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Abstract This paper deals with the study of some new properties of the intrinsic
order graph. The intrinsic order graph is the natural graphical repre-
sentation of a complex stochastic Boolean system (CSBS). A CSBS is
a system depending on an arbitrarily large number n of mutually inde-
pendent random Boolean variables. The intrinsic order graph displays
its 2n vertices (associated to the CSBS) from top to bottom, in decreas-
ing order of their occurrence probabilities. New relations between the
intrinsic ordering and the Hamming weight (i.e., the number of 1-bits in
a binary n-tuple) are derived. Further, the distribution of the weights
of the 2n nodes in the intrinsic order graph is analyzed.
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1. Introduction
Consider a system depending on an arbitrary number n of random

Boolean variables. That is, the n basic variables, x1, . . . , xn, of the
system are assumed to be stochastic (non-deterministic), and they only
take two possible values (either 0 or 1). We call such a system a complex
stochastic Boolean system (CSBS). CSBSs often appear in many differ-
ent knowledge areas, since the assumption “random Boolean variables”
is satisfied very often in practice.
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Each one of the possible situations (outcomes) associated to a CSBS
is given by a binary n-tuple of 0s and 1s, i.e.,

u = (u1, . . . , un) ∈ {0, 1}n

and, from now on, we assume that the n random Boolean variables
{xi}n

i=1 are mutually independent. Hence, denoting

Pr {xi = 1} = pi, Pr {xi = 0} = 1 − pi (1 ≤ i ≤ n) ,

the occurrence probability of each binary n-tuple, u = (u1, . . . , un), can
be computed as the product

Pr {(u1, . . . , un)} =
n∏

i=1

Pr {xi = ui} =
n∏

i=1

pui
i (1 − pi)

1−ui , (1.1)

that is, Pr {(u1, . . . , un)} is the product of factors pi if ui = 1, 1-pi if
ui = 0. Throughout this paper, the binary n-tuples (u1, . . . , un) of 0s and
1s will be also called binary strings or bitstrings, and the probabilities
p1, . . . , pn will be also called basic probabilities.

One of the most relevant questions in the analysis of CSBSs con-
sists of ordering the binary strings (u1, . . . , un) according to their oc-
currence probabilities. For this purpose, in [González, 2002] we have
established a simple, positional criterion (the so-called intrinsic order
criterion) that allows one to compare two given binary n-tuple proba-
bilities, Pr {u} , Pr {v}, without computing them, simply looking at the
positions of the 0s and 1s in the n-tuples u, v. The usual representation
for the intrinsic order relation is the intrinsic order graph.

In this context, the main goal of this paper is to state and derive some
new properties of the intrinsic order graph, concerning the Hamming
weights of the binary strings (i.e., the number of 1-bits in each binary n-
tuple). Some of these properties can be found in [González, 2012c], where
the reader can also find a number of simple examples that illustrate the
preliminary results presented in this paper.

For this purpose, this paper has been organized as follows. In Sec-
tion 2, we present some preliminary results about the intrinsic ordering
and the intrinsic order graph, in order to make the presentation self-
contained. Section 3 is devoted to present new relations between the
intrinsic ordering and the Hamming weight. In Section 4, we study the
distribution of the Hamming weights of the 2n nodes in the intrinsic
order graph. Finally, conclusions are presented in Section 5.
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2. Intrinsic Ordering in CSBSs
The Intrinsic Partial Order Relation

The following theorem [González, 2002; González, 2003] provides us
with an intrinsic order criterion –denoted from now on by the acronym
IOC– to compare the occurrence probabilities of two given n-tuples of
0s & 1s without computing them.

Theorem 2.1 Let n ≥ 1. Let x1, . . . , xn be n mutually independent
Boolean variables whose parameters pi = Pr {xi = 1} satisfy

0 < p1 ≤ p2 ≤ . . . ≤ pn ≤ 1
2
. (2.1)

Then the probability of the n-tuple v = (v1, . . . , vn) ∈ {0, 1}n is intrinsi-
cally less than or equal to the probability of the n-tuple u = (u1, . . . , un) ∈
{0, 1}n (that is, for all set {pi}n

i=1satisfying (2.1)) if and only if the ma-
trix

Mu
v :=

(
u1 . . . un

v1 . . . vn

)

either has no
(
1
0

)
columns, or for each

(
1
0

)
column in Mu

v there exists (at
least) one corresponding preceding

(
0
1

)
column (IOC).

Remark 2.2 In the following, we assume that the parameters pi always
satisfy condition (2.1). The

(
0
1

)
column preceding to each

(
1
0

)
column

is not required to be necessarily placed at the immediately previous
position, but just at previous position. The term corresponding, used
in Theorem 2.1, has the following meaning: For each two

(
1
0

)
columns

in matrix Mu
v , there must exist (at least) two different

(
0
1

)
columns

preceding to each other.

The matrix condition IOC, stated by Theorem 2.1 is called the intrin-
sic order criterion, because it is independent of the basic probabilities
pi and it only depends on the relative positions of the 0s and 1s in the
binary n-tuples u, v. Theorem 2.1 naturally leads to the following partial
order relation on the set {0, 1}n [González, 2003]. The so-called intrinsic
order will be denoted by “�”, and we shall write u � v (u � v) to indi-
cate that u is intrinsically greater (less) than or equal to v. The partially
ordered set (from now on, poset, for short) ({0, 1}n ,�) on n Boolean
variables, will be denoted by In.

Definition 2.3 For all u, v ∈ {0, 1}n

v � u iff Pr {v} ≤ Pr {u} for all set {pi}n
i=1 s.t. (2.1)

iff Mu
v satisfies IOC.
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A Picture for the Intrinsic Ordering
Now, the graphical representation of the poset In = ({0, 1}n ,�) is

presented. The usual representation of a poset is its Hasse diagram
(see [Stanley, 1997] for more details about these diagrams). Specifically,
for our poset In, its Hasse diagram is a directed graph (digraph, for
short) whose vertices are the 2n binary n-tuples of 0s and 1s, and whose
edges go upward from v to u whenever u covers v, denoted by u � v.
This means that u is intrinsically greater than v with no other elements
between them, i.e.,

u � v ⇔ u � v and � w ∈ {0, 1}n s.t. u � w � v.

A simple matrix characterization of the covering relation for the in-
trinsic order is given in the next theorem; see [González, 2006] for the
proof.

Theorem 2.4 (Covering relation in In) Let n ≥ 1 and let u, v ∈
{0, 1}n. Then u � v if and only if the only columns of matrix Mu

v differ-
ent from

(
0
0

)
and

(
1
1

)
are either its last column

(
0
1

)
or just two columns,

namely one
(
1
0

)
column immediately preceded by one

(
0
1

)
column, i.e.,

either

Mu
v =

(
u1 . . . un−1 0
u1 . . . un−1 1

)
(2.2)

or there exists i (2 ≤ i ≤ n) s.t.

Mu
v =

(
u1 . . . ui−2 0 1 ui+1 . . . un

u1 . . . ui−2 1 0 ui+1 . . . un

)
. (2.3)

The Hasse diagram of the poset In will be also called the intrinsic
order graph for n variables, denoted as well by In.

For small values of n, the intrinsic order graph In can be directly con-
structed by using either Theorem 2.1 (matrix description of the intrinsic
order) or Theorem 2.4 (matrix description of the covering relation for
the intrinsic order). For instance, for n = 1: I1 = ({0, 1} ,�), and its
Hasse diagram is shown in Figure 1.1. Note that 0 � 1 (Theorem 2.1).

0
|
1

Figure 1.1. The intrinsic order graph for n = 1.

However, for large values of n, a more efficient method is needed. For
this purpose, in [González, 2006] the following algorithm for iteratively
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building up In (for all n ≥ 2) from I1 (depicted in Figure 1.1), has been
developed.

Theorem 2.5 (Building up In from I1) Let n ≥ 2. The graph of
the poset In = {0, . . . , 2n − 1} (on 2n nodes) can be drawn simply by
adding to the graph of the poset In−1 =

{
0, . . . , 2n−1 − 1

}
(on 2n−1

nodes) its isomorphic copy 2n−1 + In−1 =
{
2n−1, . . . , 2n − 1

}
(on 2n−1

nodes). This addition must be performed placing the powers of 2 at con-
secutive levels of the Hasse diagram of In. Finally, the edges connecting
one vertex u of In−1 with the other vertex v of 2n−1 + In−1 are given by
the set of 2n−2 vertex pairs

{
(u, v) ≡ (

u(10 , 2n−2 + u(10

) ∣∣ 2n−2 ≤ u(10 ≤ 2n−1 − 1
}

.

Figure 1.2 illustrates the above iterative process for the first few values
of n, denoting all the binary n-tuples by their decimal equivalents.

0
|
1

0
|
1
|
2
|
3

0
|
1
|
2
| �

3 4
� |

5
|
6
|
7

0
|
1
|
2
| �

3 4
� | �

5 8
| � |
6 9
| � |
7 10

� | �

11 12
� |

13
|

14
|

15

Figure 1.2. The intrinsic order graphs for n = 1, 2, 3, 4.

Each pair (u, v) of vertices connected in In either by one edge or by a
longer path, descending from u to v, means that u is intrinsically greater
than v, i.e., u � v. On the contrary, each pair (u, v) of non-connected
vertices in In either by one edge or by a longer descending path, means
that u and v are incomparable by intrinsic order, i.e., u � v and v � u.

The edgeless graph for a given graph is obtained by removing all its
edges, keeping its nodes at the same positions [Diestel, 2005]. In Figures
1.3 & 1.4, the edgeless intrinsic order graphs of I5 & I6, respectively, are
depicted.
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0
1
2
3 4

5 8
6 9 16
7 10 17

11 12 18
13 19 20
14 21 24
15 22 25

23 26
27 28

29
30
31

Figure 1.3. The edgeless intrinsic order graph for n = 5.

0
1
2
3 4

5 8
6 9 16
7 10 17 32

11 12 18 33
13 19 20 34
14 21 24 35 36
15 22 25 37 40

23 26 38 41 48
27 28 39 42 49

29 43 44 50
30 45 51 52
31 46 53 56

47 54 57
55 58

59 60
61
62
63

Figure 1.4. The edgeless intrinsic order graph for n = 6.

For further theoretical properties and practical applications of the
intrinsic order and the intrinsic order graph, we refer the reader to
e.g., [González, 2002; González, 2003; González, 2006; González, 2007;
González, 2010; González, 2012a; González, 2012b; González, 2012c;
González, 2012d; González, et al, 2004].

3. Weights and Intrinsic Ordering
Now, we present some new relations between the intrinsic ordering and

the Hamming weight. Let us denote by wH (u) the Hamming weight –or
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weight, simply– of u (i.e., the number of 1-bits in u), i.e.,

wH (u) :=
n∑

i=1

ui.

Our starting point is the following necessary (but not sufficient) con-
dition for intrinsic order (see [González, 2003] for the proof).

u � v ⇒ wH (u) ≤ wH (v) for all v ∈ {0, 1}n . (3.1)

However, the necessary condition for intrinsic order stated by Eq.
(3.1) is not sufficient. That is,

wH (u) ≤ wH (v) � u � v,

as the following simple counter-example (indeed, the simplest one that
one can find!) shows.

Example 3.1 For

n = 3, u = 4 ≡ (1, 0, 0) , v = 3 ≡ (0, 1, 1) ,

we have (see the digraph of I3 in Figure 1.2)

wH (4) = 1 < 2 = wH (3) .

However 4 � 3, since matrix

M4
3 =

(
1 0 0
0 1 1

)

does not satisfy IOC.

In this context, two dual questions naturally arise. They are posed in
the two subsections of this section. First, we need to set the following
notations.

Definition 3.2 For every binary n-tuple u ∈ {0, 1}n, Cu (Cu, respectively)
is the set of all binary n-tuples v whose occurrence probabilities Pr {v}
are always less (greater, respectively) than or equal to Pr {u}, i.e., those
n-tuples v intrinsically less (greater, respectively) than or equal to u, i.e.,

Cu = {v ∈ {0, 1}n | Pr {u} ≥ Pr {v} ,∀ {pi}n
i=1 s.t. (2.1)}

= {v ∈ {0, 1}n | u � v} ,

Cu = {v ∈ {0, 1}n | Pr {u} ≤ Pr {v} ,∀ {pi}n
i=1 s.t. (2.1)}

= {v ∈ {0, 1}n | u � v} .
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Definition 3.3 For every binary n-tuple u ∈ {0, 1}n, Hu (Hu, respectively)
is the set of all binary n-tuples v whose Hamming weights are less (greater,
respectively) than or equal to the Hamming weight of u, i.e.,

Hu = {v ∈ {0, 1}n | wH (u) ≥ wH (v)} ,

Hu = {v ∈ {0, 1}n | wH (u) ≤ wH (v)} .

When Greater Weight Corresponds to Less Probability
Looking at the implication (3.1), the following question immediately

arises.
Question 3.1: We try to characterize the binary n-tuples u for which

the necessary condition (3.1) is also sufficient, i.e.,

u � v ⇔ wH (u) ≤ wH (v) , i.e., Cu = Hu.

The following theorem provides the answer to this question, in a very
simple way.

Theorem 3.4 Let n ≥ 1 and u = (u1, . . . , un) ∈ {0, 1}n with Hamming
weight wH (u) = m (0 ≤ m ≤ n). Then

Cu = Hu

if and only if either u is the zero n-tuple (m = 0) or the m 1-bits of u
(m > 0) are placed at the m right-most positions, i.e., if and only if u
has the general pattern

u =
(

0,
n−m
�. . . , 0, 1,

m
�. . ., 1

)
≡ 2m − 1, 0 ≤ m ≤ n, (3.2)

where any (but not both !) of the above two subsets of bits grouped together
can be omitted.

Proof.
Sufficient condition. We distinguish two cases:
(i) If u is the zero n-tuple 0 ≡

(
0,

n
�. . ., 0

)
, then u is the maximum element

for the intrinsic order (see, e.g., [González, 2012c]). Then

C0 = {v ∈ {0, 1}n | 0 � v} = {0, 1}n

= {v ∈ {0, 1}n | wH (0) = 0 ≤ wH (v)} = H0.

(ii) If u is not the zero n-tuple, then u has the pattern (3.2) with m > 0.
Let v ∈ Hu, i.e., let v let a binary n-tuple with Hamming weight greater
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than or equal to m (the Hamming weight of u). We distinguish two
subcases:
(ii)-(a) Suppose that the weight of v is

wH (v) = m = wH (u) .

Then v has exactly m 1-bits and n − m 0-bits. Call r the number of
1-bits of v placed among the m right-most positions (max {0, 2m − n} ≤
r ≤ m). Obviously, v has r 1-bits and m− r 0-bits placed among the m
right-most positions, and also it has m − r 1-bits and n − 2m + r 0-bits
placed among the n − m left-most positions. These are the positions of
the

r + (m − r) + (m − r) + (n − 2m + r) = m + (n − m) = n

bits of the binary n-tuple v.
Hence, matrix Mu

v has exactly m − r
(
1
0

)
columns (all placed among

the m right-most positions) and exactly m − r
(
0
1

)
columns (all placed

among the n−m left-most positions). Thus, Mu
v satisfies IOC and then

u � v, i.e., v ∈ Cu.
So, for this case (ii)-(a), we have proved that

{v ∈ {0, 1}n | wH (v) = wH (u) = m} ⊆ Cu (3.3)

(ii)-(b) Suppose that the weight of v is

wH (v) = m + p > m = wH (u) (0 < p ≤ n − m).

Then define a new binary n-tuple s as follows. First, select any p 1-bits
in v (say, for instance, vi1 = · · · = vip = 1). Second, s is constructed by
changing these p 1-bits of v into 0-bits, assigning to the remainder n− p
bits of s the same values as the ones of v. Formally, s = (s1, . . . , sn) is
defined by

si =
{

0 if i ∈ {i1, . . . , ip} ,
vi if i /∈ {i1, . . . , ip} .

On one hand, u � s since

wH (s) = wH (v) − p = m = wH (u)

and then we can apply case (ii)-(a) to s.
On the other hand, s � v since matrix M s

v has p
(
0
1

)
columns (placed

at positions i1, . . . , ip), while its n − p reminder columns are either
(
0
0

)
or

(
1
1

)
. Hence M s

v has no
(
1
0

)
columns, so that it satisfies IOC.

Finally, from the transitive property of the intrinsic order, we derive

u � s and s � v ⇒ u � v, i.e., v ∈ Cu.
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So, for this case (ii)-(b), we have proved that

{v ∈ {0, 1}n | wH (v) > wH (u) = m} ⊆ Cu (3.4)

From (3.3) & (3.4), we get

{v ∈ {0, 1}n | wH (v) ≥ wH (u) = m} ⊆ Cu,

i.e., Hu ⊆ Cu, and this set inclusion together with the converse inclu-
sion Cu ⊆ Hu (which is always satisfied for every binary n-tuple u; see
Eq. 3.1) leads to the set equality Cu = Hu. This proves the sufficient
condition.

Necessary condition. Conversely, suppose that not all the m 1-bits of
u are placed at the m right-most positions. In other words, suppose that

u �=
(

0,
n−m
�. . . , 0, 1,

m
�. . ., 1

)
.

Since, by assumption, wH (u) = m then simply using the necessary con-
dition we derive that (

0,
n−m
�. . . , 0, 1,

m
�. . ., 1

)
� u,

and then (
0,

n−m
�. . . , 0, 1,

m
�. . ., 1

)
∈ Hu − Cu

so that,
Hu � Cu.

This proves the necessary condition. �

Corollary 3.5 Let n ≥ 1 and let

u =
(

0,
n−m
�. . . , 0, 1,

m
�. . ., 1

)
≡ 2m − 1, 0 ≤ m ≤ n,

where any (but not both !)of the above two subsets of bits grouped together
can be omitted. Then the number of binary n-tuples intrinsically less
than or equal to u is

|Cu| =
(

n

m

)
+

(
n

m + 1

)
+ · · · +

(
n

n

)
.

Proof. Using Theorem 3.4, the proof is straightforward. �
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When Less Weight Corresponds to Greater Probability
Interchanging the roles of u & v, (3.1) can be rewritten as follows.

Let u be an arbitrary, but fixed, binary n-tuple. Then

v � u ⇒ wH (v) ≤ wH (u) for all v ∈ {0, 1}n . (3.5)

Looking at the implication (3.5), the following dual question of Ques-
tion 3.1, immediately arises.

Question 3.2: We try to characterize the binary n-tuples u for which
the necessary condition (3.5) is also sufficient, i.e.,

v � u ⇔ wH (v) ≤ wH (u) , i.e., Cu = Hu.

The following theorem provides the answer to this question, in a very
simple way. For a very short proof of this theorem, we use the following
definition.

Definition 3.6
(i) The complementary n-tuple of a given binary n-tuple u = (u1, . . . , un) ∈
{0, 1}n is obtained by changing its 0s into 1s and its 1s into 0s

uc = (u1, . . . , un)c = (1 − u1, . . . , 1 − un) .

Obviously, two binary n-tuples are complementary if and only if their
decimal equivalents sum up to(

1,
n
�. . ., 1

)
(10

= 2n − 1.

(ii) The complementary set of a given subset S ⊆ {0, 1}n of binary n-
tuples is the set of the complementary n-tuples of all the n-tuples of S

Sc = {uc | u ∈ S } .

Theorem 3.7 Let n ≥ 1 and u = (u1, . . . , un) ∈ {0, 1}n with Hamming
weight wH (u) = m (0 ≤ m ≤ n). Then

Cu = Hu

if and only if either u is the zero n-tuple (m = 0) or the m 1-bits of u
(m > 0) are placed at the m left-most positions, i.e., if and only if u has
the general pattern

u =
(

1,
m
�. . ., 1, 0,

n−m
�. . . , 0

)
≡ 2n − 2n−m, 0 ≤ m ≤ n, (3.6)

where any (but not both !) of the above two subsets of bits grouped together
can be omitted.
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Proof. Using Theorem 3.4 and the facts that (see, e.g., [González,
2007; González, 2012a])

(Cu)c = Cuc
, (Hu)c = Huc ,

we get

Cu = Hu ⇔ (Cu)c = (Hu)c ⇔ Cuc
= Huc

⇔ uc has the pattern (3.2) ⇔ u has the pattern (3.6),

as was to be shown. �

Corollary 3.8 Let n ≥ 1 and let

u =
(

1,
m
�. . ., 1, 0,

n−m
�. . . , 0

)
≡ 2n − 2n−m, 0 ≤ m ≤ n,

where any (but not both !) of the above two subsets of bits grouped together
can be omitted. Then the number of binary n-tuples intrinsically greater
than or equal to u is

|Cu| =
(

n

0

)
+

(
n

1

)
+ · · · +

(
n

m

)
.

Proof. Using the fact that (Cu)c = Cuc
and Corollary 3.5, the proof is

straightforward. �

4. Nodes and Weights in the Intrinsic Order Graph
The results derived in Section 3, and more precisely those stated by

Theorems 3.4 and 3.7, can be illustrated by labeling the nodes of the
intrinsic order graph with their respective Hamming weights. In this
way, due to Theorem 3.4 (Theorem 3.7, respectively), for a given binary
n-tuple u with weight m whose m 1-bits are all placed among the right-
most (left-most, respectively) positions, the set of nodes v with Hamming
weight greater (less, respectively) than or equal to m will be exactly
the set of nodes v connected to vertex u by a descending (ascending,
respectively) path from u to v.

This suggests the analysis of the distribution of the Hamming weights
of the 2n nodes in the intrinsic order graph. The following Theorem
provides only some basic consequences of such analysis.

Theorem 4.1 Let n ≥ 2. Label each of the 2n nodes in the intrinsic
order graph In, with its corresponding Hamming weight. Then
(i) The weights (labels) of the 2n nodes are (with repetitions): 0, 1, 2, ..., n.
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(ii) The weights (labels) of the 4 nodes in each of the saturated chains
4k�4k+1�4k+2�4k+3 are: wH (k) , wH (k)+1, wH (k)+1, wH (k)+2.
(iii) The set of weights (labels) of the 2n nodes of the graph In = {0, 1}n

can be partitioned into the following two subsets: (a) The weights of the
nodes of the top subgraph {0}×{0, 1}n−1 of In, which one-to-one coincide
with the respective weights of the nodes of the graph In−1 = {0, 1}n−1.
(b) The weights of the nodes of the bottom subgraph {1} × {0, 1}n−1 of
In, which one-to-one coincide with 1 plus the respective weights of the
nodes of the graph In−1 = {0, 1}n−1.

Proof.
(i) Trivial.
(ii) Use the fact that for all k ≡ (u1 . . . , un−2) ∈ {0, 1}n−2:

4k ≡ (u1 . . . , un−2, 0, 0) , 4k + 1 ≡ (u1 . . . , un−2, 0, 1) ,

4k + 2 ≡ (u1 . . . , un−2, 1, 0) , 4k + 3 ≡ (u1 . . . , un−2, 1, 1) .

(iii) Use Theorem 2.5 and the fact that for all (u1 . . . , un−1) ∈ {0, 1}n−1:

wH (0, u1 . . . , un−1) = wH (u1 . . . , un−1)
wH (1, u1 . . . , un−1) = wH (u1 . . . , un−1) + 1.

as was to be shown. �

Figure 1.5 illustrates Theorem 4.1, by labeling (and substituting) all
the 32 nodes of the graph I5 (depicted in Figure 1.3) with their corre-
sponding Hamming weights.

0
1
1
2 1

2 1
2 2 1
3 2 2

3 2 2
3 3 2
3 3 2
4 3 3

4 3
4 3

4
4
5

Figure 1.5. Weights in the edgeless intrinsic order graph for n = 5.
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5. Conclusions
It is well-known that if a binary n-tuple u is intrinsically greater (less,

respectively) than or equal to a binary n-tuple v then necessarily the
Hamming weight of u must be less (greater, respectively) than or equal
to the Hamming weight of v. We have characterized, by two dual, simple
positional criteria, those n-tuples u for which each of these necessary con-
ditions is also sufficient. Further, motivated by these questions, we have
presented some basic properties concerning the distribution of weights
of the 2n nodes in the intrinsic order graph. For future researches, ad-
ditional properties of such distribution worth to be studied.
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González, L. (2006). A picture for complex stochastic Boolean systems: The intrinsic
order graph. Lect. Notes Comput. Sc., 3993:305-312.
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