SIMULTANEOUS VOLUME PARAMETRIZATION AND ADAPTIVE TETRAHEDRAL MESH GENERATION WITH THE MECCANO METHOD

R. MONTENEGRO, J.M. CASCÓN, J.M. ESCOBAR, E. RODRÍGUEZ, AND G. MONTERO

ABSTRACT. We have recently introduced the meccano technique for constructing adaptive tetrahedral meshes of solids. The method requires a surface triangulation of the solid, a meccano and a tolerance that fixes the desired approximation of the solid surface. The name of the method stems from the fact that the process starts from an outline of the solid, i.e. a meccano composed by connected polyhedral pieces. The method builds a 3-D triangulation of the solid as a deformation of an appropriate tetrahedral mesh of the meccano. The main idea of the new mesh generator is to combine an automatic parametrization of surface triangulations, a local refinement algorithm for 3-D nested triangulations and a simultaneous untangling and smoothing procedure. In this paper, we present significant advances in the method. Specifically, we describe the procedure for a solid whose boundary is a surface of genus 0; i.e. a surface that is homeomorphic to the surface of a sphere. In this case, the meccano is a single cube, and we define an automatic parametrization of six patch-mapping. A crucial consequence of our technique is the volume parametrization of a complex solid to a cube. The efficiency of the proposed technique is shown with several applications.

Keywords: Tetrahedral mesh generation, adaptive refinement, nested meshes, mesh untangling and smoothing, surface and volume parametrization.

Mathematics Subject Classifications (2000): 65M50, 65N50.

Acknowledgments: Authors are grateful for Spanish Government and FEDER support, grant contract: CGL2008-06003-C03-00, http://www.dca.iusiani.ulpgc.es/proyecto2008-2011.

References

- J. M. Escobar, E. Rodríguez, R. Montenegro, G. Montero, and J. M. González-Yuste. Simultaneous untangling and smoothing of tetrahedral meshes. *Comp. Meth. Appl. Mech. Eng.*, 192:2775–2787, 2003.
- [2] J. M. Escobar, G. Montero, R. Montenegro, and E. Rodríguez. An algebraic method for smoothing surface triangulations on a local parametric space. Int. J. Num. Meth. Eng., 66:740–760, 2006.
- [3] R. Montenegro, J. M. Cascón, J. M. Escobar, E. Rodríguez, and G. Montero. An automatic strategy for adaptive tetrahedral mesh generation. Appl. Num. Math., 59:2203–2217, 2009.
- [4] J. M. Cascón, R. Montenegro, J. M. Escobar, E. Rodríguez, and G. Montero. The meccano method for automatic tetrahedral mesh generation of complex genus-zero solids. *Proceedings of the 18th International Meshing Roundtable*, 463–480, Springer-Verlag, 2009.

R. MONTENEGRO, UNIVERSITY INSTITUTE SIANI, UNIVERSITY OF LAS PALMAS DE GRAN CANARIA, SPAIN *E-mail address*: rafa@dma.ulpgc.es

J.M. CASCÓN, DEPARTMENT OF ECONOMICS AND ECONOMIC HISTORY, FACULTY OF ECONOMICS AND MAN-AGEMENT, UNIVERSITY OF SALAMANCA, SPAIN

E-mail address: casbar@usal.es

J.M. ESCOBAR, UNIVERSITY INSTITUTE SIANI, UNIVERSITY OF LAS PALMAS DE GRAN CANARIA, SPAIN *E-mail address*: jescobar@dsc.ulpgc.es

E. RODRÍGUEZ, UNIVERSITY INSTITUTE SIANI, UNIVERSITY OF LAS PALMAS DE GRAN CANARIA, SPAIN *E-mail address*: barrera@dma.ulpgc.es

G. MONTERO, UNIVERSITY INSTITUTE SIANI, UNIVERSITY OF LAS PALMAS DE GRAN CANARIA, SPAIN *E-mail address:* gustavo@dma.ulpgc.es