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Abstract

This paper deals with the orthogonal projection (in the Frobenius sense) AN
of the identity matrix I onto the matrix subspace AS (A ∈ R

n×n, S being
an arbitrary subspace of Rn×n). Lower and upper bounds on the normalized
Frobenius condition number of matrix AN are given. Furthermore, for every
matrix subspace S ⊂ Rn×n, a new index κ̂F (A, S), which generalizes the
normalized Frobenius condition number of matrix A, is defined and analyzed.
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1. Introduction

Throughout this paper, AT and tr (A) denote, as usual, the transpose and
the trace of matrix A ∈ R

n×n, while I denotes the identity matrix of order
n. Let 〈·, ·〉

F
and ‖·‖

F
denote the Frobenius inner product and matrix norm,

defined on the matrix space Rn×n. In the following, the terms orthogonality,
angle and cosine will be used in the sense of the Frobenius inner product.
The symbols κF (·) and κ̂F (·) stand for the classical and for the normalized
Frobenius condition numbers, respectively, i.e., for every nonsingular n × n
real matrix M

κF (M) = ‖M‖
F

∥∥M−1
∥∥
F
, κ̂F (M) =

1

n
‖M‖

F

∥∥M−1
∥∥
F
.
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Let us recall that the solution of the linear system

Ax = b, A ∈ R
n×n, x, b ∈ R

n (A nonsingular and sparse) (1.1)

is usually performed by iterative methods based on Krylov subspaces (see,
e.g., [1, 2]).

To improve the convergence of these Krylov methods, system (1.1) can
be preconditioned with an adequate preconditioning nonsingular matrix N ,
transforming it into any of the equivalent systems [3]

NAx = Nb,

ANy = b, x = Ny,

the so-called left and right preconditioned systems, respectively. In this pa-
per, we address only the case of the right-hand side preconditioned matrices
AN (analogous results can be obtained for the left-hand side preconditioned
matrices NA).

Often, the preconditioning of system (1.1) is performed in order to get a
preconditioned matrix AN as close as possible to the identity in some sense.
The preconditioner N is called an approximate inverse of A. The closeness of
AN to I may be measured by using a suitable matrix norm like, for instance,
the Frobenius norm [3]. In this way, the best preconditioner N (with respect
to the Frobenius norm) of system (1.1) in an arbitrary subspace S of Rn×n can
be obtained by minimizing the residual Frobenius norm ‖AM − I‖

F
over the

subspace S. That is, the best preconditioner N of system (1.1) in subspace
S is the solution to the minimization problem; see, e.g., [4]

min
M∈S

‖AM − I‖
F
= ‖AN − I‖

F
. (1.2)

Although some of the results presented in this paper are also valid for
the case that the solution N to problem (1.2) is singular, from now on, we
assume that matrix N (and thus also matrix AN) is a nonsingular matrix.

Taking advantage of the Frobenius inner product in Rn×n, the matrix
AN defined by Eq. (1.2) can be obtained as the orthogonal projection of
the identity onto the subspace AS. The solution N to problem (1.2) will be
referred to as the “optimal” preconditioner of system (1.1) (or as the “best”
approximate inverse of matrix A) in the subspace S. In the following, the
preconditioning of a linear system with the optimal preconditioner N defined
by problem (1.2)), will be referred to as the “optimal preconditioning” of

2



system (1.1) in subspace S. In [5], the solution N to problem (1.2) is called
the S-Moore-Penrose inverse of matrix A, and it is theoretically analyzed as
a natural generalization of the classical Moore-Penrose inverse.

We must highlight here that the purpose of this paper is purely theoreti-
cal, and the relation between problem (1.2) and the preconditioning problem
is also analyzed here from a theoretical point of view, and not looking for
numerical or computational immediate approaches. In particular, the terms
“optimal preconditioner” or ‘best approximate inverse” are used in the sense
of formula (1.2), and not in any other sense of these expressions.

Regarding the above mentioned connection between the Frobenius norm
and the art of preconditioning, in [6] the authors consider the following equal-
ity

‖AQ− I‖2
F
=

(√
n− ‖AQ‖

F

)2
+ 2

√
n ‖AQ‖

F
(1− cos (AQ, I))

to present an interesting geometrical analysis of the practical difficulties for
building accurate approximate inverses Q with a prescribed sparsity pattern.

Moreover, in [6, 7, 8], some geometrical properties and bounds on the
Frobenius condition number for positive definite matrices are derived. In
this paper we address the analysis of the normalized Frobenius condition
number to a different case, namely for the orthogonal projections AN of the
identity onto the matrix subspaces AS.

The following are the main goals and the organization of this paper. First,
in Section 2, we provide some inequalities for the normalized Frobenius con-
dition number κ̂F (AN) of matrix AN . Second, in Section 3, a new index
κ̂F (A, S) is introduced as a natural generalization of the normalized Frobe-
nius condition number κ̂F (A) of matrix A. The new index κ̂F (A, S) (referred
to as the S-normalized Frobenius condition number of A) is closely related
to the optimal preconditioner N in the subspace S, and it is compared with
‖AN − I‖

F
. Finally, some concluding remarks are given in Section 4.

2. Normalized Frobenius condition number of matrix AN

In this section, we present some upper and lower bounds on the normal-
ized Frobenius condition number κ̂F (AN) of the orthogonal projection AN
defined by Eq. (1.2).

The fact that the Frobenius condition number of the n×n identity matrix
I is κF (I) = n, implies that, with respect to this condition number, the
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identity matrix becomes more and more ill-conditioned as n increases (i.e.,
κF (I) → ∞ as n → ∞). This makes the classical Frobenius condition
number κF (·) inadequate as a measure of the conditioning of a linear system
of equations [9].

For this reason, instead of using the classical Frobenius condition number
κF (·), throughout this paper we use a more meaningful measure, based on
the normalized Frobenius norm

1√
n
‖M‖

F
=

√
1

n
tr (MMT ),

and henceforth referred to as the normalized Frobenius condition number.
This normalized measure of conditioning is denoted by κ̂F (·), and defined
for all nonsingular n× n real matrix M as

κ̂F (M) =
1

n
‖M‖

F

∥∥M−1
∥∥
F
=

1

n
κF (M) . (2.1)

Now, from Eq. (2.1) it is obvious that κ̂F (I) = 1, and also that

κ̂F (M) =
1

n
‖M‖

F

∥∥M−1
∥∥
F
≥ 1

n

∥∥MM−1
∥∥
F
=

1

n
‖I‖

F
=

√
n

n
,

i.e., for all nonsingular matrix M ∈ Rn×n, we have

κ̂F (M) ≥
√
n

n
. (2.2)

The following lemma provides us with lower and upper bounds on the
normalized Frobenius condition number κ̂F (AN) of the orthogonal projec-
tion AN , involving its largest and its smallest singular value. From now on,
we denote by {σi}ni=1 the set of singular values of matrix AN arranged, as
usual, in nonincreasing order, i.e.,

σ1 ≥ σ2 ≥ . . . ≥ σn > 0.

Lemma 2.1. Let A ∈ Rn×n be nonsingular and let S be a linear subspace of

Rn×n. Let N be the solution to problem (1.2). Then

σ1

n
≤ σ1

nσn

≤ κ̂F (AN) ≤ σ1

σn

<

√
n

σn

.
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Proof. Denote by ‖·‖2 and by κ2 (·) the spectral matrix norm and the spec-
tral condition number, respectively. Using the well-known relations between
the spectral and the Frobenius matrix norms [10]

‖·‖2 ≤ ‖·‖
F
≤

√
n ‖·‖2 ,

we get
1

n
κ2 (AN) ≤ κ̂F (AN) ≤ κ2 (AN) ,

i.e.,
σ1

nσn

≤ κ̂F (AN) ≤ σ1

σn

.

Now, on one hand, taking into account the following property of the orthog-
onal projection AN ; see, e.g., [4, 11]

0 ≤ ‖AN‖2
F
= tr(AN) ≤ n, (2.3)

we get

σ2
1 <

n∑

i=1

σ2
i
= ‖AN‖2

F
≤ n ⇒ σ1 <

√
n.

On the other hand, we use the following fact derived in [11]: The small-
est singular value of the orthogonal projection AN of the identity onto the
subspace AS is never greater than 1, i.e.,

0 < σn ≤ 1.

Hence, we get

σ1

n
≤ σ1

nσn

≤ κ̂F (AN) ≤ σ1

σn

<

√
n

σn

. �

The following lemma provides lower and upper bounds on the normal-
ized Frobenius condition number κ̂F (AN) of the orthogonal projection AN ,
involving the Frobenius norms of both matrix AN and its inverse.

Lemma 2.2. Let A ∈ Rn×n be nonsingular and let S be a linear subspace of

Rn×n. Let N be the solution to problem (1.2). Then

1

n
‖AN‖

F
≤ κ̂F (AN) ≤

√
n

n

∥∥(AN)−1
∥∥
F
.

5



Proof. To prove the left-hand inequality, it suffices to use Eqs. (2.2) and
(2.3)

κ̂F (AN) ≥
√
n

n
≥ ‖AN‖

F

n
.

To prove the right-hand inequality, we use again Eq. (2.3)

κ̂F (AN) =
1

n
‖AN‖

F

∥∥(AN)−1
∥∥
F
≤

√
n

n

∥∥(AN)−1
∥∥
F
. �

Remark 2.1. By the way, from the right-hand side inequality in Lemma 2.2
and from Eq. (2.2) we derive the following relationship between the Frobenius
norms of the inverses of matrices A and its best approximate inverse N .

∥∥A−1
∥∥
F

∥∥N−1
∥∥
F
≥

∥∥(AN)−1
∥∥
F
≥

√
n κ̂F (AN) ≥ 1 ⇒

∥∥A−1
∥∥
F

∥∥N−1
∥∥
F
≥ 1.

3. The index κ̂F (A,S)

In this section, a new index κ̂F (A, S), closely related to the optimal pre-
conditioning in the subspace S, is defined and compared with the normalized
Frobenius condition number of matrix A. For this purpose, our starting point
is the following upper bound on the cosine of the angle between the orthog-
onal projection AN and the identity; see [6, 12] and Eq. (2.3)

cos (AN, I) =
〈AN, I〉

F

‖AN‖
F
‖I‖

F

=
tr (AN)

‖AN‖
F

√
n
=

√
tr (AN)√

n

=
‖AN‖

F√
n

≤ ‖A‖
F
‖N‖

F√
n

=
1
n
‖A‖

F
‖N‖

F√
n/n

. (3.1)

This suggests the following definition.

Definition 3.1. Let A ∈ R
n×n be nonsingular and let S be a linear sub-

space of Rn×n. Let N be solution to problem (1.2). Then the S-normalized
Frobenius condition number of matrix A is defined by

κ̂F (A, S) =
1

n
‖A‖

F
‖N‖

F
.
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The S-normalized Frobenius condition number κ̂F (A, S) of matrix A, can
be seen as the optimal (right) approximate normalized Frobenius condition

number of matrix A in S, since matrix N is the optimal (right) approximate
inverse of matrix A in subspace S.

Obviously, the S-normalized Frobenius condition number of matrix A
generalizes its normalized Frobenius condition number, that is (see Eq. (2.1)),

S ∋ A−1 ⇒ N = A−1 ⇒ κ̂F (A, S) =
1

n
‖A‖

F
‖N‖

F

=
1

n
‖A‖

F

∥∥A−1
∥∥
F
= κ̂F (A) ,

e.g.,
κ̂F

(
A,Rn×n

)
= κ̂F

(
A, span

{
A−1

})
= κ̂F (A) .

Remark 3.1. Note that Definition 3.1 can be extended to any complex ma-
trix A ∈ Cm×n, by considering a subspace S ⊂ Cn×m and, in fact, obtaining
right and left S-normalized Frobenius condition numbers, respectively asso-
ciated to the solutions N and N ′ of the minimization problems

min
M∈S

‖AM − Im‖F = ‖AN − Im‖F , min
M∈S

‖MA− In‖F = ‖N ′A− In‖F .

However, as already mentioned, in this paper we restrict our study (and
thus Definition 3.1) to the case of the (right) minimization problem (1.2),
associated to the right preconditioning matrix N of a linear system Ax = b
(A ∈ Rn×n, A nonsingular).

3.1. Lower bounds on κ̂F (A, S)

The following theorem provides different lower bounds on κ̂F (A, S).

Theorem 3.1. Let A ∈ Rn×n be nonsingular and let S be a linear subspace

of Rn×n. Let N be the solution to problem (1.2). Then

(i) 1
n
|〈A,N〉

F
| ≤ κ̂F (A, S).

(ii)
√
n

n
cos (AN, I) =

√
tr(AN)

n
=

‖AN‖
F

n
≤ κ̂F (A, S).

(iii) tr(AN)
n
√
n

≤ κ̂F (A, S).

(iv) 2
n2 tr (A) tr (N)− 1

n
|〈A,N〉

F
| ≤ κ̂F (A, S).
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(v) tr(A)tr(N)
n2 ≤ κ̂F (A, S).

(vi) 1
‖A−1‖

F
‖N−1‖

F

≤ κ̂F (A, S).

Proof.
(i) It suffices to use the Cauchy-Schwarz inequality.

(ii) Using Eq. (3.1), the proof is straightforward.

(iii) It suffices to use Eq. (3.1)

1 ≥ cos (AN, I) =
tr (AN)

‖AN‖
F

√
n
≥ tr (AN)

‖A‖
F
‖N‖

F

√
n
=

tr (AN)

κ̂F (A, S)n
√
n
.

(iv) Using the well-known Buzano’s inequality (an extension of the Cauchy-
Schwarz inequality in an inner product space)

|〈a, x〉 · 〈x, b〉| ≤ 1

2
(‖a‖ ‖b‖ + |〈a, b〉|) ‖x‖2

for the Frobenius inner product and for a = A, x = I, b = N , we get

tr (A) tr (N) = 〈A, I〉
F
· 〈N, I〉

F
≤ |〈A, I〉

F
· 〈I, N〉

F
|

≤ 1

2
(‖A‖

F
‖N‖

F
+ |〈A,N〉

F
|) ‖I‖2

F

=
n

2
(‖A‖

F
‖N‖

F
+ |〈A,N〉

F
|)

=
n2

2

(
κ̂F (A, S) +

1

n
|〈A,N〉

F
|
)
.

(v) Using (iv) and (i), we get

κ̂F (A, S) ≥ 2

n2
tr (A) tr (N)− 1

n
|〈A,N〉

F
| ≥ 2

n2
tr (A) tr (N)− κ̂F (A, S)

⇒ κ̂F (A, S) ≥ tr (A) tr (N)

n2
.

(vi) Using Eq. (2.2), we get

κ̂F (A, S)
∥∥A−1

∥∥
F

∥∥N−1
∥∥
F
=

1

n
‖A‖

F
‖N‖

F

∥∥A−1
∥∥
F

∥∥N−1
∥∥
F

= n

(
1

n
‖A‖

F

∥∥A−1
∥∥
F

)(
1

n
‖N‖

F

∥∥N−1
∥∥
F

)

= n κ̂F (A) κ̂F (N) ≥ n

√
n

n

√
n

n
= 1. �
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The following two corollaries give lower bounds on κ̂F (A, S) for special
cases of matrices A and N .

Corollary 3.1. Let A ∈ Rn×n be nonsingular and let S be a linear subspace

of Rn×n. Let N be the solution to problem (1.2). Suppose that matrix A or

matrix N (or both) are symmetric. Then

(i)
‖AN‖2

F

n
= tr(AN)

n
≤ κ̂F (A, S).

(ii) 2
n2 tr (A) tr (N)− 1 ≤ κ̂F (A, S).

Proof.
(i) Using Theorem 3.1-(i) and Eq. (2.3), we get

κ̂F (A, S) ≥ 1

n
|〈A,N〉

F
| = 1

n

∣∣tr
(
ATN

)∣∣ = 1

n

∣∣tr
(
ANT

)∣∣

=
1

n
|tr (AN)| = 1

n
tr (AN) =

1

n
‖AN‖2

F
.

(ii) Using Theorem 3.1-(iv) and Eq. (2.3), we get

κ̂F (A, S) ≥ 2

n2
tr (A) tr (N)− 1

n
|〈A,N〉

F
| = 2

n2
tr (A) tr (N)− 1

n

∣∣tr
(
ATN

)∣∣

=
2

n2
tr (A) tr (N)− 1

n

∣∣tr
(
ANT

)∣∣ = 2

n2
tr (A) tr (N)− 1

n
|tr (AN)|

=
2

n2
tr (A) tr (N)− 1

n
tr (AN) ≥ 2

n2
tr (A) tr (N)− 1. �

Corollary 3.2. Let A ∈ Rn×n be nonsingular and let S be a linear subspace

of Rn×n. Let N be the solution to problem (1.2). Suppose that matrix AN is

symmetric and positive definite. Then

1

n
≤ κ̂F (A, S) .

Proof. The proof is straightforward using Theorem 3.1-(ii) and the fact
that since the orthogonal projection AN is symmetric and positive definite
then cos (AN, I) ≥ 1√

n
; see [12]. �
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3.2. Upper bounds on κ̂F (A, S)

Next theorem provides different upper bounds on κ̂F (A, S), comparing
it with the normalized Frobenius condition numbers of matrices A and N .

Theorem 3.2. Let A ∈ Rn×n be nonsingular and let S be a linear subspace

of Rn×n. Let N be the solution to problem (1.2). Then

(i) κ̂F (A, S) ≤ √
n κ̂F (A) .

(ii) κ̂F (A, S) ≤ √
n κ̂F (N) .

(iii) κ̂F (A, S) ≤ n ·min {κ̂2
F
(A) , κ̂F (A) κ̂F (N) , κ̂2

F
(N)} .

Proof.
(i) Using Eqs. (2.1) and (2.3), we get

κ̂F (A, S) =
1

n
‖A‖

F
‖N‖

F
=

1

n
‖A‖

F

∥∥A−1 (AN)
∥∥
F

≤ 1

n
‖A‖

F

∥∥A−1
∥∥
F
‖AN‖

F
= ‖AN‖

F
κ̂F (A) ≤

√
n κ̂F (A) .

(ii) Using again Eqs. (2.1) and (2.3), we get

κ̂F (A, S) =
1

n
‖A‖

F
‖N‖

F
=

1

n

∥∥(AN)N−1
∥∥
F
‖N‖

F

≤ 1

n
‖AN‖

F
‖N‖

F

∥∥N−1
∥∥
F
= ‖AN‖

F
κ̂F (N) ≤

√
n κ̂F (N) .

(iii) It suffices to use (i), (ii) and Eq. (2.2). �

Remark 3.2. It is important to highlight that the exact computation of the
normalized Frobenius condition number κ̂F (A) of matrix A is, in general,
not feasible since it requires to compute the Frobenius norm of the unknown
inverse of A; see Eq. (2.1). On the contrary, the S-normalized Frobenius
condition number κ̂F (A, S) of matrix A, introduced in this paper, is an
explicitly computable quantity. Indeed, it can be easily computed simply by
evaluating the Frobenius norms of both matrices A and N ; see Definition
3.1. Regarding the optimal approximate inverse N of A over the subspace
S, let us mention that this matrix can be explicitly computed, for instance
from an orthogonal basis of subspace AS. Such orthogonal basis can be
easily obtained from a basis of subspace S and using the Gram-Schmidt
orthogonalization procedure if necessary [4].
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4. Conclusions

In this paper, we have considered the optimal approximate inverse N (in
the Frobenius sense) for a given nonsingular matrix A ∈ Rn×n, among all ma-
trices belonging to a fixed matrix subspace S ⊂ Rn×n, that is, the solution
N to problem (1.2). Then, in the theoretical context of the preconditioning
problem for large linear systems, we have focused on the optimal precondi-
tioned matrix AN , that is, the orthogonal projection (with respect to the
Frobenius inner product) of the identity matrix onto the subspace AS.

We have derived some inequalities for the normalized Frobenius condition
number κ̂F (AN) of matrix AN . In addition, we have introduced a new
index, closely related to the optimal preconditioning of large linear systems,
using Frobenius norm minimization: The so-called S-normalized Frobenius
condition number of matrix A, denoted by κ̂F (A, S). Different lower and
upper bounds on κ̂F (A, S) have been obtained. The new index κ̂F (A, S)
generalizes the classical normalized Frobenius condition number κ̂F (A) of
matrix A, and both numbers coincide when N = A−1 (i.e., when S ∋ A−1).
In the general case, when A−1 /∈ S, κ̂F (A, S) provides the best approximation
in the subspace S to κ̂F (A). The latter can not be computed in general; the
former can always be exactly computed from a basis of subspace S.

Finally, for future research, one can think on the possibility of establishing
some relations between the minimum residual Frobenius norm ‖AN − I‖

F

and the new proposed index κ̂F (A, S), in order to estimate the quality of
the approximation N ≈ A−1 in terms of the value of κ̂F (A, S) (which can be
exactly computed).
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