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Abstract—The intrinsic order is a partial order relation
defined on the set {0, 1}n of all binary n-tuples. This ordering
enables one to automatically compare binary n-tuple proba-
bilities without computing them, just looking at the relative
positions of their 0s & 1s. In this paper, new relations between
the intrinsic ordering and the Hamming weight (i.e., the number
of 1-bits in a binary n-tuple) are derived. All theoretical results
are rigorously proved and illustrated through the intrinsic order
graph.

Index Terms—complex stochastic Boolean system, Hamming
weight, intrinsic order, intrinsic order graph.

I. INTRODUCTION

MANY different phenomena, arising from scientific,
technical or social areas, can be modeled by a sys-

tem depending on a certain number n of random Boolean
variables. The so-called complex stochastic Boolean systems
(CSBSs) are characterized by the ordering between the
occurrence probabilities Pr {u} of the 2n associated binary
strings u = (u1, . . . , un) ∈ {0, 1}n of length n.

According to the usual terminology in Statistics, a
CSBS on n variables x1, . . . , xn can be modeled by
the n-dimensional Bernoulli distribution with parameters
p1, . . . , pn defined by

Pr {xi = 1} = pi, Pr {xi = 0} = 1− pi.

Assuming that the n Bernoulli variables xi are statistically
independent, then the occurrence probability of a given
binary string of length n, u = (u1, . . . , un) ∈ {0, 1}n, can
be easily computed as

Pr {u} =
n∏

i=1

pui
i (1− pi)

1−ui , (1)

that is, Pr {u} is the product of factors pi if ui = 1, 1− pi

if ui = 0.
Example 1.1: Let n = 4 and u = (0, 1, 1, 0) ∈ {0, 1}4.

Let p1 = 0.1, p2 = 0.2, p3 = 0.3, p4 = 0.4. Then using (1),
we have

Pr {(0, 1, 1, 0)} = (1− p1) p2p3 (1− p4) = 0.0324.

The behavior of a CSBS is determined by the ordering
between the current values of the 2n associated binary n-
tuple probabilities Pr {u}. Computing all these 2n proba-
bilities –by using (1)– and ordering them in decreasing or
increasing order of their values is only possible in practice
for small values of the number n of basic variables. However,
for large values of n, to overcome the exponential nature of
this problem, we need alternative procedures for comparing
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the binary string probabilities. For this purpose, in [1] we
have defined a partial order relation on the set {0, 1}n of all
the 2n binary n-tuples, the so-called intrinsic order between
binary n-tuples.

The intrinsic order enables one to easily compare (order)
two given binary n-tuple probabilities Pr {u} ,Pr {v}, with-
out computing them, simply looking at the positions of the
0s and 1s in the binary n-tuples u, v.

In this way, for those pairs (u, v) of binary n-tuples
comparable by intrinsic order, the ordering between their
occurrence probabilities is always the same for all sets of
basic probabilities {pi}n

i=1. On the contrary, for those pairs
(u, v) of binary n-tuples incomparable by intrinsic order, the
ordering between their occurrence probabilities depends on
the current values of the basic probabilities {pi}n

i=1.
The usual representation for a CSBS is the intrinsic order

graph. This is a directed graph on 2n nodes (denoted by In)
that displays all the binary n-tuples from top to bottom in
decreasing order of their occurrence probabilities. Formally,
In is the Hasse diagram of the intrinsic partial order relation
on {0, 1}n.

Let us recall that the Hamming weight of a binary n-tuple
u ∈ {0, 1}n is the sum of all its bits, that is, the number of
1-bits in u.

The aim of this paper is to derive new relations between
the intrinsic order relation and the Hamming weight. For
this purpose, this paper has been organized as follows. In
Section II, we present all previous results about the intrinsic
order required to make this paper self-contained. Section III
is devoted to present the new relations between the intrinsic
ordering and the Hamming weight. Finally, conclusions are
presented in Section IV.

II. INTRINSIC ORDER

Let u = (u1, . . . , un) be a binary n-tuple. In the following,
the decimal numbering of u is denoted by u(10 , i.e.,

u(10 =
n∑

i=1

2n−iui.

The lexicographic order on {0, 1}n, denoted here by the
symbol “≤lex”, is the usual truth-table order, beginning
with the n-tuple (0, . . . , 0) and finishing with the n-tuple
(1, . . . , 1). As is well-known, it coincides with the natural
order between the decimal representations of the bitstrings.
That is,

u ≤lex v ⇔ u precedes v in the truth-table ⇔ u(10 ≤ v(10 .

Throughout this paper, we indistinctly denote the n-tuple
u ∈ {0, 1}n by its binary representation (u1, . . . , un) or by
its decimal representation u(10 , and we use the symbol “≡”
to indicate the conversion between them, i.e.,

u = (u1, . . . , un) ≡ u(10 =
n∑

i=1

2n−iui.
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The Hamming weight –or simply the weight– of u is the
sum of all its n bits. In other words, the Hamming weight
of a binary n-tuple is the number of its 1-bits, and it will be
denoted by

wH (u) =
n∑

i=1

ui.

Example 2.1: For n = 5, we have

u = (0, 0, 1, 1, 0) ≡ u(10 = 21 + 22 = 6.

v = (0, 1, 0, 1, 1) ≡ v(10 = 20 + 21 + 23 = 11.

u ≤lex v since u precedes v in the truth-table or since

u(10 = 6 ≤ 11 = v(10 .

Finally,
wH (u) = 2, wH (v) = 3.

Given two binary n-tuples u, v ∈ {0, 1}n, the ordering be-
tween their occurrence probabilities Pr (u), Pr (v) obviously
depends on the Bernoulli parameters pi, as the following
simple example shows.

Example 2.2: Let n = 3, u = (0, 1, 1) and v = (1, 0, 0).
For p1 = 0.1, p2 = 0.2, p3 = 0.3, using (1), we have:

Pr {(0, 1, 1)} = 0.054 < Pr {(1, 0, 0)} = 0.056,

for p1 = 0.2, p2 = 0.3, p3 = 0.4, using (1), we have:

Pr {(0, 1, 1)} = 0.096 > Pr {(1, 0, 0)} = 0.084.

However, as mentioned in Section I, in [1] we have es-
tablished an intrinsic, positional criterion to compare the
occurrence probabilities of two given binary n-tuples without
computing them. This criterion is presented in detail in
Section II-A, while its graphical representation is shown in
Section II-B.

A. The Intrinsic Order Relation

Theorem 2.1: (The intrinsic order theorem) Let n ≥ 1.
Let x1, . . . , xn be n mutually independent Bernoulli vari-
ables whose parameters pi = Pr {xi = 1} satisfy

0 < p1 ≤ p2 ≤ · · · ≤ pn ≤ 0.5. (2)

Then the occurrence probability of the binary n-tuple v, i.e.,
v = (v1, . . . , vn) ∈ {0, 1}n, is intrinsically less than or equal
to the occurrence probability of the binary n-tuple u, i.e.,
u = (u1, . . . , un) ∈ {0, 1}n, (that is, for all set {pi}n

i=1

satisfying (2)) if and only if the matrix

Mu
v :=

(
u1 . . . un

v1 . . . vn

)
either has no

(
1
0

)
columns, or for each

(
1
0

)
column in

Mu
v there exists (at least) one corresponding preceding

(
0
1

)
column (IOC).

Remark 2.1: In the following, we assume that the pa-
rameters pi always satisfy condition (2). Fortunately, this
hypothesis is not restrictive for practical applications.

Remark 2.2: The
(
0
1

)
column preceding each

(
1
0

)
column

is not required to be necessarily placed at the immediately
previous position, but just at previous position.

Remark 2.3: The term corresponding, used in Theorem
2.1, has the following meaning: For each two

(
1
0

)
columns

in matrix Mu
v , there must exist (at least) two different

(
0
1

)
columns preceding each other. In other words, for each

(
1
0

)
column in matrix Mu

v the number of preceding
(
0
1

)
columns

must be strictly greater than the number of preceding
(
1
0

)
columns.

The matrix condition IOC, stated by Theorem 2.1, is called
the intrinsic order criterion, because it is independent of the
basic probabilities pi and it only depends on the relative
positions of the 0s and 1s in the binary strings u and v.
Theorem 2.1 naturally leads to the following partial order
relation on the set {0, 1}n [1], [2]. The so-called intrinsic
order will be denoted by “�”, and when v � u we say that
v is intrinsically less than or equal to u (or u is intrinsically
greater than or equal to v).

Definition 2.1: For all u, v ∈ {0, 1}n

v � u iff Pr {v} ≤ Pr {u} for all set {pi}n
i=1 s.t. (2)

iff matrix Mu
v satisfies IOC.

In the following, the partially ordered set (poset, for short)
for n variables ({0, 1}n

,�) will be denoted by In; see [10]
for more details about posets.

Example 2.3: For n = 3:

3 ≡ (0, 1, 1) � (1, 0, 0) ≡ 4 & (1, 0, 0) � (0, 1, 1) since(
1 0 0
0 1 1

)
and

(
0 1 1
1 0 0

)
do not satisfy IOC (Remark 2.3). Therefore, (0, 1, 1) and
(1, 0, 0) are incomparable by intrinsic order, i.e., the ordering
between Pr { (0, 1, 1)} and Pr { (1, 0, 0)} depends on the
basic probabilities pi, as Example 2.2 has shown.

Example 2.4: For n = 4:

9 ≡ (1, 0, 0, 1) � (0, 0, 1, 1) ≡ 3 since(
0 0 1 1
1 0 0 1

)
satisfies IOC (Remark 2.2). For all 0 < p1 ≤ · · · ≤ p4 ≤ 1

2

Pr {(1, 0, 0, 1)} ≤ Pr {(0, 0, 1, 1)} .

Example 2.5: For all n ≥ 1, the binary n-tuples(
0,

n

.̂ . ., 0
)
≡ 0 and

(
1,

n

.̂ . ., 1
)
≡ 2n − 1

are the maximum and minimum elements, respectively, in
the poset In. Indeed, for all (u1, . . . , un) ∈ {0, 1}n, both
matrices(

0 . . . 0
u1 . . . un

)
and

(
u1 . . . un

1 . . . 1

)
satisfy IOC, since they have no

(
1
0

)
columns!.

Thus, for all u ∈ {0, 1}n and for all {pi}n
i=1 s.t. (2)

Pr
{(

1,
n

.̂ . ., 1
)}

≤ Pr {(u1, . . . , un)} ≤ Pr
{(

0,
n

.̂ . ., 0
)}

.

Many different properties of the intrinsic order relation
can be derived from its simple matrix description IOC (see,
e.g., [1], [2], [3]). For the purpose of this paper, we must
recall here the following two necessary (but not sufficient)
conditions for intrinsic order.
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Corollary 2.1: The intrinsic order respects the lexico-
graphic order. That is, for all u, v ∈ {0, 1}n

u � v ⇒ u(10 ≤ v(10.

Corollary 2.2: The intrinsic order respects the Hamming
weight. That is, for all u, v ∈ {0, 1}n

u � v ⇒ wH (u) ≤ wH (v) .

Let us briefly recall the simple idea of one the possible
proofs of Corollary 2.2. If u � v then, according to IOC (see
Definition 2.1 and Theorem 2.1), in matrix Mu

v the number
of

(
0
1

)
columns must be greater than or equal to the number

of
(
1
0

)
columns. Hence the total number of both

(
0
1

)
&

(
1
1

)
columns must be greater than or equal to the total number of
both

(
1
0

)
&

(
1
1

)
columns in matrix Mu

v . This is equivalent to
saying that the number of 1-bits in v must be greater than or
equal to the number of 1-bits in u, i.e., wH (v) ≥ wH (u).

B. The Intrinsic Order Graph

In this subsection, the graphical representation of the poset
In = ({0, 1}n

,�) is presented. The usual representation
of a poset is its Hasse diagram (see [10] for more details
about these diagrams). Specifically, for our poset In, its
Hasse diagram is a directed graph (digraph, for short) on
2n vertices, namely the 2n binary n-tuples of 0s and 1s.

In the Hasse diagram of In, u is intrinsically greater than
v (i.e., u � v) if and only if u and v are connected either
by one edge or by a longer descending path from u to v.

The Hasse diagram of the poset In will be also called
the intrinsic order graph for n variables, denoted as well
by In. In [3] we have developed a recursive algorithm for
iteratively building up In (for all n ≥ 2) from I1 (depicted
in Fig. 1). Fig. 2 illustrates this iterative process for the first
few values of n, denoting all the binary n-tuples by their
decimal equivalents.

0
|
1

Fig. 1. The intrinsic order graph for n = 1.

0
|
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0
|
1
|
2
|
3

0
|
1
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| �
3 4

� |
5
|
6
|
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0
|
1
|
2
| �
3 4

� | �
5 8
| � |
6 9
| � |
7 10

� | �
11 12

� |
13
|

14
|

15

Fig. 2. The intrinsic order graphs for n = 1, 2, 3, 4.

Each pair (u, v) of vertices connected in In either by one
edge or by a longer descending path from u to v, means that
u is intrinsically greater than v, i.e., u � v. For instance,
looking at the Hasse diagram of I4, the right-most one in

Fig. 2, we observe that 3 ≡ (0, 0, 1, 1) � 9 ≡ (1, 0, 0, 1), in
accordance with Example 2.4.

On the contrary, each pair (u, v) of non-connected vertices
in In either by one edge or by a longer descending path,
means that u and v are incomparable by intrinsic order, i.e.,
u � v and v � u. For instance, looking at the Hasse diagram
of I3, the third one from left to right in Fig. 2, we observe
that 3 ≡ (0, 1, 1) and 4 ≡ (1, 0, 0) are incomparable by
intrinsic order, in accordance with Example 2.3.

The edgeless graph for a given graph is obtained by re-
moving all its edges, keeping its nodes at the same positions.
In Fig. 3, the edgeless intrinsic order graph of I5 is depicted.

0
1
2
3 4

5 8
6 9 16
7 10 17

11 12 18
13 19 20
14 21 24
15 22 25

23 26
27 28

29
30
31

Fig. 3. The edgeless intrinsic order graph for n = 5.

For further theoretical properties and practical applications
of the intrinsic order and the intrinsic order graph, we refer
the reader to [4], [5], [6], [7], [8], [9].

III. INTRINSIC ORDER AND HAMMING WEIGHT

Now, we present some new relations between the intrinsic
ordering and the Hamming weight. Our starting point is
Corollary 2.2. This proposition has stated that a necessary
condition for u being intrinsically greater than or equal to
v is that the weight of u must be less than or equal to the
weight of v. That is, let u be an arbitrary, but fixed, binary
n-tuple. Then

u � v ⇒ wH (u) ≤ wH (v) for all v ∈ {0, 1}n (3)

or, equivalently,

wH (u) > wH (v) ⇒ u � v.

For instance, looking at the digraph I4, the right-most one
in Fig. 2, we can confirm that

4 ≡ (0, 1, 0, 0) � 13 ≡ (1, 1, 0, 1) ,

wH (4) = 1 < 3 = wH (13)

and that

3 ≡ (0, 0, 1, 1) � 12 ≡ (1, 1, 0, 0) ,

wH (3) = 2 = wH (12) .

However, the necessary condition for intrinsic order stated
by Corollary 2.2 is not sufficient. That is,

wH (u) ≤ wH (v) ; u � v,

as the following simple counter-example (indeed, the sim-
plest one that one can find!) shows.

Example 3.1: For

n = 3, u = 4 ≡ (1, 0, 0) , v = 3 ≡ (0, 1, 1) ,
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we have (see the digraph of I3 in Fig. 2)

wH (4) = 1 < 2 = wH (3) .

However 4 � 3, since matrix

M4
3 =

(
1 0 0
0 1 1

)
does not satisfy IOC (or, more easily, since 4 > 3; see
Corollary 2.1).

Moreover, even assuming that the two necessary condi-
tions stated by Corollaries 2.1 & 2.2 simultaneously hold,
this does not imply intrinsic order. That is,

u(10 < v(10 and wH (u) ≤ wH (v) ; u � v,

as the following simple counter-example (indeed, the sim-
plest one that one can find!) shows.

Example 3.2: For

n = 4, u = 6 ≡ (0, 1, 1, 0) , v = 9 ≡ (1, 0, 0, 1) ,

we have (see the digraph of I4 in Fig. 2)

u(10 = 6 < v(10 = 9 and wH (6) = 2 = wH (9) .

However 6 � 9, since matrix

M6
9 =

(
0 1 1 0
1 0 0 1

)
does not satisfy IOC.

Moreover, even though assuming that the Hamming weight
of u is strictly less than the Hamming weight of v, the two
necessary conditions stated by Corollaries 2.1 & 2.2 do not
imply intrinsic order. That is,

u(10 < v(10 and wH (u) < wH (v) ; u � v,

as the following simple counter-example (indeed, the sim-
plest one that one can find!) shows.

Example 3.3: For

n = 5, u = 12 ≡ (0, 1, 1, 0, 0) , v = 19 ≡ (1, 0, 0, 1, 1) ,

we have

u(10 = 12 < v(10 = 19 and wH (12) = 2 < 3 = wH (19) .

However 12 � 19, since matrix

M12
19 =

(
0 1 1 0 0
1 0 0 1 1

)
does not satisfy IOC.

In this context, two dual questions naturally arise. They
are posed in the two subsections of this section. First, we
need to set the following notations.

Definition 3.1: For every binary n-tuple u ∈ {0, 1}n, Cu

(Cu, respectively) is the set of all binary n-tuples v whose
occurrence probabilities Pr {v} are always less (greater,
respectively) than or equal to Pr {u}, i.e., those n-tuples
v intrinsically less (greater, respectively) than or equal to u,
i.e.,

Cu = {v ∈ {0, 1}n | Pr {u} ≥ Pr {v} ,∀ {pi}n
i=1 s.t. (2)}

= {v ∈ {0, 1}n | u � v } ,

Cu = {v ∈ {0, 1}n | Pr {u} ≤ Pr {v} ,∀ {pi}n
i=1 s.t. (2)}

= {v ∈ {0, 1}n | u � v } .

Definition 3.2: For every binary n-tuple u ∈ {0, 1}n,
Hu (Hu, respectively) is the set of all binary n-tuples v
whose Hamming weights are less (greater, respectively) than
or equal to the Hamming weight of u, i.e.,

Hu = {v ∈ {0, 1}n | wH (u) ≥ wH (v)} ,

Hu = {v ∈ {0, 1}n | wH (u) ≤ wH (v)} .

A. When Greater Weight is Equivalent to Less Probability?

Looking at the implication (3), the following question
immediately arises.

Question 3.1: Can we characterize the binary n-tuples u
for which the necessary condition (3) is also sufficient? That
is, we try to identify those bitstrings u ∈ {0, 1}n for which
the set of binary n-tuples v with weights greater than or equal
to the one of u coincides with the set of binary n-tuples v
with occurrence probabilities less than or equal to the one of
u, i.e.,

u � v ⇔ wH (u) ≤ wH (v) , i.e., Cu = Hu.

The following theorem provides the answer to this ques-
tion, in a very simple way.

Theorem 3.1: Let n ≥ 1 and u = (u1, . . . , un) ∈ {0, 1}n

with Hamming weight wH (u) = m (0 ≤ m ≤ n). Then

Cu = Hu

if and only if either u is the zero n-tuple (m = 0) or the m
1-bits of u (m > 0) are placed at the m right-most positions,
i.e., if and only if u has the general pattern

u =
(

0,
n−m

.̂ . . , 0, 1,
m

.̂ . ., 1
)
≡ 2m − 1, 0 ≤ m ≤ n, (4)

where any (but not both!) of the above two subsets of bits
grouped together can be omitted.

Proof: Sufficient condition. We distinguish two cases:
(i) If u is the zero n-tuple 0 ≡

(
0,

n

.̂ . ., 0
)

, then u is the
maximum element for the intrinsic order (as we have proved
in Example 2.5). Then

C0 = {v ∈ {0, 1}n | 0 � v } = {0, 1}n

= {v ∈ {0, 1}n | wH (0) = 0 ≤ wH (v)} = H0.

(ii) If u is not the zero n-tuple, then u has the pattern (4)
with m > 0. Let v ∈ Hu, i.e., let v let a binary n-tuple with
Hamming weight greater than or equal to m (the Hamming
weight of u). We distinguish two subcases:
(ii)-(a) Suppose that the weight of v is

wH (v) = m = wH (u) .

Then v has exactly m 1-bits and n − m 0-bits. Call r
the number of 1-bits of v placed among the m right-most
positions (max {0, 2m− n} ≤ r ≤ m). Obviously, v has
r 1-bits and m − r 0-bits placed among the m right-most
positions, and also it has m− r 1-bits and n−2m+ r 0-bits
placed among the n −m left-most positions. These are the
positions of the

r+(m− r)+(m− r)+(n− 2m + r) = m+(n−m) = n

bits of the binary n-tuple v.
Hence, matrix Mu

v has exactly m − r
(
1
0

)
columns (all

placed among the m right-most positions) and exactly m−r

Proceedings of the World Congress on Engineering 2012 Vol II 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012



(
0
1

)
columns (all placed among the n−m left-most positions).

Thus, Mu
v satisfies IOC and then u � v, i.e., v ∈ Cu.

So, for this case (ii)-(a), we have proved that

{v ∈ {0, 1}n | wH (v) = wH (u) = m} ⊆ Cu (5)

(ii)-(b) Suppose that the weight of v is

wH (v) = m + p > m = wH (u) (0 < p ≤ n−m).

Then define a new binary n-tuple s as follows. First, select
any p 1-bits in v (say, for instance, vi1 = · · · = vip

= 1).
Second, s is constructed by changing these p 1-bits of v into
0-bits, assigning to the remainder n − p bits of s the same
values as the ones of v. Formally, s = (s1, . . . , sn) is defined
by

si =
{

0 if i ∈ {i1, . . . , ip} ,
vi if i /∈ {i1, . . . , ip} .

On one hand, u � s since

wH (s) = wH (v)− p = m = wH (u)

and then we can apply case (ii)-(a) to s.
On the other hand, s � v since matrix Ms

v has p
(
0
1

)
columns (placed at positions i1, . . . , ip), while its n − p
reminder columns are either

(
0
0

)
or

(
1
1

)
. Hence Ms

v has no(
1
0

)
columns, so that it satisfies IOC.

Finally, from the transitive property of the intrinsic order,
we derive

u � s and s � v ⇒ u � v, i.e., v ∈ Cu.

So, for this case (ii)-(b), we have proved that

{v ∈ {0, 1}n | wH (v) > wH (u) = m} ⊆ Cu (6)

From (5) & (6), we get

{v ∈ {0, 1}n | wH (v) ≥ wH (u) = m} ⊆ Cu,

i.e., Hu ⊆ Cu, and this set inclusion together with the
converse inclusion Cu ⊆ Hu (which is always satisfied for
every binary n-tuple u; see Corollary 2.2) leads to the set
equality Cu = Hu. This proves the sufficient condition.

Necessary condition. Conversely, suppose that not all the
m 1-bits of u are placed at the m right-most positions. In
other words, suppose that

u 6=
(

0,
n−m

.̂ . . , 0, 1,
m

.̂ . ., 1
)

.

Since, by assumption, wH (u) = m then simply using the
necessary condition we derive that(

0,
n−m

.̂ . . , 0, 1,
m

.̂ . ., 1
)
� u,

and then (
0,

n−m

.̂ . . , 0, 1,
m

.̂ . ., 1
)
∈ Hu − Cu

so that,
Hu * Cu.

This proves the necessary condition.
Corollary 3.1: Let n ≥ 1 and let

u =
(

0,
n−m

.̂ . . , 0, 1,
m

.̂ . ., 1
)
≡ 2m − 1, 0 ≤ m ≤ n,

where any (but not both!) of the above two subsets of bits
grouped together can be omitted. Then the number of binary
n-tuples intrinsically less than or equal to u is

|Cu| =
(

n

m

)
+

(
n

m + 1

)
+ · · ·+

(
n

n

)
.

Proof: Using Theorem 3.1, we have

Cu = Hu ⇒ |Cu| = |Hu|
= |{v ∈ {0, 1}n | wH (u) = m ≤ wH (v)}|
= |{v ∈ {0, 1}n | wH (v) = m,m + 1, . . . , n}|

=
(

n

m

)
+

(
n

m + 1

)
+ · · ·+

(
n

n

)
,

as was to be shown.

B. When Less Weight is Equivalent to Greater Probability?

Interchanging the roles of u & v, (3) can be rewritten as
follows. Let u be an arbitrary, but fixed, binary n-tuple. Then

v � u ⇒ wH (v) ≤ wH (u) for all v ∈ {0, 1}n
. (7)

Looking at the implication (7), the following dual question
of Question 3.1, immediately arises.

Question 3.2: Can we characterize the binary n-tuples u
for which the necessary condition (7) is also sufficient? That
is, we try to identify those bitstrings u ∈ {0, 1}n for which
the set of binary n-tuples v with weights less than or equal
to the one of u coincides with the set of binary n-tuples v
with occurrence probabilities greater than or equal to the one
of u, i.e.,

v � u ⇔ wH (v) ≤ wH (u) , i.e., Cu = Hu.

The following theorem provides the answer to this ques-
tion, in a very simple way. For a very short proof of this
theorem, we use the following definition.

Definition 3.3: (i) The complementary n-tuple of a
given binary n-tuple u = (u1, . . . , un) ∈ {0, 1}n is obtained
by changing its 0s into 1s and its 1s into 0s

uc = (u1, . . . , un)c = (1− u1, . . . , 1− un) .

Obviously, two binary n-tuples are complementary if and
only if their decimal equivalents sum up to(

1,
n

.̂ . ., 1
)

(10
= 2n − 1.

(ii) The complementary set of a given subset S ⊆ {0, 1}n of
binary n-tuples is the set of the complementary n-tuples of
all the n-tuples of S

Sc = {uc | u ∈ S } .

Theorem 3.2: Let n ≥ 1 and u = (u1, . . . , un) ∈ {0, 1}n

with Hamming weight wH (u) = m (0 ≤ m ≤ n). Then

Cu = Hu

if and only if either u is the zero n-tuple (m = 0) or the m
1-bits of u (m > 0) are placed at the m left-most positions,
i.e., if and only if u has the general pattern

u =
(

1,
m

.̂ . ., 1, 0,
n−m

.̂ . . , 0
)
≡ 2n − 2n−m, 0 ≤ m ≤ n, (8)
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where any (but not both!) of the above two subsets of bits
grouped together can be omitted.

Proof: Using Theorem 3.1 and the facts that (see, e.g.,
[4], [5], [7])

(Cu)c = Cuc

, (Hu)c = Huc ,

we get

Cu = Hu ⇔ (Cu)c = (Hu)c ⇔ Cuc

= Huc

⇔ uc has the pattern (4) ⇔ u has the pattern (8),

as was to be shown.
Corollary 3.2: Let n ≥ 1 and let

u =
(

1,
m

.̂ . ., 1, 0,
n−m

.̂ . . , 0
)
≡ 2n − 2n−m, 0 ≤ m ≤ n,

where any (but not both!) of the above two subsets of bits
grouped together can be omitted. Then the number of binary
n-tuples intrinsically greater than or equal to u is

|Cu| =
(

n

0

)
+

(
n

1

)
+ · · ·+

(
n

m

)
.

Proof: Using Corollary 3.1, we get

|Cu| = |(Cu)c| =
∣∣∣Cuc

∣∣∣
=

(
n

n−m

)
+

(
n

n−m + 1

)
+ · · ·+

(
n

n

)
=

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

m

)
,

as was to be shown.
Example 3.4: Let n = 5.

According to Theorem 3.1, the 6 binary 5-tuples u = 2m−1
(0 ≤ m ≤ 5), for which Cu = Hu are:

(0, 0, 0, 0, 0) ≡ 0, (0, 0, 0, 0, 1) ≡ 1, (0, 0, 0, 1, 1) ≡ 3,

(0, 0, 1, 1, 1) ≡ 7, (0, 1, 1, 1, 1) ≡ 15, (1, 1, 1, 1, 1) ≡ 31.

Note that obviously {2n − 2n−m}n
m=0 = {2n − 2m}n

m=0.
Then, according to Theorem 3.2, the 6 binary 5-tuples
u = 25 − 2m (0 ≤ m ≤ 5), for which Cu = Hu are the
complementary ones of the above 5-tuples :

(1, 1, 1, 1, 1) ≡ 31, (1, 1, 1, 1, 0) ≡ 30, (1, 1, 1, 0, 0) ≡ 28,

(1, 1, 0, 0, 0) ≡ 24, (1, 0, 0, 0, 0) ≡ 16, (0, 0, 0, 0, 0) ≡ 0.

Example 3.4 is illustrated by Fig. 4, where the upper
index or exponent on each node represents its Hamming
weight. The reader can check easily that any of the nodes u
inserted in a circle (box, respectively) is intrinsically greater
(less, respectively) than or equal to all those nodes v with
Hamming weights (exponents) greater (less, respectively)
than or equal to the Hamming weight (exponent) of u.
Just check that all the corresponding matrices Mu

v (Mv
u ,

respectively), satisfy IOC. Alternatively, it suffices to draw
the omitted edges in Fig. 4! For instance,

7 � 26 since M7
26 =

(
0 0 1 1 1
1 1 0 1 0

)
satisfies IOC,

30 ≺ 5 since M5
30 =

(
0 0 1 0 1
1 1 1 1 0

)
satisfies IOC.

0©0

1©1

21

3©2 41

52 81

62 92 161

7©3 102 172

113 122 182

133 193 202

143 213 242

15©4 223 253

234 263

274 283

294

304

31©5

Fig. 4. The edgeless graph I5. The nodes u for which all the
bitstrings with weight (exponent) greater than or equal to the
weight (exponent) of u exactly coincide with all the bitstrings
whose probabilities are less than or equal the probability of u, are
highlighted by a circle. The nodes u for which all the bitstrings
with weight (exponent) less than or equal to the weight (exponent)
of u exactly coincide with all the bitstrings whose probabilities are
greater than or equal the probability of u, are highlighted by a box.

IV. CONCLUSION

Let u be an arbitrary, but fixed, binary n-tuple. It is known
that the set Cu (Cu, respectively) of binary n-tuples v whose
occurrence probabilities are always, i.e., intrinsically less (greater,
respectively) than or equal to the occurrence probability of u is
a subset of the set Hu (Hu, respectively) of binary n-tuples v
whose Hamming weights are greater (less, respectively) than or
equal to the Hamming weight of u. We have proved that Cu = Hu

(Cu = Hu, respectively) if and only if either u is the zero n-tuple
or all the m 1-bits of u are placed at the m right-most (left-most,
respectively) positions of the bitstring. The binary n-tuples u with
such special patterns, can be identified in the intrinsic order graph
In as the n + 1 nodes 2m − 1 (0 ≤ m ≤ n), i.e., the top-most
node 0 and the bottom-most nodes of its subgraphs I1, I2, . . . , In

(or as the symmetric nodes –with respect to the middle point– of
the previous ones, respectively).
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[4] L. González, “Algorithm comparing binary string probabilities in com-
plex stochastic Boolean systems using intrinsic order graph,” Adv
Complex Syst, vol. 10, no. Suppl. 1, pp. 111-143, 2007.
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[9] L. González, D. Garcı́a, and B. Galván, “An Intrinsic Order Criterion
to Evaluate Large, Complex Fault Trees,” IEEE Trans on Reliability,
vol. 53, no. 3, pp. 297-305, 2004.

[10] R. P. Stanley, Enumerative Combinatorics, vol. 1. Cambridge, MA:
Cambridge University Press, 1997.

Proceedings of the World Congress on Engineering 2012 Vol II 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012




