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Abstract—A complex stochastic Boolean system (CSBS) is
a system depending on an arbitrary number n of stochastic
Boolean variables. The analysis of CSBSs is mainly based on
the intrinsic order: a partial order relation defined on the set
{0, 1}n of binary n-tuples. The usual graphical representation
for a CSBS is the intrinsic order graph: the Hasse diagram of
the intrinsic order. In this paper, some new properties of the
intrinsic order graph are studied. Particularly, the set and the
number of its edges, the degree and neighbors of each vertex,
as well as typical properties, such as the symmetry and fractal
structure of this graph, are analyzed.

Index Terms—complex stochastic Boolean system, Hasse
diagram, intrinsic order, intrinsic order graph, poset.

I. INTRODUCTION

IN many different scientific, technical or social areas, one
can find phenomena depending on an arbitrarily large

number n of random Boolean variables. In other words, the n
basic variables of the system are assumed to be stochastic and
they only take two possible values: either 0 or 1. We call such
a system: a complex stochastic Boolean system (CSBS). Each
one of the 2n possible elementary states associated to a CSBS
is given by a binary n-tuple u = (u1, . . . , un) ∈ {0, 1}n
of 0s and 1s, and it has its own occurrence probability
Pr {(u1, . . . , un)}.

Using the statistical terminology, a CSBS on n variables
x1, . . . , xn can be modeled by the n-dimensional Bernoulli
distribution with parameters p1, . . . , pn defined by

Pr {xi = 1} = pi, Pr {xi = 0} = 1− pi,

Throughout this paper we assume that the n Bernoulli
variables xi are mutually statistically independent, so that
the occurrence probability of a given binary string of length
n, u = (u1, . . . , un) ∈ {0, 1}n, can be easily computed as

Pr {u} =

n∏
i=1

pui
i (1− pi)1−ui , (1)

that is, Pr {u} is the product of factors pi if ui = 1, 1− pi
if ui = 0.

Example 1.1: Let n = 4 and u = (0, 1, 0, 1) ∈ {0, 1}4.
Let p1 = 0.1, p2 = 0.2, p3 = 0.3, p4 = 0.4. Then using (1),
we have

Pr {(0, 1, 0, 1)} = (1− p1) p2 (1− p3) p4 = 0.0504.
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The behavior of a CSBS is determined by the ordering
between the current values of the 2n associated binary n-
tuple probabilities Pr {u}. Computing all these 2n proba-
bilities –by using (1)– and ordering them in decreasing or
increasing order of their values is only possible in practice
for small values of the number n of basic variables. However,
for large values of n, to overcome the exponential nature of
this problem, we need alternative procedures for comparing
the binary string probabilities. For this purpose, in [2] we
have defined a partial order relation on the set {0, 1}n of all
the 2n binary n-tuples, the so-called intrinsic order between
binary n-tuples.

The intrinsic order relation is characterized by a simple
positional criterion, the so-called intrinsic order criterion
(IOC). IOC enables one to compare (to order) two given
binary n-tuple probabilities Pr {u} ,Pr {v}, without comput-
ing them, simply looking at the positions of the 0s and 1s in
the binary n-tuples u, v.

The most useful graphical representation of a CSBS is the
intrinsic order graph. This is a symmetric, self-dual diagram
on 2n nodes (denoted by In) that displays all the binary
n-tuples from top to bottom in decreasing order of their
occurrence probabilities. Formally, In is the Hasse diagram
of the intrinsic partial order relation on {0, 1}n.

In this context, the main goal of this paper is to present
some new properties of the intrinsic order graph. In particu-
lar, we give the set and the number of edges of In, the set and
the number of elements which are neighbors (adjacent) in the
graph to a fixed binary n-tuple u ∈ {0, 1}n, and analyze the
properties of symmetry and fractal character of In.

For this purpose, this paper has been organized as follows.
In Section II, we present some preliminaries about the
intrinsic order and the intrinsic order graph, to make this
paper self-contained. Section III is devoted to present the new
properties of the intrinsic order graph. Finally, in Section IV,
we present our conclusions.

II. BACKGROUND IN INTRINSIC ORDER

Throughout this paper, we indistinctly denote the n-tuple
u ∈ {0, 1}n by its binary representation (u1, . . . , un) or
by its decimal representation, and we use the symbol “ ≡”
to indicate the conversion between these two numbering
systems. The decimal numbering and the Hamming weight
(i.e., the number of 1-bits) of u will be respectively denoted
by

u ≡ u(10 =
n∑

i=1

2n−iui, wH (u) =
n∑

i=1

ui.

Given two binary n-tuples u, v ∈ {0, 1}n, the ordering be-
tween their occurrence probabilities Pr (u), Pr (v) obviously
depends on the Bernoulli parameters pi, as the following
simple example shows.
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Example 2.1: Let n = 3, u = (0, 1, 1) and v = (1, 0, 0).
For p1 = 0.1, p2 = 0.2, p3 = 0.3, using (1), we have:

Pr {(0, 1, 1)} = 0.054 < Pr {(1, 0, 0)} = 0.056,

for p1 = 0.2, p2 = 0.3, p3 = 0.4, using (1), we have:

Pr {(0, 1, 1)} = 0.096 > Pr {(1, 0, 0)} = 0.084.

However, as mentioned in Section I, in [2] we have es-
tablished an intrinsic, positional criterion to compare the
occurrence probabilities of two given binary n-tuples without
computing them. This criterion is presented in detail in
Section II-A, while its graphical representation is shown in
Section II-B.

A. The Intrinsic Order Criterion

Theorem 2.1 (The intrinsic order theorem): Let n ≥ 1.
Let x1, . . . , xn be n mutually independent Bernoulli vari-
ables whose parameters pi = Pr {xi = 1} satisfy

0 < p1 ≤ p2 ≤ · · · ≤ pn ≤ 0.5. (2)

Then the occurrence probability of the binary n-tuple v, i.e.,
v = (v1, . . . , vn) ∈ {0, 1}n, is intrinsically less than or equal
to the occurrence probability of the binary n-tuple u, i.e.,
u = (u1, . . . , un) ∈ {0, 1}n, (that is, for all set {pi}ni=1

satisfying (2)) if and only if the matrix

Mu
v :=

(
u1 . . . un
v1 . . . vn

)
either has no

(
1
0

)
columns, or for each

(
1
0

)
column in

Mu
v there exists (at least) one corresponding preceding

(
0
1

)
column (IOC).

Remark 2.1: In the following, we assume that the pa-
rameters pi always satisfy condition (2). Fortunately, this
hypothesis is not restrictive for practical applications.

Remark 2.2: The
(

0
1

)
column preceding each

(
1
0

)
column

is not required to be necessarily placed at the immediately
previous position, but just at previous position.

Remark 2.3: The term corresponding, used in Theorem
2.1, has the following meaning: For each two

(
1
0

)
columns

in matrix Mu
v , there must exist (at least) two different

(
0
1

)
columns preceding each other. In other words, for each

(
1
0

)
column in matrix Mu

v the number of preceding
(

0
1

)
columns

must be strictly greater than the number of preceding
(

1
0

)
columns.

Claim 2.1: IOC can be equivalently reformulated in the
following way, involving only the 1-bits of u and v (with
no need to use their 0-bits). Matrix Mu

v satisfies IOC if and
only if either u has no 1-bits (i.e., u is the zero n-tuple) or
for each 1-bit in u there exists (at least) one corresponding
1-bit in v placed at the same or at a previous position. In
other words, either u has no 1-bits or for each 1-bit in u, say
ui = 1, the number of 1-bits in (v1, . . . , vi) must be greater
than or equal to the number of 1-bits in (u1, . . . , ui).

The matrix condition IOC, stated by Theorem 2.1 or by
Claim 2.1, is called the intrinsic order criterion, because
it is independent of the basic probabilities pi and it only
depends on the relative positions of the 0s and 1s in the
binary strings u and v. Theorem 2.1 naturally leads to the
following partial order relation on the set {0, 1}n [2], [3].
The so-called intrinsic order will be denoted by “�”, and

when v � u we say that v is intrinsically less than or equal
to u (or u is intrinsically greater than or equal to v).

Definition 2.1: For all u, v ∈ {0, 1}n

v � u iff Pr {v} ≤ Pr {u} for all set {pi}ni=1 s.t. (2)

iff matrix Mu
v satisfies IOC.

In the following, the partially ordered set (poset, for short)
for n variables ({0, 1}n ,�) will be denoted by In; see [10]
for more details about posets.

Example 2.2: For n = 3:

3 ≡ (0, 1, 1) � (1, 0, 0) ≡ 4 & (1, 0, 0) � (0, 1, 1) since(
1 0 0
0 1 1

)
and

(
0 1 1
1 0 0

)
do not satisfy IOC (Remark 2.3). Therefore, (0, 1, 1) and
(1, 0, 0) are incomparable by intrinsic order, i.e., the ordering
between Pr { (0, 1, 1)} and Pr { (1, 0, 0)} depends on the
basic probabilities pi, as Example 2.1 has shown.

Example 2.3: For n = 4:

12 ≡ (1, 1, 0, 0) � (0, 0, 1, 1) ≡ 3 since(
0 0 1 1
1 1 0 0

)
satisfies IOC (Remark 2.2). For all 0 < p1 ≤ · · · ≤ p4 ≤ 1

2

Pr {(1, 1, 0, 0)} ≤ Pr {(0, 0, 1, 1)} .

B. The Intrinsic Order Graph

In this subsection, the graphical representation of the poset
In = ({0, 1}n ,�) is presented. The usual representation
of a poset is its Hasse diagram (see [10] for more details
about these diagrams). Specifically, for our poset In, its
Hasse diagram is a directed graph (digraph, for short) whose
vertices are the 2n binary n-tuples of 0s and 1s, and whose
edges go upward from v to u whenever u covers v, denoted
by u . v. This means that u is intrinsically greater than v
with no other elements between them, i.e.,

u . v ⇔ u � v and @ w ∈ {0, 1}n s.t. u � w � v.

A simple matrix characterization of the covering relation
for the intrinsic order is given in the next theorem; see [4]
for the proof.

Theorem 2.2 (Covering relation in In): Let n ≥ 1 and
u, v ∈ {0, 1}n. Then u B v if and only if the only columns
of matrix Mu

v different from
(

0
0

)
and

(
1
1

)
are either its last

column
(

0
1

)
or just two columns, namely one

(
1
0

)
column

immediately preceded by one
(

0
1

)
column, i.e., either

Mu
v =

(
u1 . . . un−1 0
u1 . . . un−1 1

)
or (3)

Mu
v =

(
u1 . . . ui−2 0 1 ui+1 . . . un
u1 . . . ui−2 1 0 ui+1 . . . un

)
. (4)

(2 ≤ i ≤ n)

Example 2.4: For n = 4, we have

6 . 7 since M6
7 =

(
0 1 1 0
0 1 1 1

)
has the pattern (3),
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10.12 since M10
12 =

(
1 0 1 0
1 1 0 0

)
has the pattern (4).

The Hasse diagram of the poset In will be also called the
intrinsic order graph for n variables, denoted as well by In.

For small values of n, the intrinsic order graph In can be
directly constructed by using either Theorem 2.1 or Theorem
2.2. For instance, for n = 1: I1 = ({0, 1} ,�), and its Hasse
diagram is shown in Fig. 1.

0
|
1

Fig. 1. The intrinsic order graph for n = 1.

Indeed I1 contains a downward edge from 0 to 1 because
(see Theorem 2.1) 0 � 1, since matrix

(
0
1

)
has no

(
1
0

)
columns! Alternatively, using Theorem 2.2, we have that
0 B 1, since matrix

(
0
1

)
has the pattern (3)! Moreover, this

is in accordance with the obvious fact that

Pr {0} = 1−p1 ≥ p1 = Pr {1} , since p1 ≤ 1/2 due to (2)!

However, for large values of n, a more efficient method is
needed. For this purpose, in [4] the following algorithm for
iteratively building up In (for all n ≥ 2) from I1 (depicted
in Fig. 1), has been developed.

Theorem 2.3 (Building up In from I1): Let n ≥ 2. Then
the graph of the poset In = {0, . . . , 2n − 1} (on 2n nodes)
can be drawn simply by adding to the graph of the poset
In−1 =

{
0, . . . , 2n−1 − 1

}
(on 2n−1 nodes) its isomorphic

copy 2n−1 + In−1 =
{

2n−1, . . . , 2n − 1
}

(on 2n−1 nodes).
This addition must be performed placing the powers of 2 at
consecutive levels of the Hasse diagram of In. Finally, the
edges connecting one vertex u of In−1 with the other vertex
v of 2n−1 + In−1 are given by the set of 2n−2 vertex pairs{

(u, v) ≡
(
u(10 , 2

n−2 + u(10

) ∣∣ 2n−2 ≤ u(10 ≤ 2n−1 − 1
}
.

Fig. 2 illustrates the above iterative process for the first few
values of n, denoting all the binary n-tuples by their decimal
equivalents. Basically, after adding to In−1 its isomorphic
copy 2n−1 + In−1, we connect one-to-one the nodes of “the
second half of the first half” to the nodes of “the first half
of the second half”: A nice fractal property of In!

0
|
1

0
|
1
|
2
|
3

0
|
1
|
2
| �
3 4

� |
5
|
6
|
7

0
|
1
|
2
| �
3 4

� | �
5 8
| � |
6 9
| � |
7 10

� | �
11 12

� |
13
|

14
|

15

Fig. 2. The intrinsic order graphs for n = 1, 2, 3, 4.

Each pair (u, v) of vertices connected in In either by one
edge or by a longer descending path from u to v, means that
u is intrinsically greater than v, i.e., u � v. For instance,

looking at the Hasse diagram of I4, the right-most one in
Fig. 2, we observe that 3 ≡ (0, 0, 1, 1) � 12 ≡ (1, 1, 0, 0),
in accordance with Example 2.3.

On the contrary, each pair (u, v) of non-connected vertices
in In either by one edge or by a longer descending path,
means that u and v are incomparable by intrinsic order, i.e.,
u � v and v � u. For instance, looking at the Hasse diagram
of I3, the third one from left to right in Fig. 2, we observe
that 3 ≡ (0, 1, 1) and 4 ≡ (1, 0, 0) are incomparable by
intrinsic order, in accordance with Example 2.2.

The edgeless graph for a given graph is obtained by re-
moving all its edges, keeping its nodes at the same positions.
In Fig. 3, the edgeless intrinsic order graph of I5 is depicted.

0
1
2
3 4

5 8
6 9 16
7 10 17

11 12 18
13 19 20
14 21 24
15 22 25

23 26
27 28

29
30
31

Fig. 3. The edgeless intrinsic order graph for n = 5.

For further theoretical properties and practical applications
of the intrinsic order and the intrinsic order graph, we refer
the reader to [5], [6], [7], [8], [9].

III. NEW PROPERTIES OF THE INTRINSIC ORDER GRAPH

When viewed as an undirected graph, the Hasse diagram
is called the cover graph of the poset. We refer the reader
to [1], for standard notation and terminology concerning
graphs. Using Theorems 2.1, 2.2, and 2.3 we can derive many
different properties of the cover graph of In. Here, we have
selected only a few of them.

A. Edges
Let Vn and En be the sets of vertices and edges, respec-

tively, of In. As usual, |A| denotes the cardinality of the set
A. As mentioned, the number of nodes of In is obviously

|Vn| = |{0, 1}n| = 2n.

Our first property gives the number of edges of In.
Proposition 3.1: For all n ≥ 1, the number of edges in

the intrinsic order graph In is

|En| = (n+ 1) 2n−2. (5)

Proof: The edges (going downward from u to v) in a
Hasse diagram are exactly the covering relations (u B v).
Hence, using Theorem 2.2, we obtain

|En| = |{(u, v) ∈ Vn × Vn | u B v }|
= |{(u, v) ∈ Vn × Vn |Mu

v has the pattern (3)}|+
= |{(u, v) ∈ Vn × Vn |Mu

v has the pattern (4)}|

=

∣∣∣∣{( u1 . . . un−1 0
u1 . . . un−1 1

)}∣∣∣∣+
=

∣∣∣∣{( u1 . . . ui−2 0 1 ui+1 . . . un
u1 . . . ui−2 1 0 ui+1 . . . un

)}∣∣∣∣
= 2n−1 + (n− 1) 2n−2 = (n+ 1) 2n−2,
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as was to be shown.
Remark 3.1: Using proposition 3.1, we get for all n ≥ 2

|En| = (n+ 1) 2n−2 = 2·n·2n−3+2n−2 = 2 |En−1|+2n−2,

a recurrence relation for the number |En| of edges of In,
which could be also obtained directly from Theorem 2.2.

When we use the binary representation, the set En of
all the (n+ 1) 2n−2 edges in In is given by Theorem 2.2.
The following proposition gives this set using the decimal
numbering for the pairs of adjacent nodes (see Fig. 2).

Proposition 3.2: For all n ≥ 1

En =

{(
u(10 , u(10 + 1

) ∣∣∣∣ u(10 = 2p,
0 ≤ p ≤ 2n−1 − 1

}⋃
n−2⋃
m=0

(u(10 , u(10 + 2m
) ∣∣∣∣∣∣

u(10 = q + 2m (1 + 4r) ,
0 ≤ q ≤ 2m − 1,

0 ≤ r ≤ 2(n−2)−m − 1

 .

Proof: The edges (going downward from u to v) in a
Hasse diagram are exactly the covering relations (u B v).
So, using Theorem 2.2, we obtain

En =
{(
u(10 , v(10

)
∈ Vn × Vn | u B v

}
=
{(
u(10 , v(10

)
∈ Vn × Vn |Mu

v has the pattern (3)
}

∪
{(
u(10 , v(10

)
∈ Vn × Vn |Mu

v has the pattern (4)
}
.

On one hand, if Mu
v has the pattern (3) then we have that

v(10 = u(10 + 1, and

u(10 = (u1, . . . , un−1, 0)(10

= 2 (u1, . . . , un−1)(10 = 2p
(
0 ≤ p ≤ 2n−1 − 1

)
.

On the other hand, if Mu
v has the pattern (4) then making

the change of variable m = n− i, we get

v(10 = u(10 + 2n−i with 2 ≤ i ≤ n, i.e.,

v(10 = u(10 + 2m with 0 ≤ m ≤ n− 2 and

u(10 = (u1, . . . , ui−2, 0, 1, ui+1, . . . , un)(10

= (u1, . . . , ui−2, 0, 0, 0, . . . , 0)(10

+ (0, . . . , 0, 0, 1, 0, . . . , 0)(10

+ (0, . . . , 0, 0, 0, ui+1, . . . , un)(10

= 2n−i+2 (u1, . . . , ui−2)(10

+ 2n−i + (ui+1, . . . , un)(10

= 2m+2r + 2m + q = q + 2m (1 + 4r) ,

where, 0 ≤ q ≤ 2m − 1 and 0 ≤ r ≤ 2(n−2)−m − 1.
Example 3.1: Let n = 4. Using Proposition 3.2, we get

A4 =

{(
u(10 , u(10 + 1

) ∣∣∣∣ u(10 = 2p,
0 ≤ p ≤ 2n−1 − 1 = 7

}
=

{
(0, 1) , (2, 3) , (4, 5) , (6, 7) ,

(8, 9) , (10, 11) , (12, 13) , (14, 15)

}
,

B4 =

2⋃
m=0

(u(10 , u(10 + 2m
) ∣∣∣∣∣∣

u(10 = q + 2m (1 + 4r) ,
0 ≤ q ≤ 2m − 1,
0 ≤ r ≤ 22−m − 1


=

 (1, 2) , (5, 6) , (9, 10) , (13, 14) ,
(2, 4) , (3, 5) , (10, 12) , (11, 13) ,
(4, 8) , (5, 9) , (6, 10) , (7, 11)

 ,

where the three above rows respectively correspond to:

m = 0 : q = 0 r = 0, 1, 2, 3 v(10 = u(10 + 20

m = 1 : q = 0, 1 r = 0, 1 v(10 = u(10 + 21

m = 2 : q = 0, 1, 2, 3 r = 0 v(10 = u(10 + 22

Thus, E4 = A4 ∪ B4 contains all the 20 edges (pairs of
adjacent nodes) of the graph I4, as one can confirm looking
at the right-most diagram in Fig. 2. Note that using (5) for
n = 4, we can also confirm that the cardinality of E4 is

|E4| = (n+ 1) 2n−2 = 5 · 22 = 20.

B. Shadows, Neighbors and Degrees

The neighbors of a given vertex u in a graph, are all
those nodes adjacent to u (i.e., connected by one edge to
u). In particular, for (the cover graph of) a Hasse diagram,
the neighbors of vertex u either cover u or are covered by
u. This naturally leads to the following definition [10].

Definition 3.1: Let (P,≤) be a poset and u ∈ P . Then
(i) The lower shadow of u is the set

∆ (u) = {v ∈ P | v is covered by u} = {v ∈ P | u B v } .

(ii) The upper shadow of u is the set

∇ (u) = {v ∈ P | v covers u} = {v ∈ P | v B u} .

Particularly, for our poset P = In, regarding the lower
shadow of u ∈ {0, 1}n, using Theorem 2.2, we have

∆ (u) = {v ∈ {0, 1}n | u B v }
= {v ∈ {0, 1}n |Mu

v has the pattern (3)}
∪ {v ∈ {0, 1}n |Mu

v has the pattern (4)} ,

and hence, the cardinality of the lower shadow of u is exactly
1− un (pattern (3)) plus the number of pairs of consecutive
bits (ui−1, ui) = (0, 1) in u (pattern (4)). Formally:

|∆ (u)| = (1− un) +
n∑

i=2

max {ui − ui−1 , 0} . (6)

Similarly, for the upper shadow of u ∈ {0, 1}n, using again
Theorem 2.2, we have

∇ (u) = {v ∈ {0, 1}n | v B u}
= {v ∈ {0, 1}n |Mv

u has the pattern (3)}
∪ {v ∈ {0, 1}n |Mv

u has the pattern (4)} ,

and hence, the cardinality of the upper shadow of u is exactly
un (pattern (3)) plus the number of pairs of consecutive bits
(ui−1, ui) = (1, 0) in u (pattern (4)). Formally:

|∇ (u)| = un +
n∑

i=2

max {ui−1 − ui , 0} . (7)

Next proposition provides the total number of neighbors
of each node u of the intrinsic order graph In, the so-called
degree of u, denoted, as usual, by δ (u).

Proposition 3.3: Let n ≥ 1 and u ∈ {0, 1}n. The degree
δ (u) of u (i.e., the number of neighbors of u) is

δ (u) = 1 +
n∑

i=2

|ui − ui−1| . (8)
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Proof: Denoting by N (u) the set of neighbors of a
vertex u ∈ {0, 1}n in the graph In, obviously we have

N (u) = ∆ (u) ∪∇ (u)

and from (6) and (7), we immediately obtain

δ (u) = |N (u)| = |∆ (u)|+ |∇ (u)| = 1 +
n∑

i=2

|ui − ui−1| ,

as was to be shown.
Next proposition provides us with the set of neighbors of

each node u of the intrinsic order graph In, using decimal
representation.

Proposition 3.4: Let n ≥ 1, and let u ∈ {0, 1}n with
Hamming weight m. Write u(10 as sum of powers of 2, in
increasing order of the exponents, i.e.,

u(10 =
n∑

i=1

2n−iui = 2p1 + 2p2 + · · ·+ 2pm (9)

(0 ≤ p1 < p2 < · · · < pm ≤ n− 1) .

(i) The lower shadow ∆ (u) of u is characterized as follows:
(i)-(a) If u(10 is even (i.e., if un = 0) then

u(10 + 1 ∈ ∆ (u) , i.e., u(10 . u(10 + 1.

(i)-(b) For any power 2p (0 ≤ p ≤ n− 2) in (9) s.t. 2p+1

does not appear in (9) then

u(10 + 2p ∈ ∆ (u) , i.e., u(10 . u(10 + 2p.

(ii) The upper shadow ∇ (u) of u is characterized as follows:
(ii)-(a) If u(10 is odd (i.e., if un = 1) then

u(10 − 1 ∈ ∇ (u) , i.e., u(10 − 1 . u(10 .

(ii)-(b) For any power 2p (1 ≤ p ≤ n− 1) in (9) s.t. 2p−1

does not appear in (9) then

u(10 − 2p−1 ∈ ∇ (u) , i.e., u(10 − 2p−1 . u(10 .

Proof: The assertions (i)-(a) and (ii)-(a) immediately
follow using pattern (3) in Theorem 2.2, for matrices Mu

v

and Mv
u , respectively. The assertions (i)-(b) and (ii)-(b)

immediately follow using pattern (4) in Theorem 2.2, for
matrices Mu

v and Mv
u , respectively.

Example 3.2: Let n = 4 and u = (1, 0, 1, 0). Then

u = (1, 0, 1, 0) ≡ u(10 = 21 + 23 = 10.

Using Proposition 3.4-(i), we get (note that u(10 = 10 is
even, i.e., u4 = 0)

∆ (10) = {10 + 1} ∪
{

10 + 21
}

= {11, 12}

and using Proposition 3.4-(ii), we get

∇ (10) =
{

10− 20, 10− 22
}

= {6, 9} .

Thus (see the graph I4, the right-most one in Fig. 2)

N (10) = ∆ (10) ∪∇ (10) = {6, 9, 11, 12}

and using (8), we confirm that the cardinality of N (10) is

δ (10) = |N (10)| = 1 +
4∑

i=2

|ui − ui−1|

= 1 + |u2 − u1|+ |u3 − u2|+ |u4 − u3|
= 1 + |0− 1|+ |1− 0|+ |0− 1| = 4.

C. Complementarity and Symmetry

Looking at any of the graphs in Figs. 2 & 3, we observe a
“certain symmetry” in these diagrams. Let us formalize this
fact.

Definition 3.2: Let n ≥ 1 and u ∈ {0, 1}n.
(i) The complementary n-tuple of u is the n-tuple obtained
by changing all its 0s into 1s and vice versa, i.e.,

(u1, . . . , un)
c

= (1− u1, . . . , 1− un) .

(ii) The complementary set of a subset S ⊆ {0, 1}n is the
set of complementary n-tuples of all the n-tuples of S, i.e.,

Sc = {uc | u ∈ S } .

Remark 3.2: Note that for all (u1, . . . , un) ∈ {0, 1}n

(u1, . . . , un) + (u1, . . . , un)
c

= (1, . . . , 1) ≡ 2n − 1.

Hence, the simplest way to verify that two binary n-tuples are
complementary, when we use their decimal representations,
is to check that they sum up to 2n−1. For instance, the binary
3-tuples 2 ≡ (0, 1, 0) and 5 ≡ (1, 0, 1) are complementary,
since 2 + 5 = 7 = 23 − 1. Similarly, the complementary of
the binary 4-tuple 4 ≡ (0, 1, 0, 0) is 11 ≡ (1, 0, 1, 1), since(
24 − 1

)
− 4 = 15− 4 = 11.

The reason underlying the symmetry of the intrinsic order
graph is the duality property of the intrinsic order stated by
the following proposition.

Proposition 3.5: Let n ≥ 1 and u, v ∈ {0, 1}n. Then

u . v ⇔ vc . uc, u � v ⇔ vc � uc.

Proof: Clearly, the
(

0
0

)
,
(

1
1

)
,
(

0
1

)
and

(
1
0

)
columns in

matrix Mu
v , respectively become

(
1
1

)
,
(

0
0

)
,
(

0
1

)
and

(
1
0

)
columns in matrix Mvc

uc . Hence, using Theorem 2.2, we have
that u . v iff Mu

v has either the pattern (3) or the pattern
(4) iff Mvc

uc respectively has either the pattern (3) or the
pattern (4) iff vc . uc. Finally, the right-hand equivalence
immediately follows from the left-hand one and from the
transitive property of the intrinsic order.

Many nice consequences can be derived from Proposition
3.5. Next corollary states only a few of them.

Corollary 3.1: Let n ≥ 1. Let u and v be any two binary
n-tuples placed at symmetric positions (with respect to the
central point) in the graph In. Then
(i) u and v are complementary n-tuples, i.e., v = uc, u = vc.
(ii) The Hamming weights of u and v sum up to n.
(iii) ∆ (u) = ∇c (uc) = ∇c (v), ∇ (u) = ∆c (uc) = ∆c (v).
(iv) The sets of neighbors of u and v are complementary. In
particular, u and v have the same degree.
(v) u(10 is even (odd) ⇔ v(10 is odd (even).

Proof: (i) It is a direct consequence of Proposition 3.5.
(ii) It suffices to use (i) and the obvious fact that

wH (u) + wH (uc) = n.

(iii) Using Definition 3.1, Proposition 3.5 and (i), we get:

w ∈ ∆ (u)⇔ u B w ⇔ wc B uc ⇔ wc ∈ ∇ (uc)

⇔ w ∈ ∇c (uc)⇔ w ∈ ∇c (v)

and thus, taking complementaries, we get

∆ (u) = ∇c (uc)⇒ ∆c (u) = ∇ (uc)

⇒ ∇ (u) = ∆c (uc) = ∆c (v) .
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(iv) Using (iii), we get

N (u) = ∆ (u) ∪∇ (u) = ∇c (v) ∪∆c (v)

= [∇ (v) ∪∆ (v)]
c

= N c (v)

and consequently

δ (u) = |N (u)| = |N c (v)| = |N (v)| = δ (v) .

(v) Using (i), we get

u(10 is even (odd) ⇔ un = 0 (1)

⇔ vn = 1 (0)⇔ v(10 is odd (even)

and this concludes the proof.
Example 3.3: Let n = 4. The binary 4-tuples u = 4 and

v = 11 are placed at symmetric positions (with respect to
the central point) in the graph I4 (see Fig. 2). Therefore:
(i) 4c ≡ (0, 1, 0, 0)

c
= (1, 0, 1, 1) ≡ 11

(
4 + 11 = 24 − 1

)
.

(ii) wH (0, 1, 0, 0) + wH (1, 0, 1, 1) = 1 + 3 = 4 = n.

(iii)∆ (4) = {5, 8} , ∇ (11) = {7, 10} , {5, 8}c = {7, 10} .
∇ (4) = {2} , ∆ (11) = {13} , {2}c = {13} .

(iv) N (4) = {2, 5, 8}, N (11) = {7, 10, 13},
{2, 5, 8}c = {7, 10, 13} and δ (4) = 3 = δ (11).
(v) 4 is even, 11 is odd.

D. Isomorphic Subgraphs and Fractal Structure

A bisection of a graph is a partition of its vertex set
into two (disjoint) subsets with half the vertices each [1].
The most natural way of bisecting the intrinsic order graph
In is the following. The first and second half, respectively,
of {0, 1}n will be the subsets of binary n-tuples whose
first component is u1 = 0 and u1 = 1, respectively. This
procedure can be reiterated by successively bisecting, in the
same way, each of the so-obtained subgraphs.

Let n ≥ 1, 1 ≤ k ≤ n and let ū1, . . . , ūk ∈ {0, 1} be k
fixed binary digits. From now on, I ū1,...,ūk

n denotes the subset
of bitstrings of {0, 1}n whose first or left-most k components
are fixed, namely u1 = ū1, . . . , uk = ūk; while its last or
right-most n−k components, uk+1, . . . , un, take all possible
values (0 or 1). More precisely, I ū1,...,ūk

n is the set{
(ū1, . . . , ūk, uk+1, . . . , un)

∣∣∣ (uk+1, . . . , un) ∈ {0, 1}n−k
}

and its cardinality is |I ū1,...,ūk
n | =

∣∣∣{0, 1}n−k∣∣∣ = 2n−k.
Let us recall that two graphs G (V,E) and G∗ (V ∗, E∗) are

said to be isomorphic if there exists an isomorphism of one of
them to the other, i.e., an edge-preserving bijection [1]. That
is, a graph isomorphism is a one-to-one mapping between
the vertex sets Φ : V → V ∗, which preserves adjacency, i.e.,
u, v are adjacent in G if and only if Φ (u) ,Φ (v) are adjacent
in G∗.

The self-similarity property or fractal structure that one
can observe in Figs. 2 & 3, is an immediate consequence of
the following proposition.

Proposition 3.6: Let n ≥ 1 and 1 ≤ k ≤ n. The 2k equal-
sized subgraphs I ū1,...,ūk

n (each with 2n−k nodes), obtained
after k successive bisections of the intrinsic order graph
In, are pair-wise isomorphic, and indeed all of them are
isomorphic to the intrinsic order graph In−k.

Proof: Consider the following one-to-one mapping

I ū1,...,ūk
n

Φ−→ In−k
(ū1, . . . , ūk, uk+1, . . . , un) 7−→ (uk+1, . . . , un)

Using Theorem 2.2, we have

(ū1, . . . , ūk, uk+1, . . . , un) . (ū1, . . . , ūk, vk+1, . . . , vn)

if and only if

(uk+1, . . . , un) . (vk+1, . . . , vn) ,

so that Φ is an isomorphism of graphs, since it preserves the
edges (covering relations).

For instance, let n = 5 and k = 3. After k = 3 successive
bisections of the intrinsic order graph I5, the 2k = 8
subgraphs are the 8 isomorphic “columns” (each containing
2n−k = 4 nodes) depicted in Fig. 3. Moreover, any of these
“column”-subgraphs of I5 (5-tuples) is isomorphic to I2 (2-
tuples), the second graph from the left in Fig. 2.

IV. CONCLUSION

The behavior of a CSBS depends on the current values
of the 2n binary n-tuple probabilities and on the ordering
between them. In this sense, the intrinsic order graph In
provides us with an useful representation of a CSBS, by
displaying all the bitstrings in decreasing order of their
occurrence probabilities. In this paper, several new properties
of the digraph In have been stated and rigorously proved
(e.g., number of edges, neighbors and degrees of each vertex,
symmetry, fractal structure, etc.). Each of these properties
has been illustrated with a simple example and with the
corresponding graph. Since many different technical systems
in Reliability Engineering are indeed CSBSs, then our results
can be applied to develop new (or to improve already known)
algorithms –based on the intrinsic order– for evaluating the
unavailability system. From a theoretical point of view, this
paper suggests the search of new graph-theoretic and order-
theoretic properties of the intrinsic order graph In.
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[6] L. González, “Complex Stochastic Boolean Systems: Generating and
Counting the Binary n-Tuples Intrinsically Less or Greater than u,” in
Lecture Notes in Engineering and Computer Science: World Congress
on Engineering and Computer Science 2009, pp. 195-200.
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