
Abstract

An over view of advanced techniques for solving large sparse linear systems of equa-
tions is presented. First, several reordering algorithms are introduced in order to im-
prove the effect of preconditioning on a linear system. Next, we define the concept
of preconditioning and formulate some of most popular preconditioners, especially
those based in approximate inverse. On the other hand, some Krylov subspace meth-
ods for solving linear systems of equations are considered. For symmetric problems,
the Conjugate Gradient method is proposed. However, for non-symmetric linear sys-
tems there exist several alternatives that may be classified into three family of meth-
ods: orthogonalisation, biorthogonalisation and normal equation methods. Nowadays,
RPK strategy which combines those three techniques, reordering, preconditioning and
Krylov subspace methods, seems to be the most efficient from the computational point
of view. This is finally illustrated with some numerical experiments.

Keywords: Linear systems of equations, iterative methods, reordering, precondition-
ing, Krylov subspace methods.

1 Introduction

We are interested in the resolution of a linear system of equation,

Ax = b (1)

where A is a sparse, large and non-singular matrix. The first question is if it is better
a direct or an iterative resolution. The main disadvantage of direct methods compared
with iterative ones is that the rounding errors are accumulated along the process of
direct solving. Besides they require more memory requirements due to the fill-in
effect. On the other hand, in non steady problems where there must be solved many
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similar systems of equations, iterative solvers may use the solution obtained in the
previous time step as initial guess. So, nowadays it is preferred to use iterative methods
in front of direct ones for solving large scale sparse linear systems of equations.

The reordering techniques based on graph theory, that were initially applied in the
resolution by using direct methods, provide matrices with smaller band width or a
sparsity pattern with a lower number of nonzero inner entries. However, this reduc-
tion may be used in order to improve the effect of incomplete factorisation precondi-
tioners on the rate of convergence of iterative methods. The effect several reordering
techniques on different Krylov subspace methods may be seen in [1, 2, 3, 4, 5, 6, 7, 8].

Preconditioning techniques improve the convergence of iterative methods. Here,
we study some standard preconditioners, in particular, Jacobi, SSOR, ILU and sparse
approximate inverse. Other type of preconditioners may be found, e.g., in [9, 10, 11].

In addition, we study the three groups of Krylov subspace methods (see [12, 13]):
orthogonalisation, biorthogonalisation and normal equation methods. For the case of
symmetric linear systems of equations, the use of Conjugate Gradient method [14] is
generally accepted as the best choice. It is based on the Lanczos orthogonalisation
method which is a simplification of Arnoldi algorithm for symmetric linear systems

Among orthogonalisation methods for nonsymmetric linear systems that apply the
Arnoldi algorithm [15], we study the Generalised Minimal Residual method (GM-
RES) [16]. Several versions of the latter may found in [17, 18, 19, 20, 21].

On the other hand, we study the Biconjugate Gradient Stabilised method (Bi-
CGSTAB) [22] and its quasi-minimal residual version, the QMRCGSTAB algorithm
[23].

Finally, we show some results from using the Least-square QR method (LSQR)
[24] based on the normal equation.

2 Reordering

Reordering techniques were basically applied in the resolution of linear systems of
equations by direct solvers. They are based on graph theory and produce matrices
with a lower bandwidth, what reduces the fill-in effect due to factorisation. In ad-
dition, they do not affect the storage requirements of a matrix since the number of
nonzero entries stands although they occupy different locations. Here, the object of
applying these techniques before the above algorithms is to obtain incomplete fac-
torisations closer to complete ones in order to improve the preconditioning. Another
advantage of reordering is related to the use of sparse approximate inverse precondi-
tioners (SPAI), of which it may reduce the amount of entries and improve their effect
on the convergence of Krylov solvers [4]. In particular, the Minimum Degree algo-
rithm (MDG, George and Liu [25]), Reverse Cuthill-Mckee algorithm (RCM, [26])
proposed by George in order to improve that proposed by Cuthill-Mckee [27], and the
Minimum Neighboring algorithm (a variant of MDG, see, e.g., [3]) have been used in
the numerical experiments of this paper.
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2.1 Minimum Degree algorithm

This algorithm is used for matrices with symmetric sparsity pattern. It consists of
developing a node numbering in an increasing order of their respective degrees (node
connections in the graph). Nodes with higher degrees will produce a higher fill-in.
Thus, the idea is to reorder them to the end in order to reduce the fill-in during the
procedure.

MDG ALGORITHM

1 - Construct the graph related to matrix A, g(x) = 〈V,E〉, where V is

the set of nodes and E = {{a, b} : a 6= b / a, b ∈ V }
2 - While V 6= ∅

2.1- Choose a node v of minimum degree in g(x) = 〈V,E〉
and reorder it as next node.

2.2 - Define

Vv = V − {v} ,
Ev = {{a, b} ∈ E / a, b ∈ Vv} ∪ {{a, b} a 6= b / a, b ∈ Adjg(v)}
being, Adjg(v) the set of nodes connected to v in the graph g(x)

and do

V = Vv, E = Ev y g(x) = 〈V,E〉
3 - End

2.2 Reverse Cuthill-Mckee algorithm

Cuthill-Mckee algorithm provides a simple way for reordering a sparse matrix in order
to reduce the fill-in effect by transforming it in a band matrix. However, the reverse
ordering of Cuthill-Mckee often results better that the former since it reduce the profile
of the matrix for the same bandwidth.

RCM ALGORITHM

1 - Construct the graph related to matrix A, g(x) = 〈V,E〉, being V the

set of nodes and E = {{a, b} : a 6= b / a, b ∈ V }
2 - Choose a node v of minimum degree in g(x) = 〈V,E〉

and reorder it as next node

2.1 - Define

V = V − {v} ,
3 - While V 6= ∅

3.1 - Reorder all the nodes in Adjg(v) by increasing degree,

being, Adjg(v) the set of nodes connected to v in the graph g(x)
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3.2 - Define

Vv = V − {a} , ∀a ∈ Adjg(v)

and do

V = Vv, and g(x) = 〈V,E〉
3.3 - Set v as the next node of the reordered set of nodes

4 - Perform the reverse ordering

5 - End

2.3 Minimum Neighboring algorithm

This algorithm [25] is a variant of the Minimum Degree that works by eliminating
the selected nodes from the graph, such that there is not defined nor inserted any new
connection in the graph. The nodes with the lowest number of neighbours are selected
consecutively. This algorithm is specially useful when we construct an incomplete
factorisation with the same sparsity pattern as the matrix of the system, e.g., ILU(0)
and SSOR preconditioners.

MN ALGORITHM

1 - Construct the graph related to matrix A, g(x) = 〈V,E〉, where V is

the set of nodes and E = {{a, b} : a 6= b / a, b ∈ V }
2 - While V 6= ∅

2.1- Choose a node v of minimum degree in g(x) = 〈V,E〉
and reorder it as next node

2.2 - Define

Vv = V − {v} , Ev = {{a, b} ∈ E / a, b ∈ Vv}
and do

V = Vv, E = Ev and g(x) = 〈V,E〉
3 - End

2.4 George’s algorithm

The selection of the initial node in the above algorithms may be carried out by apply-
ing the George’s algorithm [25] for searching a pseudo-peripheral node.

If we define the distance d(x, y) between two nodes x and y in a graph g(x) =
〈V,E〉, as the length of the shortest trajectory which joins both nodes, and the eccen-
tricity of a node x as ε(x) = Max {d(x, y)/x, y ∈ V }, the algorithm may be written
as follows,
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GEORGE’S ALGORITHM FOR SEARCHING PSEUDO-PERIPHERAL NODES

1- Choose any node r of V

2 . Generate a structure with levels rooted in r,
{
L0(r), L1(r), . . . , Lε(r)(r)

}
.

being Li(r) = {x/d(x, r) = i}
3 - Choose a node x of minimum degree in Lε(r)(r)

4 . Generate a structure with levels rooted in x,
{
L0(x), L1(x), . . . , Lε(x)(x)

}

5 - If ε(x) > ε(r), set x → r and return to step 3

6 - Else set x as initial node

7 - End

3 Preconditioning

The rate of convergence of Krylov subspace methods may be increased with the use of
preconditioning techniques. They consist of replacing the original system of equations
Ax = b by another with identical solution, in such a way that the condition number of
the matrix of the new system is lower that that of A.

The preconditioning may be carried out in three different ways,

M−1Ax = M−1b (Left preconditioning)
AM−1Mx = b (Right preconditioning)
M−1

1 AM−1
2 M2x = M−1

1 b (Both side preconditioning)
(2)

if M is factorised as M = M 1M2.

A great number of preconditioners have been developed and widely used in sev-
eral application fields, of which Jacobi, SSOR, ILU, SPAI and Optimal Diagonal are
considered here.

3.1 Jacobi preconditioner

It can be derived from the comparison of Richardson iteration in the preconditioned
system with Jacobi iteration in the unpreconditioned system. The application of Richard-
son iteration to the preconditioned system M−1Ax = M−1b yields

Mxi+1 = Mxi + α (b− Axi) (3)

On the other hand, the Jacobi iteration may be written as,

Dxi+1 = Dxi + (b− Axi) (4)
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Thus, comparing equations (3) and (4), we notice that Jacobi iteration applied to
the unpreconditioned system is equivalent to Richardson iteration, with α = 1, applied
to the preconditioned system using the diagonal of matrix A as preconditioner (M =
diag(A)).

3.2 SSOR preconditioner

Similarly, if we apply the SSOR(ω) iteration to the unpreconditioned system, we have

1
ω(2−ω)

(D−ωE)D−1 (D−ωF )xi+1

= 1
ω(2−ω)

(D−ωE)D−1 (D−ωF )xi + (b− Axi) (5)

resulting as preconditioner matrix,

M =
(
I−ωED−1

)( D−ωF
ω(2 − ω)

)
(6)

When A is symmetric, it may be expressed as,

M =

[
(D−ωE)D−1/2

√
ω (2 − ω)

][
(D−ωE)D−1/2

√
ω (2 − ω)

]T

(7)

3.3 ILU(0) preconditioner

It results from an incomplete LU factorisation of A, keeping the same zero entries in
triangular matrices L and U ,

A = LU ≈ ILU(0) = M (8)

where mij are the entries of M such that,

mij = 0 if aij = 0 (9)

{A− LU}ij = 0 if aij 6= 0 (10)

If A is symmetric, the incomplete factorisation of Cholesky ILLt(0) may obtained
instead.

3.4 Sparse approximate inverse

Nowadays, the use of the sparse approximate inverse preconditioner has become a
good alternative to implicit preconditioners due to the possibilities of parallelisation
of the former. For more details see [28, 29] and also a complete study comparing both
type of preconditioners in [30]. Here, we will construct an approximate inverse using
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the Frobenius inner product. Although we have used right preconditioning, the results
with left preconditioning are straightforward.

Let S ⊂Mn be the subspace of matrices M where we search an explicit approx-
imate inverse with an unknown sparsity pattern. The problem consists of finding
M0 ∈ S such that

M0 = arg min
M∈S

‖AM − I‖F (11)

In addition, this initial matrix may be an approximate inverse of A strictly, i.e.,

‖AM0 − I‖F = ε < 1 (12)

There are two reasons for this requirement. On the one hand, equation (12) allows
to ensure that M0 in non singular (Banach’s lemma). On the other hand, equation (12)
is the basis for constructing an explicit algorithm which allows to improve M0 and
solve (1).

In [29] Grote et al propose an efficient algorithm to obtain an approximate inverse
as close to the inverse of a non singular matrix A as required. We have followed such
technique but changing the selection method of entries in M0 and the algorithm for
solving problem (11). The construction of M0 is carried out in parallel, computing
each column independently. Although our algorithm allows to start from any entry
of column k, it is commonly accepted the use of the diagonal as first approximation.
In addition, the expression of the optimal diagonal preconditioner is well known. So,
the next entry to be considered is selected in the set of candidates which is defined
following the strategy proposed in [29].

Let rk be the residual corresponding to column k − th,

rk = Amk − ek (13)

and let Ik be the set of indices of non zero entries in rk, i.e., Ik = {i ∈ {1, 2, ..., n}
/ rik 6= 0}. Si Lk = {l ∈ {1, 2, ..., n} /mlk 6= 0}, then the new entry is searched in
the set Jk = {j ∈ Lc

k / aij 6= 0, ∀i ∈ Ik}. Really, the only entries that are considered
inmk are those which involves the non zero entries of rk. In the following, we assume
that Lk∪{j} =

{
ik1, i

k
2, ..., i

k
pk

}
is not empty, being pk the updated number of non zero

entries of mk, and ikpk
= j, for all j ∈ Jk. For each j, we compute,

||Amk − ek||22 = 1 −
pk∑

l=1

[
det
(
Dk

l

)]2

det
(
Gk

l−1

)
det
(
Gk

l

) (14)

where, for all k, det
(
Gk

0

)
= 1 and Gk

l is the Gram matrix of columns ik1, i
k
2, ..., i

k
l

of matrix A related to Euclidean inner product, Dk
l is the matrix which results from

replacing the last row of matrix Gk
l by ak ik

1

, ak ik
2

, ..., ak ik
l

, with 1 ≤ l ≤ pk. Then,
the index jk that minimises ‖Amk − ek‖2 is selected. This strategy (see [31]) defines
the new selected index jk only attending to the set Lk, what leads us to new optimum
where all the entries corresponding to the indices of Lk are updated. This improve the
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criterion of [29] where the new index is selected and updated but the rest of entries are
not updated.

Thus mk is searched in the set Sk = {mk ∈ R
n/mik = 0; ∀i /∈ Lk ∪ {jk}},

mk =

pk∑

l=1

det
(
Dk

l

)

det
(
Gk

l−1

)
det
(
Gk

l

)m̃l (15)

where m̃l is the vector with non zero entries ikh (1 ≤ h ≤ l). Each of them are obtained
computing the corresponding determinant which results from replacing the last row of
det
(
Gk

l

)
by et

h, with 1 ≤ l ≤ pk.

Evidently, the computation of ||Amk − ek||22 and mk may be updated by adding
the contribution of the current entry j ∈ Jk to the previous sum from 1 to pk −
1. In practice, det

(
Gk

l

)
is compute using the Cholesky factorisation since Gk

l is
a symmetric positive definite matrix. Thus, only the factorisation of the last row
and column is involved if we take advantage of Gk

l−1 factorisation. On the other
hand, det

(
Dk

l

)
/ det

(
Gk

l

)
is the value of the last unknown of the system Gk

l dl =(
ak ik

1

, ak ik
2

, ..., ak ik
l

)t

and, thus, only a backward substitution is required. Finally, to

obtain m̃l we must solve the system Gk
l vl = el, with m̃ik

h
l = vhl, (1 ≤ h ≤ l).

3.5 Optimal diagonal preconditioner

In the particular case of S being the subspace of diagonal matrices of order n, the
optimal diagonal left preconditioner is,

M = diag

(
a11

‖eT
1A‖

2
2

,
a22

‖eT
2A‖

2
2

, . . . ,
ann

‖eT
nA‖2

2

)
(16)

‖MA− I‖2
F = n−

n∑

i=1

aii

‖eT
i A‖

2
2

(17)

The right preconditioner may be obtained similarly.

4 Krylov subspace methods

4.1 Conjugate Gradient method (CG)

The Conjugate Gradient method is based on an orthogonal projection technique over
the Krylov subspace Kk (A; r0), where r0 is the initial residual vector. It is derived
from D-Lanczos algorithm as follows. An approximation xj+1 may be written as,

xj+1 = xj + αjpj (18)
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Then, the residual vectors must satisfy,

rj+1 = rj − αjApj (19)

and they are orthogonal, 〈
rj − αjApj, rj

〉
= 0

Thus,

αj =
〈rj, rj〉〈
Apj, rj

〉 (20)

As the following directions pj+1 are linear combinations of rj+1 and pj , after a suitable
scaling of vectors p, we obtain

pj+1 = rj+1 + βjpj (21)

and then, 〈
Apj, rj

〉
=
〈
Apj, pj − βj−1pj−1

〉
=
〈
Apj, pj

〉

since Apj is orthogonal to pj−1. Thus, taking into account (20) and (21) we have,

βj = −
〈
rj+1, Apj

〉
〈
pj, Apj

〉

From (19), it yields,

Apj = − 1

αj
(rj+1 − rj) (22)

and, finally,

βj = − 1

αj

〈rj+1, (rj+1 − rj)〉〈
Apj, pj

〉 =
〈rj+1, rj+1〉
〈rj, rj〉

PRECONDITIONED CONJUGATE GRADIENT ALGORITHM (PCG)

Initial guess x0. r0 = b− Ax0;

Solve Mz0 = r0, p0 = z0;

While ‖ rj ‖ / ‖ r0 ‖≥ ε (j = 0, 1, 2, 3, ...), do

αj =
〈rj, zj〉〈
Apj, pj

〉 ;

xj+1 = xj + αjpj;

rj+1 = rj − αjApj;

Solve Mzj+1= rj+1;

βj =
〈rj+1, zj+1〉
〈rj, zj〉

;

pj+1 = zj+1 + βjpj;

End
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4.2 Generalised Minimal Residual method (GMRES)

The GMRES algorithm [16] is a method of projection over K = Kk with L = AKk,
where Kk is a Krylov subspace of dimension k. It minimises the residual norm. So,
the development of the algorithm consists of finding a vector x of x0 + Kk such that,

x = x0 + Vky

imposing the minimal condition for,

J(y) = ‖b− Ax‖ (23)

As,
b− Ax = b− A (x0 + Vky) = r0−AV ky

taking into account the Arnoldi algorithm [15],

AV k = Vk+1Hk (24)

and denoting v1 = r0/ ‖ r0 ‖, being β =‖ r0 ‖, then,

b− Ax = βv1 − Vk+1Hky

But v1 = Vk+1e1, with e1 ∈ <k+1. Thus,

b− Ax = Vk+1

(
βe1 −Hky

)
(25)

and equation (23) becomes,

J(y) =
∥∥Vk+1

(
βe1 −Hky

)∥∥

As columns of matrix Vk+1 are orthonormal due to their construction, we can sim-
plify the above equation,

J(y) =
∥∥(βe1 −Hky

)∥∥ (26)

The GMRES algorithm searches the unique vector of x0 +Kk which minimises the
function J(y).

GMRES ALGORITHM

Initial guess x0. r0 = b− Ax0;

Define the (k + 1) × k matrix Hk = {H}1≤i≤k+1,1≤j≤k. Do Hk = 0.

From j = 1, ..., k do

wj = Avj

From i = 1, ..., j do

{H}ij = 〈wj, vi〉;
wj = wj − {H}ij vi;
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End

{H}j+1,j =‖ wj ‖; If {H}j+1,j = 0 do k = j and stop

vj+1 =
1

{H}j+1,j

wj;

End

Obtain yk which minimises
∥∥(βe1 −Hky

)∥∥;

xk = x0 + Vkyk being Vk = [v1, v2, ..., vk];

rk = b− Axk

End

The GMRES algorithm may be unpracticable when k is very high due to the exces-
sive computational cost. For this reason, restarted techniques are use with GMRES.

A variant of GMRES consists of using a direct solver for the least square problem
that arises in each iteration [32], instead of the QR factorisation [16] or the House-
holder transformation [33]. Consider the orthogonal projection over the subspace of
solutions, i.e., the product by matrix H t

k,

H t
k Hk u = Ht

k βi−1e1 (27)

The structure of Hk suggests the decomposition of the product H t
k Hk in a sum. In-

deed, Hk is a (k + 1) × k matrix with the following structure,

Hk =




dt
k

Uk

0




The first row is defined by a vector of dimension k (dt
k) and the rest form a square and

upper triangular matrix Uk,

{dk}i = di = {H}1i i = 1, ..., k (28)

{Uk}ij = uij =

{
{H}i+1 j 1 ≤ i ≤ j ≤ k

0 in the rest
(29)

Theorem. Let dk and Uk be defined by equations (28) and (29), and p̄k, pk the
solutions to triangular systems U t

kp̄k = dk and Ukpk = p̄k, respectively. If we define,

λi =
βi−1

1 + 〈dk, pk〉
; uk = λi pk

then uk minimises the quadratic function J(u) = ‖βi−1e1 −Hk u‖2 over Rk.

Proof. First observe that 1 + 〈dk, pk〉 6= 0, since

〈dk, pk〉 =
〈
U t

kUkpk, pk

〉
= ‖Ukpk‖2

2 ≥ 0
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and thus λi may not degenerate.

Consider now the linear system given by (27). The (i, j) entry of H t
k Hk is,

{
H t

k Hk

}
ij

= didj +
k∑

m=1

umiumj (30)

So we can write, (
dkd

t
k + U t

kUk

)
u = H t

k βi−1e1 (31)

Taking into account that H t
ke1 = dk, we obtain,

(
dkd

t
k + U t

kUk

)
u =βi−1dk (32)

which can be expressed as

U t
kUku = dk (βi−1 − 〈dk, u〉) (33)

If we define,
λi = βi−1 − 〈dk, u〉 (34)

u = λipk (35)

then it yields,
U t

kUkpk= dk (36)

This means to solve only two triangular systems since U t
k and Uk are lower and

upper triangular matrices, respectively. Once the systems are solved, we can compute
λi in order to obtain u in equation (35). Substituting equation (35) in (34), it yields,

λi = βi−1 − 〈dk, u〉 = βi−1 − λi 〈dk, pk〉

and then, it proved that

λi =
βi−1

1 + 〈dk, pk〉
(37)

The computation of the new residual is based in the following result,

ri = Vk+1 (βi−1e1 −Hk u) (38)

where we know that Vk+1 = [v1, v2, ..., vk+1] and it is unitary. Thus,

ri = Vk+1r̂i (39)

being r̂i the (k + 1) vector,
r̂i = βi−1e1 −Hk u (40)

In addition, it is evident that,
‖ri‖2 = ‖r̂i‖2 (41)
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From the decomposition of Hk, we can see that the first entry of the (k + 1) vector
(Hk u) is the inner product 〈dk, u〉, and the rest are given by the k vector (Uku). Then,
the first entry of r̂i is λi, and the rest,

−Uku = −λiUkpk = −λip̄k (42)

being useful to keep the vector p̄k after solving (36).

The Variable GMRES algorithm is a variant of GMRES. In short, the main idea is
to use full GMRES in the first steps until a sub-accuracy δ, that may be a function of
the required accuracy ε, is satisfied. So, the dimension k of the Krylov subspace is
increased in each step while the residual norm is greater or equal to δ and k is lower
than the maximal allowed dimension of the Krylov subspace ktop (e.g., due to memory
requirements). From this step and with the current dimension k, the algorithm starts
to work like a standard restarted GMRES until reaching the given accuracy ε [34].

PRECONDITIONED VGMRES ALGORITHM

Initial guess x0. r0 = b− Ax0;

Choose kinit, ktop, δ ∈ [0, 1], k = kinit

While ‖ r̂i−1 ‖ / ‖ r0 ‖≥ ε (i = 1, 2, 3, ...),

βi−1 = ‖ ri−1 ‖, vi = ri−1/βi−1;

If ‖ ri−1 ‖ / ‖ r0 ‖≥ δ y k < ktop do k = k + 1;

From j = 1, ..., k do

Solve Mzj = vj;

w = Azj;

From n = 1, ..., j do

{H}nj = wtvn;

w = w − {H}nj vn;

End

{H}j+1,j =‖ w ‖;

vj+1 = w/ {H}j+1,j:

End

Solve U t
kp̄ = dk and Ukp = p̄; with

{dk}m = {H}1m

{Uk}lm = {H}l+1,m

l, m = 1, ..., k;

λi =
βi−1

1 + dt
k p

;

uk = λi p;

xi = xi−1 + Zkuk; being Zk = [z1, z2, ..., zk];

ri = Zk+1r̂i; with
{r̂i}1 = λi

{r̂i}l+1 = −λi {p̄}l

l = 1, ..., k;

End
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This algorithm allows to use different preconditioners in each iteration in the same
way as FGMRES does.

4.3 Biconjugate Gradient Stabilised method (Bi-CGSTAB)

In CGS algorithm [35], residual vectors verify r̂j = φ2
j(A)r0. Van der Vorst in Bi-

CGSTAB [22], proposes to obtain a residual vector by applying successively two dif-
ferent polynomial as follows,

r
′

j = ψj(A)φj(A)r0 (43)

such that the recurrence relations of the algorithm where the polynomial ψj(A) is
involved must not be too complicated in order to optimise the residual in function of
the parameters that appear in its definition. For this purpose, the next expression is
suggested for ψj(A),

ψj+1(A) = (I − wjA)ψj(A) (44)

obtainingwj minimising rj in the j−th iteration. The recurrence relations are derived
in the same way as in CGS algorithm. Thus,

ψj+1(A)φj+1(A) = (I − wjA)ψj(A)φj+1(A)

= (I − wjA) [ψj(A)φj(A)−αjAψj(A)πj(A)] (45)

For the conjugate direction, we have

ψj(A)πj(A) = ψj(A) [φj(A)+βj−1πj−1(A)]

= ψj(A)φj(A)+βj−1(I − wj−1A)ψj−1(A)πj−1(A)

and we define,
rj = ψj(A)φj(A)r0,

pj = ψj(A)πj(A)r0

Taking into account the above expressions, we can find the corresponding equations
in function of parameters αj y βj ,

rj+1 = (I − wjA)
(
rj−αjApj

)
(46)

pj+1 = rj+1 + βj(I − wjA)pj (47)

To get the algorithm, we take as reference the BiCG method and carry out the neces-
sary transformations to obtain the recurrence relations in function of the new residual
vector.

In BiCG algorithm we have βj = ρj+1/ρj with,

ρj =
〈
φj(A)r0, φj(A

T )r∗0
〉

=
〈
φ2

j(A)r0, r
∗
0

〉
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As ρj is not computed since any vector φj(A)r0, φj(A
T )r∗0 or φ2

j(A)r0 is available, we
can relate it with the parameter,

ρ̃j =
〈
φj(A)r0, ψj(A

T )r∗0
〉

which may be obtained as,

ρ̃j = 〈ψj(A)φj(A)r0, r
∗
0〉 = 〈rj, r

∗
0〉

Developing φj(A
T )r∗0 explicitly to relate ρj and ρ̃j , taking into account the orthogo-

nality of φj(A)r0 with respect to all the vectors (AT )ir∗0, with i < j, and since only
the main coefficients of the polynomials are important in the above product,

ρ̃j =
〈
φj(A)r0, η

j
1(A

T )jr∗0 + ηj
2(A

T )j−1r∗0 + ...
〉

If γj
1 is the main coefficient of the polynomial φj(A), then,

ρ̃j =

〈
φj(A)r0,

ηj
1

γj
1

φj(A
T )r∗0

〉
=
ηj

1

γj
1

ρj

From the recurrence relations of φj+1(A) and ψj+1(A), the main coefficients of these
polynomials are obtained to satisfy,

ηj+1
1 = −wjη

j
1, γj+1

1 = −αjγ
j
1

Thus,
ρ̃j+1

ρ̃j
=
wj

αj

ρj+1

ρj

This allows us to find the next expression of βj ,

βj =
ρ̃j+1

ρ̃j

αj

wj

Similarly, we can define αj as,

αj =

〈
φj(A)r0, φj(A

T )r∗0
〉

〈Aπj(A)r0, πj(AT )r∗0〉

Considering only the main coefficients in the products of polynomials again, since
these are identical for φj(A

T )r∗0 and πj(A
T )r∗0, we obtain,

αj =

〈
φj(A)r0, φj(A

T )r∗0
〉

〈Aπj(A)r0, φj(AT )r∗0〉
=

〈
φj(A)r0, ψj(A

T )r∗0
〉

〈Aπj(A)r0, ψj(AT )r∗0〉
=

〈ψj(A)φj(A)r0, r
∗
0〉

〈Aψj(A)πj(A)r0, r
∗
0〉

In addition, pj = ψj(A)πj(A)r0, thus,

αj =
ρ̃j〈

Apj, r
∗
0

〉 (48)

15



From equation (46), if we consider,

sj = rj − αjApj (49)

the optimal value of wj in the polynomial ψj(A) is obtained by minimising the norm
of the residual vector,

rj+1 = sj − wjAsj

‖rj+1‖2 = 〈sj − wjAsj, sj − wjAsj〉 = 〈sj, sj〉 − 2wj 〈sj, Asj〉 + w2
j 〈Asj, Asj〉

∂ ‖rj+1‖2

∂wj
= −2 〈sj, Asj〉 + 2wj 〈Asj, Asj〉 = 0

and it yields,

wj =

〈
Asj, sj

〉
〈
Asj, Asj

〉 (50)

Equation (46) becomes now,

rj+1 = sj − wjAsj = rj − αjApj − wjAsj (51)

and the recurrence relation for the unknown vector is given by,

xj+1 = xj + αjpj + wjsj (52)

Once all the vector are expressed in function of the new residual vector and ob-
tained their recurrence relations as well as the parameters involved, we can write an
algorithm which contains two matrix-vector and four inner products. So Bi-CGSTAB
carries out two inner products more than CGS. However, in general the convergence
of the former is faster and smoother than the latter, what makes Bi-CGSTAB to be
preferable to CGS.

For each preconditioning form [12], the expression of ω̃ is,

ω̃ =
(As)T s

(As)T As
right preconditioning

ω̃ =
(M−1As)T (M−1s)

(M−1As)T (M−1As)
left preconditioning

ω̃ =
(L−1As)T (L−1s)

(L−1As)T (L−1As)
both sides preconditioning





(53)

However, if ω̃ is obtained from the minimisation of the residual vector related to the
unpreconditioned system, all the expressions in (53) coincide with that of right pre-
conditioning, and thus, a unique algorithm is obtained (see Bi-CGSTABP in [22]).

PRECONDITIONED BICGSTAB ALGORITHM

Initial guess x0. r0 = b− Ax0;
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Choose any r∗0 such that 〈r0, r∗0〉 6= 0;

Solve Mz0= r0;

p0 = z0;

While ‖ rj−1 ‖ / ‖ r0 ‖≥ ε (j = 1, 2, 3, ...), do

Solve Mzj= rj;

yj = Apj;

Solve Mvj= yj;

αj =
〈zj, r

∗
0〉

〈vj, r∗0〉
;

sj = rj − αjyj;

uj = Asj;

Solve Mtj = uj;

ω̃j =

〈
tj, sj

〉
〈
tj, tj

〉 ;

xj+1 = xj + αjpj + ω̃juj;

zj+1 = sj − ω̃jtj;

βj =
〈zj+1, r

∗
0〉

〈zj, r
∗
0〉

αj

ω̃j

;

pj+1 = zj+1 + βj (pj − ω̃jvj);

End

As a consequence, we can remark that any other selection of the initial residual
vector will lead to a new preconditioning form (see [36]).

4.4 Quasi-Minimal Residual Stabilised method (QMRCGSTAB)

Proposed by Chan et al [23], it is based in the application of the minimisation principle
used for Bi-CGSTAB algorithm to QMR method. Consider,

Yk = [y1, y2, . . . yk] ,

Wk+1 = [w0, w1, . . . wk]

such that, {
y2l−1 = pl for l = 1, . . . , [(k + 1)/2]

y2l = sl for l = 1, . . . , [k/2]

and, {
w2l−1 = sl para l = 1, . . . , [(k + 1)/2]
w2l = rl para l = 0, 1, . . . , [k/2]

17



where [k/2] and [(k + 1)/2] mean the integer part of k/2 and (k + 1)/2, respectively.
Defining,

[δ1, δ2, . . . δk] /

{
δ2l = ωl para l = 1, . . . , [(k + 1)/2]
δ2l−1 = αl para l = 1, . . . , [(k + 1)/2]

then, for each column of Wk+1 and Yk, equations (49) and (51) yield,

Aym = (wm−1 − wm) δ−1
m , m = 1, . . . , k (54)

i.e., in matrix notation,
AY k= W k+1Ek+1

where Ek+1 is a (k + 1) × k bi-diagonal matrix of which diagonal entries are δ−1
m

and lower diagonal entries −δ−1
m . This may be easily derived until the degrees of the

polynomials corresponding to vectors rj , sj and pj become 2j, 2j − 1 and 2j − 2,
respectively. Then, Yk and Wk generate the same Krylov subspace as r0 but with
degree k − 1.

The main idea in QMRCGSTAB is to find an approximation to the solution of the
linear system (1) by using the Krylov subspace Kk−1 as follows,

xk = x0 + Ykg con g ∈ <n

So, the equation for the residual vector results,

rk = r0 − AY kg = r0 −Wk+1Ek+1g

Taking into account that the first column of Wk+1 is just r0, then,

rk = Wk+1 (e1 − Ek+1g)

Since the columns of Wk+1 are not normalised, we shall use a scaling matrix Σk+1 =
diag (σ1, . . . , σk+1) con σj = ‖wj‖ to make unitary the columns of Wk+1. Thus,

rk = Wk+1Σ
−1
k+1Σk+1 (e1 − Ek+1g) = Wk+1Σ

−1
k+1 (σ1e1 −Hk+1g)

with Hk+1 = Σk+1Ek+1.

QMR approximation consists in the minimisation of ‖σ1e1 −Hk+1g‖ in order to
obtain the optimum gk ∈ <k, where the least square problem is solved by using the
QR decomposition of matrix Hk+1, step by step applying Givens rotations. As Hk+1

is lower bi-diagonal, the rotation is only needed in each previous step.

PRECONDITIONED QMRCGSTAB ALGORITHM

Initial guess x0. r0 = b− Ax0;

Solve Mz0 = r0;

Choose r̃0 such that 〈z0, r̃0〉 6= 0

18



p0 = v0 = d0 = 0;

ρ0 = α0 = ω̃0 = 1, τ0 = ‖z0‖, θ0 = 0, η0 = 0;

While
√
j + 1 |τ̃ | / ‖r0‖ ≥ ε(j = 1, 2, ...), do

ρj = 〈zj−1,r̃0〉, βj = (ρj/ρj−1)(αj−1/ω̃j−1);

pj = zj−1 + βj(pj−1 − ω̃j−1vj−1);

yj = Apj;

Solve Mvj = yj;

αj = ρj/ 〈vj, r̃0〉;
sj = zj−1 − αjvj;

θ̃j = ‖sj‖ /τ , c =
1√

1 + θ̃2
j

; τ̃ = τ θ̃jc;

η̃j = c2jαj;

d̃j = pj +
θ2

j−1ηj−1

αj

dj−1;

x̃j = xj−1 + η̃j d̃j;

uj = Asj;

Solve Mtj = uj;

ω̃j =
〈sj, tj〉
〈tj, tj〉

;

zj = sj − ω̃jtj;

θj = ‖zj‖ /τ̃ , c =
1√

1 + θ2
j

; τ = τ̃ θjc;

ηj = c2ω̃j;

dj = sj +
θ̃2

j η̃j

ω̃j
d̃j;

xj = x̃j + ηjdj;

End

4.5 Least-Square QR method (LSQR)

The resolution of (1), with nonsymmetric matrix A, is equivalent to solve the nor-
mal equation ATAx = AT b, where ATA is symmetric positive definite. As in GC
algorithm, the so-called Normal Equation methods verify the conditions of residual
minimisation and computational cost optimisation. However, they have the disadvan-
tage that the condition number of the system is squared (K2

(
ATA

)
=K2 (A)2). This

may be a serious problem for ill-conditioned systems. In addition most these meth-
ods involve two matrix-vector products related to matrices A and AT , increasing the
computational cost.
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The LSQR method, proposed by Paige and Saunders [24], was formulated in order
to correct the increasing of the system condition number when the normal equation
is applied. The main objective of LSQR algorithm is to obtain the solution of the
symmetric system, (

I A
AT −λ2I

)(
r
x

)
=

(
b
0

)
(55)

minimising, ∥∥∥∥
(
A
λI

)
x−
(
b
0

)∥∥∥∥
2

(56)

where λ is an arbitrary real number. The application of the Lanczos process to this
system yields two ways for bidiagonalisation proposed by Golub and Kahan [37]. The
preconditioned LSQR algorithm is presented below.

PRECONDITIONED LSQR ALGORITHM

Initial guess x0. r0 = b− Ax0;

Solve Mz0 = r0;

β1 = ‖z0‖, u1 = z0/β1;

Solve MT s1 = u1;

α1 =
∥∥AT s1

∥∥, v1 = AT s1/α1, w1 = v1;

φ1 = β1, ρ1 = α1;

While φj/ ‖ r0 ‖≥ ε ( j = 1, ...), do

pj = Avj;

Solve Mqj = pj;

βj+1 = ‖qj − αjuj‖;

uj+1 =
qj − αjuj

βj+1
;

Resolver Msj+1 = uj+1;

αj+1 =
∥∥AT sj+1 − βj+1vj

∥∥;

vj+1 =
AT sj+1 − βj+1vj

αj+1
;

ρj =
(
ρ2

j + β2
j+1

) 1

2 ;

cj =
ρj

ρj
;

sj =
βj+1

ρj
;

θj+1 = sjαj+1;

ρj+1 = −cjαj+1;

φj = cjφj;

φj+1 = sjφj;
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xj = xj−1 +

(
φj

ρj

)
wj;

wj+1 = vj+1 −
(
θj+1

ρj

)
wj;

End

5 Numerical experiments

In this section we consider some problems arising from scientific and industrial ap-
plications. All the computing was carried out in FORTRAN double precision. We
always chose x0 = 0, r̃0 = r0 = b, as initial guess and ‖b−Axi‖2

‖b‖
2

< 10−9 as stop
criterion. Next we present a short description of the problems.

LightTruck problem comes from the numerical simulation of a canister in 3D. The
physical phenomenon which defines these devices is the transport of hydrocarbons.
Huerta et al [38] have developed a convection-diffusion-reaction model,

∂u

∂t
+ v · ∇u− ν∆u+ σ (u) u = f (u)

where u is the concentration of hydrocarbons in the air, v represents the velocity field
of the air which is previously computed by solving a potential flow problem, and ν
is diffusivity coefficient. The reaction term σ (u) u and the source f (u) are strongly
nonlinear. We have studied three linear systems of equations corresponding to the
finite element discretization of three time step (4030, 10044 y 16802) of the transient
problem. However, here we only show results from the last one since the others lead
us to similar conclusions. The number of unknown is n = 17914, and the matrix is
the same for the three systems. Figures 1 and 2 show that preconditioning is essential
here. They also illustrate the comparison of computational cost and iteration, respec-
tively, of PCG with several preconditioners. We can observe that PCG with Diagonal
approximate inverse is the fastest. However SSOR and ILLT(0) produce less itera-
tions. In this problem, since the preconditioner is constructed once, the latter may be
competitive with the former and win at the end of the transient process.

Convdifhor example corresponds to a convection-diffusion problem defined in [0, 1]×
[0, 1] by,

v1
∂u

∂x
−K

(
∂2u

∂x2
+
∂2u

∂y2

)
= F

where v1 = 104
(
y − 1

2

)
(x− x2)

(
1
2
− x
)
, K = 10−5−102, y F = 103−1. The linear

systems arise from an unstructured finite element mesh with n = 441 and nz = 2927,
n = 1960 and nz = 13412, n = 13190 and nz = 91227, respectively, being n
the number of unknowns and nz the amount of nonzero entries in the matrices. The
convergence of Bi-CGSTAB improves when the sparse approximate inverse precon-
ditioner is used. The number of iterations clearly decrease if we diminish εk. Never-
theless, to obtain an approximate for n = 441 the amount of entries per columns mast
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be augmented to 200. Figure 5 shows that sparse approximate inverse may be com-
petitive with implicit preconditioners like ILU(0) if parallel computing is available. In
figures 3(a)-3(d) the sparsity pattern of A and M are represented for this case. Note
that since the sparsity pattern of A and A−1 are completely different, the pattern of
M is far from the one of A. In Figure 5 we compare the plots of convergence of Bi-
CGSTAB-SPAI(0.2) for several reordering techniques in the case of n = 1960. The
orderings by Minimum Degree and Reverse Cuthill-Mckee algorithms have beneficial
effects on the rate of convergence of Bi-CGSTAB-SPAI. The reduction of the amount
of entries in SPAI is about 40-50% using these reordering techniques. The Minimum
Neighbouring algorithm does not affect to nz. Besides, the number of iterations was
reduced from 60 to 70%. In Figures6(a)-6(d) the effect of reordering techniques on
the sparsity pattern of SPAI with εk = 0.3. These patterns represent full matrices as
expected, following the typical plots related to each reordering technique.
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Figure 1: LightTruck problem: computational cost of PCG
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22



(a) Sparsity pattern of matrix A (b) Sparsity pattern of SPAI with εk = 0.5
and max nz(m0k) = 50

(c) Sparsity pattern of SPAI with εk = 0.5
and max nz(m0k) = 50

(d) Sparsity pattern of SPAI with εk =
0.05 and max nz(m0k) = 200

Figure 3: Convdifhor problem (n = 441): sparsity pattern of A and SPAI.
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Figure 5: Convdifhor problem (n = 1960): effect of reordering on Bi-CGSTAB-SPAI
convergence.

Figure 7 shows the convergence plots of Krylov subspace methods with ILU(0)
preconditioner for n = 13190. The convergence of Bi-CGSTAB is fast but irregular.
QMRCGSTAB avoids these irregularities but at slightly higher computational cost. In
this case, ILU(0) is more efficient than the rest of preconditioners for QMRCGSTAB,
as can be seen in Figure 8. Finally, reordering techniques reduce the cost under the
50% for reaching convergence with QMRCGSTAB-ILU(0).

6 Conclusions

Krylov subspace methods provides a wide set of possibilities for solving linear sys-
tems of equations. Although, in the symmetric case the selection is clear (CG), for
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(a) Initial ordering (b) Minimum Degree

(c) Reverse Cuthill-Mckee (d) Minimum Neighbouring

Figure 6: Convdifhor problem (n = 1960): sparsity pattern of matrix SPAI(0.3) with
several orderings.
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nonsymmetric problems the choice depends on several factors: transient process,
available computer memory, parallel computation, very ill-conditioned problems, ...
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The proposed algorithm for computing a sparse approximate inverseM0 of a sparse
nonsymmetric matrix A, may be implemented in parallel since the columns (or rows)
of M0 are obtained independently. The sparsity pattern of these preconditioners are
dynamically built starting from the diagonal and augmenting the amount of nonzero
entries. Evidently, this type of preconditioner may be competitive with implicit ones
in a parallel environment. Nevertheless, the effectiveness of these preconditioners in
the convergence of iterative solvers has been proved theoretically and practically.

We have experimentally proved that reordering techniques have beneficial effects
on the preconditioners for the convergence of Krylov subspace methods. In particular,
for sparse approximate inverses, the reduction of the amount of nonzero entries due
to reordering allows to obtain SPAI with similar accuracy to those without reordering,
but requiring less computer memory and cost. In addition, reordering produces better
preconditioners since the allows to reach convergence with less iterations.

More research must be carried out on the effect of other reordering techniques
which take into account the values of the entries in A and not only their positions (see
[5], [8]). Although these techniques are expensive, in the case of solving many linear
systems with the same invariable matrix, e.g. LightTruck problem, this techniques
may compete in parallel machines.
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