer-
ous tests, involving continuous functions to define the surfaceΣ, that this algorithm
converges.

Let us considerP as an optimal projection plane (this aspect will be discussed in
next section). In order to prevent a loss of the details of theoriginal geometry, our
optimization algorithm evaluates the difference of heights ([∆z]) between the centroid
of the triangles ofM(p) and the reference surface, every time a new positionxk is
calculated. If this distance exceeds a threshold,∆(p), the movement of the node
is aborted and the previous position is stored. This threshold ∆(p) is established
attending to the size of the elements ofM(p). In concrete, the algorithm evaluates
the average distance between the free node and the nodes connected to it, and takes
∆(p) as percentage of this distance. Other possibility is to fix∆(p) as a constant for
all local meshes. In the particular case in which we have an explicit representation
of the surface by a functionf(x, y), ∆(p) can be established as a percentage of the
maximum difference of heights between the original surfaceand the initial mesh.

3 Search of the Optimal Projection Plane

The former procedure needs a plane in which the local mesh,M(p), is projected con-
forming a valid mesh,N(q). If this plane exists it is not unique, because a small
rotation of the coordinate system produces another valid projection plane, that is, an-
other plane in whichN(q) is valid. We have observed that the number of iterations
required by our procedure depends on the chosen plane. In general, this number is less
if the plane is wellfaced to M(p). We have to find the rotation of reference system
x, y, z such that the newx′, y′-plane,P ′, is optimal with respect to a suitable criterion.

We will denoteN(q′) as the projection ofM(p) ontoP ′ andt′ the projection of
the physical triangleτ ∈ M(p) ontoP ′. LetA′

P = (x′
1
− x′

0
,x′

2
− x′

0
) be the matrix

associated to the affine map that takes the reference elementdefined onP ′ to t′, then,
the area oft′ is given by1

2
|α′

P | whereα′
P = det (A′

P ).

Our goal is to find a coordinate system rotation such that
M
∑

m=1

α′
Pm

is maximum

satisfying the constraintsα′
Pm

= det
(

A′
Pm

)

> 0 for all the triangles ofN(q′), that
is,m = 1, ...,M . In [11] a method to determine a projection plane is considered but
without the enforcement of these constraints.

According to Euler’s rotation theorem, any rotation may be described using three



angles. The so-calledx-convention is the most common definition. In this convention,
the rotation is given by Euler angles(φ, θ, ψ), where the first rotation is by an angle
φ ∈ [0, 2π] about thez-axis, the second is by an angleθ ∈ [0, π] about thex-axis, and
the third is by an angleψ ∈ [0, 2π] about thez-axis (again).

Let Φ(φ, θ, ψ) be the Euler’s rotation matrix such thaty′ = Φy, then, the Jacobian
matrixAπ = (y1−y0,y2−y0) associated to the triangleτ ofM(p), defined in (2), can
be spanned on the rotated coordinate system asA′

π = (y′
1
−y′

0
,y′

2
−y′

0
) = ΦAπ. Thus,

the Jacobian matrixA′
P is written asA′

P = ΠA′
π = ΠΦAπ. With these considerations

it is easy to proof that the value ofα′
P is

α′
P = det(ΠΦAπ) = m1 sin (φ) sin(θ) +m2 sin (θ) cos (φ) +m3 cos (θ) (16)

wheremi is the minor obtained by deleting thei-th row ofAπ. Note that equation (16)
only depends onφ andθ angles, as was to be expected.

Although the above maximization problem can be solved takeninto account the
constraints, we propose an unconstrained approach.

Let us consider, as a first attempt, the objective function
M
∑

m=1

(α′
Pm

)−1(φ, θ). The

minimization of this function tends to maximize the values of α′
Pm

and, due to the
barrier that appears whenα′

Pm
= 0 for some triangle ofN(q′), the values ofα′

Pm
are

maintained positive if the minimization algorithm starts at an interior point, that is,
a point(φ0, θ0) belonging to the setΨ of angles(φ, θ) such thatα′

Pm
(φ, θ) > 0 for

(m = 1, ...,M ). On the other hand, if anyα′
Pm

< 0 the barrier prevents to reach the
required minimum. In next paragraph we propose a method to find an interior point
(φ0, θ0) of Ψ to be used as a starting point in the minimization algorithm.

Let G = [gm] be the3 × M matrix formed by the vectors,gm, normal to the
triangles ofM(p). A solution of the inequality system (if it exists)GTg > 0 provides a
direction [12], defined by vectorg, such that all the triangles ofM(p) can be projected
on a plane, normal to the unitary vectorn = g

‖g‖
, so thatα′

Pm
> 0 for (m = 1, ...,M ).

Then, it only remains to find the anglesφ0 andθ0 in which the coordinate system needs
to be rotated to get thez′ axis to point in the direction ofn. More precisely, the angles
φ0 andθ0 are the solution of the equationΦT (φ0, θ0, 0) e3 = n, wheree3 = (0, 0, 1)T .
If the inequality system has not solution, then, there is notany valid projection plane
for this local mesh, against the premise done in section 2.1.In this case, the local
optimization procedure maintains the free nodep at its initial position.

We have observed that the previous objective function has computational difficul-
ties as the optimization algorithms use discrete steps to search the optimal point. A
step leading outside the regionΨ may indicate a decrease in the value of the objective
function and take to a false solution. To overcome this problem we propose a modifi-
cation of the objective function in such a way that it will be regular all overR3 and its
barrier will be ”smoothed”. The modification consists of substitutingα′

Pm
by h(αPm

),
whereh(α) is the positive and increasing function given by

h(α) =
1

2
(α+

√
α2 + 4δ2) (17)



being the parameterδ = h(0). The behavior ofh(α) in function of δ parameter is
such that,lim

δ→0

h(α) = α, ∀α ≥ 0 and lim
δ→0

h(α) = 0, ∀α ≤ 0. The characteristics of

h function and its application in the context of mesh untangling and smoothing have
been studied in [13], [14]. Thus, the proposed objective function for searching the
projection plane is

Ω(φ, θ) =
M

∑

m=1

1

h(α′
Pm

(φ, θ))
(18)

A crucial property is that the angles that minimize the original and modified objec-
tive functions are nearly identical whenδ is small. Details about the determination of
δ value for 3-D triangulations can be found in [14].

4 Matching curves defined on surfaces

Node movement provides a surface mesh the ability to match anarbitrary curve. Sup-
pose that the surface mesh,M , is projectable on a unique planeP forming a para-
metric mesh,N . If C is a curve defined onP , our objective is to move some nodes
of N , projecting them onC, to get an interpolation ofC by edges ofN . Note that,
associated to this interpolation, there is a mapped interpolation onM . To achieve this
objective we have to decide which nodes ofN can be projected onC without inverting
any triangle of its local submesh. More accurately, we say that a free nodeq is pro-
jectable onC if it exists any point ofC, sayq′, such that the resulting local submesh
N(q) has not any inverted triangle after carryingq to the position ofq′. In general, if
q is projectable, its possible placement onC is not unique and, therefore, we have to
determine the ”best” position to relocateq. To decide which is the best position of this
node we could think on minimizing the objective function

∣

∣K0

η

∣

∣

n
(x) [17] subject to

the constrainedx ∈ C. Nevertheless, this function only works properly whenN(q) is
not tangled. To overcome this problem we propose to modify this objective function
following the criteria developed in [14]. This modificationconsists of substitutingσ0

in (13) by the positive and increasing functionh(σ0), so that the barrier associated
with the singularities of

∣

∣K0

η

∣

∣

n
(x) will be eliminated and the new function will be

smooth all overR2. If
∣

∣K ′0
η

∣

∣

n
(x) is the modified objective function, the problem of

finding the optimal position to project the free node onC is

minimize
∣

∣K ′0
η

∣

∣

n
(x) , subject tox ∈ C (19)

The objective function
∣

∣K ′0
η

∣

∣

n
strongly penalizes the negative values ofσ0, so that,

the minimization process of (19) leads to the construction of a local submeshN(q)
without inverted triangles, provided it is possible. Then,if x̄ is the minimizing position
of (19) andσ0 (x̄) > 0 for all triangle ofN(q), we conclude thatq is projectable onC
andx̄ is its optimal position.

The projection of a free node onC can give rise to a local mesh with very poor
quality. This effect is partly palliated after smoothing the remainder nodes, following



the procedure described in section 2.2. Moreover, we have observed that the final mesh
has better quality if the constraintσ0 (x̄) > 0 is substituted by the most restrictive one
σ0 (x̄) > ǫ for all triangle ofN(q), wereǫ > 0 is a decreasing parameter that tends to
zero as the number of global iterations increases.

The nodes are inserted in the curve without specific criterion, just according to the
increasing order of its numeration. This produces situations in which some sections
of the curveC can not be interpolated by edges ofN without removing some nodes
previously projected onC. The figure 2(a) shows a scheme of this problem and fig-
ures 2(b) and (c) explain the way to solve it by a convenient displacement of the two
extreme nodes.

(b)

(a)

(c)

Figure 2: The line (in bold) is non-recoverable if the two extreme nodes are not moved
(a). The extreme nodes are removed from the line (b) until another one takes its place
(c)

In some applications we lack an analytic expression of the curve to be interpolated.
Only a set of aligned points{qc} that approximately describes a contour is available.
This is the case, for example, of data supplied by digitalized maps describing coastal
shores or river banks. To approach this situation we solve a discrete version of (19).
Given local submeshN(q), we analyze ifq is projectable on any point of{qc}, that is,
we check if the conditionσ0 (x) > ǫ for all triangle ofN(q) is satisfied whenx cover
{qc}. Among the positionsx that satisfy previous condition we choose the optimal
point, x̄, as the one that minimizes

∣

∣K ′0
η

∣

∣

n
. We must underline that this problem is



correctly defined only if the density of points of{qc} is high enough. Typically, the
distance between contiguous points of{qc} must be much shorter than the distances
between adjacent nodes ofN .

Usually, most of nodes ofN are very far from any point of{qc} and, therefore,
they are not projectable, so it is advantageous to have a previous knowledge of which
nodes are candidates to be projected. A possibility is to associate to each node of both
N and{qc} the square of a regular grid in which it is included. Let us suppose that
the size of these squares isdmax × dmax, beingdmax the maximum edge present at the
mesh. We can take a quick decision about if the nodeq is candidate to be projectable
on{qc} only by inspecting the region,Sq, formed by the square that containsq and the
surrounding squares. Firstly, we find the subset{q′c} of points belonging to{qc} and
included inSq. If {q′c} 6= ∅, we analyze ifq is projectable on{q′c} as it was explained
above. Note that the distance betweenq and any point of{qc} not in Sq is greater
thandmax and, consequently, outside the feasible region ofN(q) (the feasible region
of N(q) is included in the circle of radiusdmax and centerq).

5 Application

5.1 Application to scanned objects

In this subsection the proposed technique is applied to smooth a mesh obtained from
http://www.cyberware.com/. The object is a screwdriver (see Figure 11) with27150
triangles and13577 nodes.

The projection plane for this surface triangulation have been chosen in terms of the
local mesh to be analyzed. We have used the objective function (1) withn = 2.

The average quality for this application is increased from0.822 to 0.920 in four
iterations, see Figure 12. The worst500 triangles increases its average quality from
0.486 to 0.704. It is important to remark that the original geometry is almost preserved
in the optimization process, as it can be seen by comparing a detail of these meshes in
Figures 13 and 14. The quality curves are shown in Figure 15. This curve is obtained
by sorting the elements in increasing order of its quality,q(e).

We have fixed∆(p) to 10% of average distance between the free node and the
nodes connected to it. The number of not moved nodes by the algorithm with this
election of∆(p) have been85 in the first iteration,167 in the second,187 in the third,
and193 in the fourth one. We remark that the quality curves from the first to the fourth
iteration are very close. In particular, the algorithm onlyneeds one iteration to reach
an average quality0.907.

5.2 Mesh adaption to prescribed contours in orographic surfaces

In many cases of environmental modelling, there are some contour lines which deter-
minate certain characteristics of the studied region. For example, in wind simulation



[16] the well definition of contour lines of very steep slopesmay be very important
for obtaining accurate results, since a change in the direction of edges of the mesh can
strongly affect the computed wind. Thus, an accurate mesh must be adapted to fol-
lows these contours lines. Figure 4 shows the adaption of theinitial mesh of figure 3,
related to a region of the north west of Gran Canaria Island, tothe shore line (plotted
by points in red). A detail of these meshes are shown in figures5 and 6.

Figure 3: Region defined in the north west of Gran Canaria Island. Contour plots and
initial mesh to be adapted.

Figure 4: Region defined in the north west of Gran Canaria Island. Contour plots and
adapted mesh.

The second example corresponds to a mesh of another region ofGran Canaria
Island in the surrounding of Arucas Mountain (figure 7) that is adapted to a spiral
around the mountain (an imaginary road), see figure 8. In thisview, we can clearly
see how the edges of the mesh end up being placed on the curve. Figures 9 and??
shown details of these meshes.



Figure 5: A detail of the coast in the north west of Gran CanariaIsland corresponding
to the not adapted mesh.

Figure 6: A detail of the coast in the north west of Gran CanariaIsland corresponding
to the adapted mesh.

6 Conclusions and Future Research

We have developed an algebraic method to optimize triangulations defined on sur-
faces. Its main characteristic is that the original problemis transformed into a fully



Figure 7: Region defined in the surrounding of Arucas Mountain(Gran Canaria Is-
land). Contour is defined as an spiral line around the mountainto which the initial
mesh must be adapted.

Figure 8: Region defined in the surrounding of Arucas Mountain. Contour plots and
adapted mesh.



Figure 9: A detail of the not adapted mesh to the spiral in Arucas Mountain.

Figure 10: A detail of the adapted mesh to the spiral in ArucasMountain.

two-dimensional sequence of approximate problems on the parametric space. This



characteristic allows the optimization algorithm to dealswith surfaces that only need
to be continuous. Moreover, the barrier exhibited by the objective function in the
parametric space prevents the algorithm to construct unacceptable meshes.

We have also introduced a procedure to find an optimal projection plane (our para-
metric space) based on the minimization of a suitable objective function. We have
observed that correct choice of this plane plays a relevant role.

We have shown how the technique of surface mesh smoothing canbe used to match
an arbitrary curve. This last application requires the meshcan be projected in a a
unique projection plane. We propose the generalization of these ideas to avoid the this
restriction. Also, we think that the this procedure could beextrapolated for matching
surfaces defined in 3-D meshes.

Figure 11: Original mesh of a screwdriver fromhttp://www.cyberware.com/.

Figure 12: Optimized mesh of the screwdriver after four iterations.



The optimization process includes a control on the gap between the optimized mesh
and the reference surface that avoids to lose details of the original geometry. In this
work we have used a piecewise linear interpolation to define the reference surface
when the true surface is not known, but it would be also possible to use a more regu-
lar interpolation, for example, the proposed in [6]. Likewise, it would be possible to
introduce a more sophisticated criterion for the gap control, by using a local refine-
ment/derefinement techniques, that takes into account the curvature of the surface [5],
[6], [7], [8].

Figure 13: Detail of the original mesh of the screwdriver end.

Figure 14: Detail of the optimized mesh of the screwdriver after four iterations.
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Figure 15: Quality curves for the initial (dashed line) and optimized (solid line)
meshes for the screwdriver.

In the present work we have only considered a sole objective function obtained
from an isotropic and area independent algebraic quality metric. Nevertheless, the
framework that establishes thealgebraic quality measures [1] provides us the possi-
bility to construct anisotropic and area sensitive objective functions by using a suitable
metric.

In future works we will use the present smoothing technique for improving the
mesh quality of the boundary of 3-D domain triangulations defined over complex ter-
rains [15]. A simultaneous smoothing and untangling procedure [14] could be applied
to inner nodes of the domain after. Authors have developed this tetrahedral mesh
generator for wind field simulation in realistic problems [16].
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