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Summary. In this paper we introduce an automatic tetrahedral mesh generator
for complex genus-zero solids, based on the novel meccano technique. Our method
only demands a surface triangulation of the solid, and a coarse approximation of
the solid, called meccano, that is just a cube in this case. The procedure builds
a 3-D triangulation of the solid as a deformation of an appropriate tetrahedral
mesh of the meccano. For this purpose, the method combines several procedures:
an automatic mapping from the meccano boundary to the solid surface, a 3-D local
refinement algorithm and a simultaneous mesh untangling and smoothing. A volume
parametrization of the genus-zero solid to a cube (meccano) is a direct consequence.
The efficiency of the proposed technique is shown with several applications.

Key words: Tetrahedral mesh generation, local refinement, nested meshes,
mesh untangling and smoothing, surface and volume parametrization.

1 Introduction

Many authors have devoted great effort to solving the automatic mesh gen-
eration problem in different ways [3, 13, 14, 26], but the 3-D problem is still
open [1]. In the past, the main objective has been to achieve high quality
adaptive meshes of complex solids with minimal user intervention and low
computational cost. At present, it is well known that most mesh generators
are based on Delaunay triangulation and advancing front technique. However,
problems related to mesh quality, mesh adaption and mesh conformity with
the solid boundary, still remain.
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We have recently introduced the meccano technique in [21, 2, 22] for con-
structing adaptive tetrahedral meshes of solids. The method requires a surface
triangulation of the solid, a meccano and a tolerance that fixes the desired ap-
proximation of the solid surface. The name of the method stems from the fact
that the process starts from an outline of the solid, i.e. a meccano composed by
connected polyhedral pieces. A particular case is a meccano consisting only
of connected cubes, i.e. a polycube [25, 19, 27]. The method generates the
solid mesh as a deformation of an appropriate tetrahedral mesh of the mec-
cano. The main idea of the new mesh generator is to combine an automatic
parametrization of surface triangulations [6], a local refinement algorithm for
3-D nested triangulations [17] and a simultaneous untangling and smoothing
procedure [4].

In this paper, we present significant advances in the method. We define
an automatic parametrization of a solid surface triangulation to the mec-
cano boundary. For this purpose, we first divide the surface triangulation into
patches with the same topological connection as the meccano faces. Then, a
discrete mapping from each surface patch to the corresponding meccano face is
constructed by using the parameterization of surface triangulations proposed
by M. Floater in [6, 7, 8, 9]. Specifically, we describe the procedure for a solid
whose boundary is a surface of genus 0; i.e. a surface that is homeomorphic
to the surface of a sphere. In this case, the meccano is a single cube, and
the global mapping is the combination of six patch-mapping. The solution to
several compatibility problems on the cube edges will be discussed.

The extension to more general solids is possible if the construction of
an appropriate meccano is assumed. In the near future, more effort should be
made in an automatic construction of the meccano when the genus of the solid
surface is greater than zero. Currently, several authors are working on this
aspect in the context of polycube-maps, see for example [25, 19, 27]. They are
analyzing how to construct a polycube for a generic solid and, simultaneously,
how to define a conformal mapping between the polycube boundary and the
solid surface. Although surface parametrization has been extensively studied
in the literature, only a few works deal with volume parametrization and this
problem is still open. A meshless procedure is presented in [18] as one of the
first tentative to solve the problem. In addition, Floater et al [10] give a simple
counterexample to show that convex combination mappings over tetrahedral
meshes are not necessarily one-to-one.

In the following Section we present a brief description of the main stages of
the method for a generic meccano composed of polyhedral pieces. In Section 3
we analyze the algorithm in the case that the meccano is formed by a simple
cube. In Section 4 we show test problems and practical applications which
illustrate the efficiency of this strategy. Finally, the conclusions and future
research are presented in Section 5.
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2 Meccano Technique Algorithm

The main steps of the meccano tetrahedral mesh generation algorithm are
summarized in this Section. A first approach of this method can be found
in [21, 2, 22]. The input data of the algorithm are the definition of the solid
boundary (for example a surface triangulation) and a given precision (corre-
sponding to the approximation of the solid boundary). The following algo-
rithm describes the mesh generation approach.

Meccano tetrahedral mesh generation algorithm
1. Construct a meccano approximation of the 3-D solid formed by polyhedral

pieces.
2. Define an admissible mapping between meccano and solid boundaries.
3. Construct a coarse tetrahedral mesh of the meccano.
4. Generate a local refined tetrahedral mesh of the meccano, such that the

mapping (according step 2) of the meccano boundary triangulation approx-
imates the solid boundary for a given precision.

5. Move the boundary nodes of the meccano to the solid surface according
to the mapping defined in 2.

6. Relocate the inner nodes of the meccano.
7. Optimize the tetrahedral mesh by applying the simultaneous untangling

and smoothing procedure.

The first step of the procedure is to construct a meccano approximation
by connecting different polyhedral pieces. The meccano and the solid must
be equivalent from a topological point of view, i.e., their surfaces must have
the same genus. Once the meccano is assembled, we have to define an ad-
missible one-to-one mapping between the boundary faces of the meccano and
the boundary of the solid. In step 3, the meccano is decomposed into a coarse
tetrahedral mesh by an appropriate subdivision of its initial polyhedral pieces.
This mesh is locally refined and its boundary nodes are virtually mapped to
the solid surface until it is approximated to within a given precision. Then,
we construct a mesh of the domain by mapping the boundary nodes from the
meccano plane faces to the true boundary surface and by relocating the inner
nodes at a reasonable position. After those two steps, the resulting mesh is
generally tangled, but it has an admissible topology. Finally, a simultaneous
untangling and smoothing procedure is applied and a valid adaptive tetrahe-
dral mesh of the object is obtained.

3 Meccano Technique for a Complex Genus-Zero Solid

In this Section, we present the application of the meccano algorithm in the
case of the solid surface being genus-zero and the meccano being formed by one
cube. We assume as datum a triangulation of the solid surface. We introduce
an automatic parametrization between the surface triangulation of the solid
and the cube boundary. To that end, we divide the surface triangulation into
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six patches, with the same topological connection than cube faces, so that
each patch is mapped to a cube face.

We note that even being poor the quality of this initial triangulation, the
meccano method can reach a high quality surface and volume triangulation.

3.1 Meccano

A simple cube, C, is defined as meccano. We associate a planar graph, GC to
the meccano in the following way:

• Each face of the meccano corresponds to a vertex of the graph.
• Two vertices of the graph are connected if their corresponding meccano

faces share an edge.

Figure 1 shows the numbering of cube faces and their connectivities, and
Figure 2 represents the corresponding planar graph.

(a) (b)

Fig. 1. Meccano formed by one cube: (a) notation of nodes and faces of the cube
and (b) connectivities of faces

Fig. 2. Planar graph GC associated to the cube
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The position of the cube is crucial to define an admissible mapping between
the cube and solid boundary, as we analyze later. However, its size is less
important, because it only affects the efficiency of the mesh optimization step.
For a genus-zero solid, if the center of the cube is placed inside the solid, the
existence of an admissible mapping is ensured.

3.2 Mapping from Cube Faces to Solid Surface Patches

Once the cube is fixed, we have to determine a mapping between the cube faces
and the solid surface triangulation. First, we define the concept of admissible
mapping for a cube. Let ΣC be the boundary of the cube and ΣS the boundary
of the solid, given by a surface triangulation TS . We denote by Σi

C the i-th face

of the cube, i.e. ΣC =
⋃5

i=0
Σi

C . Let Π : ΣC → ΣS be a piecewise function,
such that Π|Σi

C

= Πi where Πi : Σi
C → Πi(Σi

C) ⊂ ΣS . Then, Π is called an
admissible mapping if it satisfies:

a) Functions {Πi}5
i=0 are compatible on ΣC . That is Πi

|Σi
C
∩Σ

j

C

= Π
j

|Σj

C
∩Σi

C

,

∀i, j = 0, . . . , 5, with i 6= j and Σi
C ∩ Σ

j
C 6= ∅.

b) Global mapping Π is continuous and bijective between ΣC and ΣS .

We define an automatic admissible mapping in the following Sections. For
this purpose, we first construct a partition of the solid surface triangulation
into six patches, maintaining the topology of the graph in Figure 2, then we
parametrize each patch to a cube face.

Partition of the Solid Surface Triangulation

In the following we call connected subtriangulation to a set of triangles of
TS whose interior is a connected set. Given a decomposition of the surface
triangulation TS in any set of connected subtriangulations, we can associate
a planar graph, GS , to this partition in the following way:

• Each subtriangulation corresponds to a vertex of the graph.
• Two vertices of the graph are connected if their corresponding subtrian-

gulations have at least one common edge.

We say that a solid surface partition and the meccano are compatible if their
graphs are isomorphic, GS = GC . In our case, since the solid surface is isomor-
phic to a sphere, it is clear that a compatible partition exists. We now propose
an algorithm to obtain a decomposition of the given solid surface triangulation
TS into six subtriangulations {T i

S}5
i=0. We distinguish three steps:

a) Subdivision in connected subtriangulations. We construct the Voronoi di-
agram associated to the centers of the six cube faces. We consider that a
triangle F ∈ TS belongs to the i-th Voronoi cell if its barycenter is inside
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this cell. We generate a partition of TS in maximal connected subtriangu-
lations with this criterion, i.e. two subtriangulations belonging to the same
cell can not be connected. We denote as T ij

S the j-th connected subtrian-
gulation belonging to the i-th Voronoi cell, and ni is the total number of
subtriangulation in the i-th cell.

b) Construction of the graph. We associate a planar graph, GS to the parti-
tion generated in the previous step. If the center of the cube is inside the
solid and the surface triangulation is fine enough, there is one compatible
subtriangulation for each Voronoi cell, i.e. there is one head subtriangula-
tion T i0

S , vertex of the graph GS , with the same connection as the vertex
associated to the i-th cube face in GC . Otherwise, the subtriangulation
with the greatest number of elements is chosen as T i0

S .
c) Reduction of the graph. In order to achieve a decomposition of TS , we

propose an iterative procedure to reduce the current graph GS . In each
step all triangles of T jk

S are included in the head subtriangulation T i0
S if:

– T i0
S is the head subtriangulation with the fewest number of triangles.

– T jk
S and T i0

S are connected.
– k is higher than zero.
Then, the vertex T jk

S is removed from the graph and its connectivities are
inherited by T i0

S . The connectivity of the graph is updated.
After this process, T i0

S could be connected to other subtriangulations T il
S of

the same i-th cell. In this case, the triangles of all T il
S are included in T i0

S ,
the graph vertices T il

S are removed from the graph, their connectivities
are inherited and the graph connectivities are updated. Therefore, the
connected subtriangulations are always maximal in all algorithm steps.
This procedure continues iteratively until the graph GS is comprised only
six head vertices, but the compatibility of GS with GC can not be ensured.
As the computational cost of this algorithm is low, a movement in the
cube center, in order to obtain a compatible partition {T i

S}5
i=0, does not

affect the efficiency of the meccano technique. In what follows we denote
Σi

S the solid surface patch defined by the triangles of T i
S .

Parametrization of the Solid Surface Triangulation

Once the given solid surface ΣS is decomposed into six patches Σ0
S , . . . , Σ5

S ,
we map each surface patch Σi

S to the corresponding cube face Σi
C by using

the parametrization of the surface triangulations T i
S proposed by M. Floater

[6]. So, we define
(

Πi
)−1

: Σi
S → Σi

C and we denote τ i
F =

(

Πi
)−1

(T i
S)

as the planar triangulation of Σi
C associated to T i

S . To obtain τ i
F , Floater

parametrization fixes their boundary nodes and the position of their inner
nodes is given by the solution of a linear system based on convex combinations.
Let {P i

1, . . . , P
i
n} be the inner nodes and {P i

n+1, . . . , P
i
N} be the boundary

nodes of T i
S , respectively, where N denotes the total number of nodes of T i

S .
Fixed the position of boundary nodes {Qn+1, . . . , QN} of τ i

F , the position of
the inner nodes {Qi

1, . . . Q
i
n} is given by the solution of the system:
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Qi
k =

N
∑

l=1

λklQ
i
l, k = 1, . . . , n.

The values of the weights of the convex combinations {λkl}l=1,...,N
k=1,...,n verify

λkl = 0, if Pk and Pl are not connected

λkl > 0, if Pk and Pl are connected

N
∑

l=1

λkl = 1, for k = 1, . . . n.

In [6] three alternatives are analyzed: uniform parametrization, weighted least
squares of edge lengths and shape preserving parametrization. Another choice,
called mean value coordinate, is presented in [8]. The goal is to obtain an
approximation of a conformal mapping.

In order to ensure the compatibility of {Πi}5
i=0, the boundary nodes of

{τ i
F }5

i=0 must coincide on their common cube edges. The six transformations
{Πi}5

i=0 define an admissible mapping between ΣC and ΣS , i.e. the cube

boundary triangulation τF =
⋃5

i=0
τ i
F is a global parametrization of the solid

surface triangulation TS .
Two important properties of mapping Π are:

(a) the triangulations τF and TS have the same topology,
(b) each triangle of τF is completely contained in one face of the cube.

We note that usual polycube-maps [25, 19] verify property (a), but they do
not verify property (b), i.e., a triangle belonging to TS can be transformed by
a polycube-map into a triangle whose vertices are placed on different faces of
the polycube.

The proposed mapping Π is used in a following step of the meccano al-
gorithm to map a new triangulations τK (obtained on ΣC by application of
the refinement algorithm of Kossaczky [17]) to the solid boundary. Several
problems can appear in the application of this transformation due to the fact
that a valid triangulation τK 6= τF on ΣC can be transformed by Π into a
non-valid one on the solid surface.

3.3 Coarse Tetrahedral Mesh of the Meccano

We build a coarse and high quality tetrahedral mesh by splitting the cube
into six tetrahedra [17], see Figure 3(a). The resulting mesh can be recursively
and globally bisected to fix a uniform element size in the whole mesh. Three
consecutive global bisections for a cube are presented in Figures 3 (b), (c)
and (d). The resulting mesh of Figure 3(d) contains 8 cubes similar to the one
shown in Figure 3(a). Therefore, the recursive refinement of the cube mesh
produces similar tetrahedra to the initial ones.
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(a) (b) (c) (d)

Fig. 3. Refinement of a cube by using Kossaczky’s algorithm: (a) cube subdivision
into six tetrahedra, (b) bisection of all tetrahedra by inserting a new node in the cube
main diagonal, (c) new nodes in diagonals of cube faces and (d) global refinement
with new nodes in cube edges

3.4 Local Refined Tetrahedral Mesh of the Meccano

The next step in the meccano mesh generator includes a recursive adaptive
local refinement strategy, by using Kossaczky’s algorithm [17], of those tetra-
hedra with a face placed on a boundary face of the initial coarse tetrahedral
mesh of the cube. The refinement process is done in such a way that the given
solid surface triangulation TS is approximated by a new triangulation within
a given precision. That is, we seek an adaptive triangulation τK on the cube
boundary ΣC , so that the resulting triangulation after node mapping Π(τK)
is a good approximation of the solid boundary. The user has to introduce
as input data a parameter ε, which is a tolerance to measure the separa-
tion allowed between the linear piecewise approximation Π(τK) and the solid
surface defined by the triangulation TS . At present, we have considered two
criteria: the first related to the Euclidean distance between both surfaces and
the second attending to the difference in terms of volume.

To illustrate these criteria, let abc be a triangle of τK placed on the mec-
cano boundary, and a′b′c′ the resulting triangle of Π(τK) after mapping the
nodes a, b and c on the given solid surface ΣS , see Figure 4. We define two
different criteria to decide whether it is necessary to refine the triangle (and
consequently the tetrahedron containing it) in order to improve the approxi-
mation.

For any point Q in the triangle abc we define d1(Q) as the euclidean
distance between the mapping of Q on ΣS , Q′, and the plane defined by
a′b′c′. This definition is an estimate of the distance between the surface of the
solid and the current piecewise approximation Π(τk).

We also introduce a measure in terms of volume and then, for any Q in
the triangle abc, we define d2(Q) as the volume of the virtual tetrahedron
a′b′c′Q′. In this case, d2(Q) is an estimate of the lost volume in the linear
approximation by the face a′b′c′ of the solid surface.
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S
 

a b

c

a’
c’

b’

P

P’

(a)

S
 

a b

c

a’
c’

b’

P

P’

(b)

Fig. 4. Node mapping from meccano to real domain: (a) mapping Π from external
nodes a, b, c, P to a′, b′, c′, P ′, and (b) relocation of an inner node P in P ′

The threshold of whether to refine the triangle or not is given by a tolerance
εi fixed by the user. We note that other measures could be introduced in line
with the desired approximation type (curvature, points properties, etc.).

The refinement criterion decides whether a tetrahedron should be refined
attending to the current node distribution of triangulation τK on the cube
boundary ΣC and their virtual mapping Π(τK) on the solid boundary ΣS .
The separation between triangulations Π(τK) and Π(τF ) = TS is used in the
refinement criterion for tetrahedron T :

Refinement criterion
Tetrahedron T is marked to be refined if it satisfies the following two conditions:
1. T has a face F ∈ τK on the cube boundary.
2. di(Q) ≥ εi for some node Q ∈ τF located on face F of T .

From a numerical point of view, the number of points Q (analyzed in this
strategy) is reduced to the set of nodes of the triangulation τF (defined by the
parametrization of Floater) that are contained in face F . We use the nested
mesh genealogy to implement the refinement criterion efficiently.

Finally, the refinement procedure for constructing a local refined tetrahe-
dral mesh of the meccano is summarized in the following algorithm:

Refinement procedure
1. Given the coarse tetrahedral mesh of the meccano.
2. Set a tolerance εi.
3. Do

a) Mark for refinement all tetrahedra that satisfy the refinement criterion

for a distance di and a tolerance εi.
b) Refine the mesh.

While any tetrahedron T is marked.
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We denote nb the number of levels of the nested tetrahedral mesh se-
quence and τK the resulting triangulation of the cube boundary associated
to the finest level of the sequence. We note that the refinement procedure
automatically concludes according to a single parameter, i.e. εi.

3.5 External Node Mapping on Solid Boundary

Once we have defined the local refined tetrahedral mesh by using the method
proposed in the previous Section, the nodes of the triangulation τK are
mapped to the solid surface. Therefore, the triangulation Π(τK) is the new
approximation of the solid surface.

After this process, due to the properties of Floater’s parametrization,
Π(τK) is generally a valid triangulation. However, unacceptable triangula-
tions can appear. We have checked that this problem only appear when the
mesh size of surface approximation Π(τK) is the same order than the mesh
size of TS . So, if a more precise approximation of the solid surface is demanded
to the meccano approximation, a simple solution is to refine the given solid
surface triangulation TS .

In addition, a tangled tetrahedral mesh is generated because the position
of the inner nodes of the cube tetrahedral mesh has not changed.

3.6 Relocation of Inner Nodes

Even if Π(τK) is an acceptable triangulation, an optimization of the solid
tetrahedral mesh is necessary. Since it is better that the optimization algo-
rithm starts from a mesh with as good a quality as possible, we propose to
relocate the inner nodes of the cube tetrahedral mesh in a reasonable position
before the mesh optimization.

Although this node movement does not solve the tangle mesh problem, it
normally reduces it. In other words, the resulting number of inverted elements
is lower and the mean quality of valid elements is greater.

There would be several strategies for defining an appropriate position for
each inner node of the cube mesh. The relocation procedure should modify
their relative position as a function of the solid surface triangulation before
and after their mapping Π, see Figure 4(b). However, an ideal relocation of
inner nodes requires a volume mapping from the cube to the complex solid.
Obviously, this information is not known a priori. In fact, we will reach an
approximation of this volume mapping at the end of the mesh generation.

An interesting idea is to use an specific discrete volume mapping that
is defined by the transformation between a cube tetrahedral mesh and the
corresponding solid tetrahedral mesh. In practice, a good strategy is: we start
meshing the solid by using a high value of ε (a coarse tetrahedral mesh of the
solid is obtained) and we continue decreasing it gradually. In the first step of
this strategy, no relocation is applied. In this case, the number of nodes of
the resulting mesh is low and the mesh optimization algorithm is fast. In the
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following steps a relocation of inner nodes is applied by using the mapping
that is defined by the previous iteration.

3.7 Solid Mesh Optimization: Untangling and Smoothing

The proposed relocation procedure, based on volumetric parametrization, is
efficient but does not solve the tangling problem completely. Therefore, it is
necessary to optimize the current mesh. This process must be able to smooth
and untangle the mesh and is crucial in the proposed mesh generator.

The most usual techniques to improve the quality of a valid mesh, that is,
a mesh with no inverted elements, are based upon local smoothing. In short,
these techniques consist of finding the new positions that the mesh nodes must
hold, in such a way that they optimize an objective function. Such a function
is based on a certain measurement of the quality of the local submesh, N (v),
formed by the set of elements connected to the free node v, whose coordinates
are given by x. We have considered the following objective function derived
from an algebraic mesh quality metric studied in [16],

K (x) =

[

M
∑

m=1

(

1

qηm

)p

(x)

]

1

p

where M is the number of elements in N (v), qηm
is an algebraic quality

measure of the m-th element of N (v) and p is usually chosen as 1 or 2.
Specifically, we have considered the mean ratio quality measure, which for a

tetrahedron is qη = 3σ
2

3

|S|2
and for a triangle is qη = 2σ

|S|2
, |S| being the Frobenius

norm of matrix S associated to the affine map from the ideal element (usually
equilateral tetrahedron or triangle) to the physical one, and σ = det (S). Other
algebraic quality measures can be used as, for example, the metrics based on
the condition number of matrix S, qκ = ρ

|S||S−1| , where ρ = 2 for triangles and

ρ = 3 for tetrahedra. It would also be possible to use other objective functions
that have barriers like those presented in [15].

We have proposed in [4] an alternative to the procedure of [12, 11], so the
untangling and smoothing are carried out in the same stage. For this purpose,
we use a suitable modification of the objective function such that it is regular
all over R

3. It consists of substituting the term σ in the quality metrics with
the positive and increasing function h(σ) = 1

2
(σ+

√
σ2 + 4δ2). When a feasible

region (subset of R
3 where v could be placed, N (v) being a valid submesh)

exists, the minima of the original and modified objective functions are very
close and, when this region does not exist, the minimum of the modified
objective function is located in such a way that it tends to untangle N (v).
With this approach, we can use any standard and efficient unconstrained
optimization method to find the minimum of the modified objective function.

In addition, a smoothing of the boundary surface triangulation could be
applied before the movement of inner nodes of the domain by using the pro-
cedure presented in [5, 20].
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4 Test Examples

We have implemented the meccano technique using:

• The parametrization toolbox of the geometry group at SINTEF ICT, De-
partment of Applied Mathematics.

• The module of 3D refinement of ALBERTA code.
• Our optimization mesh procedure describes in Section 3.7.

The parametrization of a surface triangulation patch T i
S to a cube face

Σi
C is done with GoTools core and parametrization modules from SINTEF

ICT, available on the website http://www.sintef.no/math software. This code
implements Floater’s parametrization in C++. Specifically, in the following
applications we have used the mean value method for the parametrization of
the inner nodes of triangulation, and the boundary nodes are fixed with chord
length parametrization [6, 8].

ALBERTA is an adaptive multilevel finite element toolbox [24] developed
in C. This software can be used to solve several types of 1-D, 2-D or 3-
D problems. ALBERTA uses the Kossaczky refinement algorithm [17] and
requires an initial mesh topology [23]. The recursive refinement algorithm
could not terminate for general meshes. The meccano technique constructs
meshes that verify the imposed restrictions of ALBERTA relative to topology
and structure. In addition, the minimum quality of refined meshes is function
of the initial mesh quality.

The performance of our novel tetrahedral mesh generator is shown in the
following applications. The first corresponds to a Bust and the second to the
Stanford Bunny. We have obtained a surface triangulation of these objects
from internet. For both examples, the meccano is just a cube.

4.1 Example 1: Bust

The original surface triangulation of the Bust has been obtained from the web-
site http://shapes.aimatshape.net, i.e. AIM@SHAPE Shape Repository, and it
is shown in Figure 5(a). It has 64000 triangles and 32002 nodes. The bounding
box of the solid is defined by the points (x, y, z)min = (−120,−30.5,−44) and
(x, y, z)max = (106, 50, 46).

We consider a cube, with an edge length equal to 20, as meccano. Its
center is placed inside the solid at the point (5,−3, 4). We obtain an initial
subdivision of Bust surface in seven maximal connected subtriangulations. In
order to get a compatible decomposition of the surface triangulation, we use
the proposed iterative procedure to reduce the current seven vertices of the
graph GS to six. Figure 5(a) shows the resulting compatible partition {T i

S}5
i=0

We map each surface patch Σi
S to the cube face Σi

C by using the Floater
parametrization [6]. Once the global parametrization of the Bust surface tri-
angulation is built, see Figure 6(a), the definition of the one-to-one mapping
between the cube and Bust boundaries is straightforward.
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(a) (b)

Fig. 5. (a) Original surface triangulation of the Bust with a compatible partition
{T i

S}
5

i=0 after applying our reduction algorithm and (b) the resulting valid tetrahe-
dral mesh generated by the meccano method

Fixing a tolerance ε2 = 0.1, the meccano method generates a tetrahedral
mesh of the cube with 147352 tetrahedra and 34524 nodes; see Figures 6(b)
and 7(a). This mesh has 32254 triangles and 16129 nodes on its boundary and
it has been reached after 42 Kossaczky refinements from the initial subdivision
of the cube into six tetrahedra. The mapping of the cube external nodes to the
Bust surface produces a 3-D tangled mesh with 8947 inverted elements; see
Figure 7(b). The relocation of inner nodes by using volume parametrizations
reduces the number of inverted tetrahedra to 285. We apply the mesh opti-
mization procedure [4] and the mesh is untangled in 2 iterations. The mesh
quality is improved to a minimum value of 0.07 and an average qκ = 0.73
after 10 smoothing iterations. We note that the meccano technique generates
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(a) (b)

Fig. 6. (a) Floater’s parametrization of {T i

S}
5

i=0 on corresponding cube faces for
the bust application, (b) cube tetrahedral mesh obtained by the meccano method

(a) (b) (c)

Fig. 7. Cross sections of cube (a) and Bust tetrahedral meshes before (b) and after
(c) the application of the mesh optimization procedure
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a high quality tetrahedral mesh (see Figure 5(b)): only 1 tetrahedron has a
quality less than 0.1, 13 less than 0.2 and 405 lees than 0.3. In Figure 7, we
display two cross sections of the cube and Bust meshes before and after the
mesh optimization. The location of the cube is shown in Figure 7(b).

The CPU time for constructing the final mesh of the Bust is 93.27 seconds
on a Dell precision 690, 2 Dual Core Xeon processor and 8 Gb RAM memory.
More precisely, the CPU time of each step of the meccano algorithm is: 1.83
seconds for the subdivision of the initial surface triangulation into six patches,
3.03 seconds for the Floater parametrization, 44.50 seconds for the Kossaczky
recursive bisections, 2.31 seconds for the external node mapping and inner
node relocation, and 41.60 seconds for the mesh optimization.

4.2 Example 2: Bunny

The original surface triangulation of the Stanford Bunny has been obtained
from the website http://graphics.stanford.edu/data/3Dscanrep/ , i.e. the Stan-
ford Computer Graphics Laboratory, and it is shown in Figure 8(a). It has
12654 triangles and 7502 nodes. The bounding box of the solid is defined by
the points (x, y, z)min = (−10, 3.5,−6) and (x, y, z)max = (6, 2, 6).

(a) (b)

Fig. 8. (a) Original surface triangulation of the Stanford Bunny and (b) the resulting
valid tetrahedral mesh generated by the meccano method

We consider a unit cube as meccano. Its center is placed inside the solid
at the point (−4.5, 10.5, 0.5). We obtain an initial subdivision of the Bunny
surface in eight maximal connected subtriangulations using Voronoi diagram.
We reduce the surface partition to six patches and we construct the Floater
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(a) (b) (c)

Fig. 9. Cross sections of cube (a) and Bunny tetrahedral meshes before (b) and
after (c) the application of the mesh optimization process

parametrization from each surface patch Σi
S to the corresponding cube face

Σi
C . Fixing a tolerance ε2 = 0.0005, the meccano method generates a tetra-

hedral mesh with 54496 tetrahedra and 13015 nodes. This mesh has 11530
triangles and 6329 nodes on its boundary and has been reached after 44 Kos-
saczky refinements from the initial subdivision of the cube into six tetrahedra.
The mapping of the cube external nodes to the Bunny surface produces a 3-D
tangled mesh with 2384 inverted elements, see Figure 9(b). The relocation of
inner nodes by using volume parametrizations reduces the number of inverted
tetrahedra to 42. We apply 8 iterations of the tetrahedral mesh optimization
and only one inverted tetrahedra can not be untangled. To solve this problem,
we allow the movement of the external nodes of this inverted tetrahedron and
we apply 8 new optimization iterations. The mesh is then untangled and, fi-
nally, we apply 8 smoothing iterations fixing the boundary nodes. The mesh
quality is improved to a minimum value of 0.08 and an average qκ = 0.68. We
note that the meccano technique generates a high quality tetrahedral mesh:
only 1 tetrahedron has a quality below 0.1, 41 below 0.2 and 391 below 0.3. In
Figure 9, we display two cross sections of the cube and Bunny meshes before
and after the mesh optimization. The location of the cube can be observed in
Figure 9(b).

The CPU time for constructing the final mesh of the Bunny is 40.28 sec-
onds on a Dell precision 690, 2 Dual Core Xeon processor and 8 Gb RAM
memory. More precisely, the CPU time of each step of the meccano algorithm
is: 0.24 seconds for the subdivision of the initial surface triangulation into six
patches, 0.37 seconds for the Floater parametrization, 8.62 seconds for the
Kossaczky recursive bisections, 0.70 seconds for the external node mapping
and inner node relocation, and 30.35 seconds for the mesh optimization.
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5 Conclusions and Future Research

The meccano technique is a very efficient mesh generation method for creating
adaptive tetrahedral meshes of a solid whose boundary is a surface of genus
0. We highlight the fact that the method requires minimum user intervention
and has a low computational cost. The procedure is fully automatic and it is
only defined by a surface triangulation of the solid, a cube and a tolerance
ε that fixes the desired approximation of the solid surface. In addition, the
quality of the resulting meshes is high.

The definition of an automatic parametrization of a solid surface triangu-
lation to the meccano boundary is a significant advance for the method. To
that end, we have introduced an automatic partition of the given solid surface
triangulation for fixing an admissible mapping between the cube faces and the
solid surface patches.

In future works, the meccano technique can be extended for meshing a
complex solid whose boundary is a surface of genus greater than zero. In
this case, the meccano can be a polycube or a set of polyhedral pieces with
compatible connections.
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