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2 MONTENEGRO ET AL.

1. OUR RESEARCH ON WIND SIMULATION

In the University of Las Palmas de Gran Canaria (ULPGC), a group of persons have
been working hard in wind simulation from 1987. The model have been improved during
this last sixteen years. Actually, a research group of the Division of Advanced Numerical
Algebra and the Division of Discretization and Applications, belonging to the University
Institute of Intelligent Systems and Numerical Applications in Engineering (IUSIANI)
of the ULPGC, have developed an efficient package for the three-dimensional wind field
simulation. The final code include most recent techniques in numerical methods, such that,
adaptive finite element method, tetrahedral mesh refinement, automatic mesh generation,
parameter estimation using genetic algorithms, visualization of results using AVS, etc.
In this section we present the group and its experience in these years. Specifically, we
enumerate the main cientific results in the topic of wind simulation, in which members of
our group have participated. The techniques and the wind field model have been recognized
by the international cientific community, as it can be proved by the articles published
in prestigious journals, conference communications and research projects sponsored by
different institutions.

1.1. Researchers

The research about 3-D wind simulation, presented in this report, have been developed
in the Division of Advanced Numerical Algebra and the Division of Discretization and
Applications, belonging to the University Institute of Intelligent Systems and Numerical
Applications in Engineering (IUSIANI) of the ULPGC. In particular, the group is
composed of the following researchers:

• Rafael Montenegro Armas. Director of the Division of Discretization and Applications
of IUSIANI. Professor of Applied Mathematics of the ULPGC. Doctor of Industrial
Engineering.
• Gustavo Montero Garćıa. Director of the Division of Advanced Numerical Algebra

of IUSIANI. Professor of Applied Mathematics of the ULPGC. Doctor of Industrial
Engineering.
• José Maŕıa Escobar Sánchez. Member of the Division of Discretization and

Applications of IUSIANI. Associated Professor of Signal Theory. Licenciate of Physics
and Doctor of Mathematics.
• Eduardo Rodŕıguez Barrera. Member of IUSIANI. Licenciate of Computer Science.
• José Maŕıa González Yuste. Member of IUSIANI. Licenciate of Computer Science.

1.2. Research Projects

• Numerical Modelling of Wind Field Velocities in Wind Farms. Sponsored by
Consejeŕıa de Industria y Enerǵıa del Gobierno de Canarias, Spain; (B.O.C.:
05.18.1987).
• Numerical Modelling of Wind Field Velocities in Wind Farms Using Adaptive Finite

Element Methods and Applications. Sponsored by Consejeŕıa de Industria y Enerǵıa

del Gobierno de Canarias, Spain; (B.O.C.: 01.06.1988).
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AN EFFICIENT PACKAGE FOR 3-D WIND SIMULATION 3

• Wind Field Adjustment Using Mixed Finite Elements. Applications to Wind Farms.
Sponsored by Consejeŕıa de Industria y Enerǵıa del Gobierno de Canarias, Spain;
(B.O.C.: 10.27.1989).
• Construction of an Adaptive Model for the Evolution Air Pollution Problem.

Sponsored by Consejeŕıa de Industria y Enerǵıa del Gobierno de Canarias, Spain;
(B.O.C.: 10.15.1990).
• Numerical Simulation of Pollutions. Application to Power Stations. Sponsored by

Consejeŕıa de Industria y Enerǵıa del Gobierno de Canarias, Spain; (B.O.C.:
10.15.1990).
• Construction of Wind Maps with 3-D Numerical Simulation for Wind Farms.

Sponsored by Consejeŕıa de Industria y Enerǵıa del Gobierno de Canarias, Spain;
(B.O.C.: 03.23.1992).
• Applications of Genetic Algorithms in the Optimisation of Fluid Dynamic Problems.

Sponsored by Dassault Aviation (1994-1995).
• Numerical Modelling of Atmospheric Pollutant Transport. Sponsored by Plan

Nacional de I+D+I, Ministerio de Ciencia y Tecnoloǵıa, Spain, and FEDER;
REN2001-0925-C03-02/CLI (2002-2004).

1.3. Journal Articles

• L. Ferragut, R. Montenegro, A. Plaza. Efficient Refinement/Derefinement Algorithm
of Nested Meshes to solve Evolution Problems. Communications in Numerical

Methods in Engineering ; v. 10, pp. 403-412, John Wiley & Sons Ltd. (1994).
• G. Winter, G. Montero, L. Ferragut, R. Montenegro. Adaptive Strategies Using

Standard and Mixed Finite Elements for Wind Field Adjustment. Solar Energy ;
v. 54, 1, pp. 49-56, Pergamon Press (1995).
• A. Plaza, R. Montenegro, L. Ferragut. An Inproved Derefinement Algorithm of

Nested Meshes. Advances in Engineering Software, v. 27, 1/2, pp. 51-57, Elsevier
Ltd. (1996).
• J.M. Escobar, R. Montenegro. Several Aspects of Three-Dimensional Delaunay

Triangulation. Advances in Engineering Software, v. 27, 1/2, pp. 27-39, Elsevier Ltd.
(1996).
• R. Montenegro, A. Plaza, L. Ferragut, I. Asensio. Application of a Nonlinear

Evolution Model to Fire Propagation. Nonlinear Analysis, Theory, Methods &

Applications, v. 30, 5, pp. 2873-2882, Elsevier Ltd. (1997).
• G. Montero. Solving Optimal Control Problems by Genetic Algorithms. Nonlinear

Analysis, Theory, Methods & Applications, v. 30, 5, pp. 2891-2909, Elsevier Ltd.
(1997).
• G. Montero, R. Montenegro, J.M. Escobar. A 3-D Diagnostic Model for Wind Field

Adjustment. Journal of Wind Engineering and Industrial Aerodynamics, v. 74-76,
pp. 249-261, Elsevier Ltd. (1998).
• R. Montenegro, J.M. Escobar, A. Plaza, L. Ferragut, G.F. Carey. Some Aspects of

Unstructured Simplex Mesh Generation and Refinement. Computational Methods

and Neural Networks, pp. 129-166, Dynamic Publ., Inc., Atlanta, USA (2000).
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• G. Montero, N. Sańın. 3-D Modelling of Wind Field Adjustment Using Finite
Differences in a Terrain Conformal Coordinate System. Journal of Wind Engineering

and Industrial Aerodynamics, v. 89, pp. 471-488, Elsevier Ltd. (2001).
• R. Montenegro, G. Montero, J.M. Escobar, E. Rodŕıguez, J.M. González-Yuste.

Tetrahedral Mesh Generation for Environmental Problems over Complex Terrains.
To appear in Lecture Notes in Computer Science, Springer Verlag (2002).
• E. Rodŕıguez, G. Montero, R. Montenegro, J.M. Escobar, J.M. González-Yuste.

Parameter Estimation in a Three-dimensional Wind Field Model Using Genetic
Algorithms. To appear in Lecture Notes in Computer Science, Springer Verlag (2002).
• R. Montenegro, G. Montero, J.M. Escobar, E. Rodŕıguez. Efficient Strategies for

Adaptive 3-D Mesh Generation over Complex Orography. To appear in Neural,

Parallel & Scientific Computations, Dynamic Publishers (2002).

1.4. Conference Communications

• R. Montenegro, G. Montero, L. Ferragut, G. Winter. Wind Field Adjustment by
Adaptive Finite Element Method. Proceedings of the SIAN-3. Madrid, Spain, May
22-24, 1990.
• L. Ferragut, R. Montenegro, G. Montero, G. Winter. Wind Field Adjustment by

Mixed Finite Elements. Proceedings of the First Congress on Numerical Methods in
Engineering, pp. 90-95. Las Palmas de Gran Canaria, Spain, June 11-15, 1990.
• L. Ferragut, G. Montero, G. Winter, R. Montenegro. Wind Field Adjustment:

Resolution by Adaptive Mixed Finite Element and Multigrid Algorithm.
Applications. Proceedings of European Community Wind Energy Conference and
Exhibition, pp. 140-144. Sponsored by Commission of the European Communities.
Madrid, Spain, September 10-14, 1990.
• A. Plaza, L. Ferragut, R. Montenegro. Derefinement Algorithm of Nested Meshes.

Proceedings of the 12 th World Computer Congress ”Information Processing 92
(IFIP’92)”, Volume I: Algorithms, Software, Architecture, pp. 409-415, Elsevier
Science Publishers B.V. (North-Holland). Madrid, Spain, September 7-11, 1992.
• A. Plaza, R. Montenegro, L. Ferragut. An Adaptive Refinement/Derefinement

Algorithm of Structured Grids for Solving Time-Dependent Problems. Numerical
Methods in Engineering ’92, Proceedings of the First European Conference on
Numerical Methods in Engineering, pp. 225-232, Elsevier Science Publishers B.V.
Brussels, Belgium, September 7-11, 1992.
• R. Montenegro, L. Ferragut, A. Plaza. Applications of an Adaptive Finite Element

Method. Invited lecture in Proceedings of the Fourth International Colloquium
on Differential Equations, pp. 189-198, VSP International Science Publishers, The
Netherlands, 1994. Plovdiv, Bulgaria, August 18-23, 1993.
• J.M. Escobar, R. Montenegro. Introduction to 3-D Mesh Generation. Proceedings of

the XIII CEDYA/III CMA, pp. 181-186. Madrid, Spain, September 13-15, 1993.
• G. Montero, G. Winter, P. Cuesta. Modelling of Beach Sand Transport Phenomena

by Wind Flow. Proceedings of the European Congress on Fluidization, pp. 187-193.
Las Palmas de Gran Canaria, Spain, February 16-19, 1994.
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• J.M. Escobar, R. Montenegro. Construction of 3-D Meshes Using The Triangulation
of Delaunay. Invited lecture in Proceedings of the Third International Colloquium
on Numerical Analysis, pp. 51-60, VSP International Science Publishers (The
Netherlands). Plovdiv, Bulgaria, August 13-17, 1994.
• A. Plaza, R. Montenegro, L. Ferragut. An Approach to Automatic Finite Element

Mesh Generation by Managing Binary Images. Invited lecture in Proceedings of
the Third International Colloquium on Numerical Analysis, pp. 135-142, VSP
International Science Publishers (The Netherlands). Plovdiv, Bulgaria, August 13-17,
1994.
• G. Winter, G. Montero, P. Cuesta, M. Galán. Mesh Generation Using Genetic

Algorithms. Proceedings of Advances in Structures Technology, pp. 225-231, Civil-
Comp Ltd. Athens, Greece, August 1994.
• G. Winter, G. Montero, P. Cuesta, M. Galán. Mesh Generation and Adaptive

Remeshing by Genetic Algorithms on Transonic Flow Simulation. Proceedings of
Computational Fluid Dynamics’94, pp. 281-287, John Wiley & Sons Ltd. Stuttgart,
Germany, September 1994.
• R. Montenegro, A. Plaza, J.M. Escobar, L. Ferragut. Aspects about Mesh Generation

for Finite Element Method. Invited lecture in Proceedings de la First International
Conference on Neural, Parallel and Scientific Computations, pp. 348-353, Dynamic
Publishers Inc. Atlanta, U.S.A., May 28-31, 1995.
• G. Montero, R. Montenegro, J.M. Escobar. A 3-D Diadnostic Model for Wind Field

Adjustment. Proceedings of the Second European & African Congress on Wind
Engineering, 2EACWE, pp. 325-332. Genova, Italy, June 22-26, 1997.
• R. Montenegro, J.M. Escobar, G. Montero. A 3-D Model for Wind Fields. Proceedings

of XV CEDYA/V CMA, v. 2, pp. 959-964. Vigo, Spain, September 22-26, 1997.
• N. Sańın, J.M. Santana, G. Montero. Construction of a 3-D Model for Wind Field

Adjustment Using Finite Differences. Proceedings of XVI CEDYA/VI CMA. Las
Palmas de Gran Canaria, Spain, September 21-24, 1999.
• N. Sańın, G. Montero. A 3-D High-order Accurate Time-stepping Scheme for

Air Pollution Modelling. Proceedings of the MS’2000 International Conference on
Modelling and Simulation. Las Palmas de Gran Canaria, September 25-27, 2000.
• J.M. Escobar, R. Montenegro, G. Montero, E. Rodŕıguez. Efficient 3-D Adaptive

Mesh Generation for the Simulation of Problems Defined over Complex Orography.
Part I: Basis. Proceedings of the XVII CEDYA/VII CMA, published in CD-ROM, 8
pages. Summary book, pp. 697-698. Salamanca, Spain, September 24-28, 2001.
• J.M. Escobar, R. Montenegro, G. Montero, E. Rodŕıguez. Efficient 3-D Adaptive

Mesh Generation for the Simulation of Problems Defined over Complex Orography.
Part II: Strategies and Applications. Proceedings of the XVII CEDYA/VII CMA,
published in CD-ROM, 8 pages. Summary book, pp. 699-700. Salamanca, Spain,
September 24-28, 2001.
• J.M. Escobar, J.M. González, R. Montenegro, G. Montero. A Local Refinement for

Tetrahedral Meshes. Proceedings of the XVII CEDYA/VII CMA, published in CD-
ROM, 8 pages. Summary book, pp. 701-702. Salamanca, Spain, September 24-28,
2001.
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• E. Rodŕıguez, G. Montero, R. Montenegro, J.M. Escobar. Parameter Estimation for
a 3-D Wind Field Adjustment Model Using Genetic Algorithm. Proceedings of the
XVII CEDYA/VII CMA, published in CD-ROM, 8 pages. Summary book, pp. 783-
784. Salamanca, Spain, September 24-28, 2001.
• R. Montenegro, G. Montero, J.M. Escobar, E. Rodŕıguez, J.M. González-Yuste.

Tetrahedral Mesh Generation for Environmental Problems over Complezx Terrains.
To present in The 2002 International Conference on Computational Science (ICCS
2002). Amsterdam, The Netherlands, April 21-24, 2002.
• E. Rodŕıguez, G. Montero, R. Montenegro, J.M. Escobar, J.M. González-Yuste.

Parameter Estimation in a Three-dimensional Wind Field Model Using Genetic
Algorithms. To present in The 2002 International Conference on Computational
Science (ICCS 2002). Amsterdam, The Netherlands, April 21-24, 2002.
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2. THE 3-D WIND SIMULATION PACKAGE

In the finite element simulation of environmental processes that occur in a three-
dimensional domain defined over an irregular terrain, a mesh generator capable of
adapting itself to the topographic characteristics is essential. The present study develops
a code for generating a tetrahedral mesh from an ”optimal” node distribution in the
domain. The main ideas for the construction of the initial mesh combine the use of a
refinement/derefinement algorithm for two-dimensional domains and a tetrahedral mesh
generator algorithm based on Delaunay triangulation. Moreover, we propose a procedure
to optimise the resulting mesh. A function to define the vertical distance between nodes
distributed in the domain is also analysed.

We present a 3-D mass consistent model for wind field adjustment using the finite
element method. This model generates a field of velocities for an incompressible fluid
which adjusts to an initial one obtained from experimental measurements and physical
considerations. The first step for constructing the initial wind field is to carry out a
horizontal interpolation at the heigh of the measuremment stations over the terrain. From
the values, vertical wind profiles are constructed taking into account the atmospheric
stability, the roughness of the terrain, the geostrophic wind and the atmospheric
stratification. Once the initial wind field is obtained, we formulate the problem of
Incompressible Fluid Dynamic with no-flow-through boundary condition on the terrain.
Next, a least square problem is formulated. The technique of Lagrange multipliers leads to
an elliptic problem. Finally, we solve it using the finite element method which has proved
to be an efficient tool for solving this kind of problems.

However, some regions of the studied domain may need more accuracy of the numerical
solution due to the irregulatity of the terrain as well as strong variations of the solution.
In order to improve the obtained solution we propose an adaptive refinement process of
the three-dimensional mesh. First, we compute error indicators in each element of the
mesh to be refined. This indicators will determine which elements must be refined. Our
refinement technique, based on the 8-tetrahedral subdivision, allows a higher discretization
of the affected regions without an excessive propagation in the mesh. The process may be
repeated for any refined mesh until the error indicators satisfy a fixed tolerence.

Since mass consistent models are diagnostic models for constructing wind velocity fields
from a few experimental measurements and, in general, these models are defined by the
physical laws of an incompressible fluid, by the empirical design of the wind profiles and
by the values of velocities measured at the stations, the existence of many parameters
in the model is evident. Some of them are clearly bounded and defined, while others are
still under discussion and interpretation. There are many methods for the resolution of
inverse problems involving parameter estimation and they have been largely studied in
the literature. Among them, we have chosen a robust and flexible tool: genetic algorithms,
which allow to solve linear and non-linear multiparameter optimisation problems.

2.1. Efficient Mesh Generation over Complex Terrain

The problem in question presents certain difficulties due to the irregularity of the terrain
surface. Here we construct a tetrahedral mesh that respects the orography of the terrain
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8 MONTENEGRO ET AL.

with a given precision. To do so, we only have digital terrain information. Furthermore,
it is essential for the mesh to adapt to the geometrical terrain characteristics. In other
words, node density must be high enough to fix the orography by using a linear piecewise
interpolation. Our domain is limited in its lower part by the terrain and in its upper part
by a horizontal plane placed at a height at which the magnitudes under study may be
considered steady. The lateral walls are formed by four vertical planes. The generated
mesh could be used for numerical simulation of natural processes, such as wind field
adjustment [32], fire propagation [30] and atmospheric pollution. These phenomena have
the main effect on the proximities of the terrain surface. Thus node density increases in
these areas accordingly.

To construct the Delaunay triangulation, we must define a set of points within the
domain and on its boundary. These nodes will be precisely the vertices of the tetrahedra
that comprise the mesh. Point generation on our domain will be done over several layers,
real or fictitious, defined from the terrain up to the upper boundary, i.e. the top of the
domain. Specifically, we propose the construction of a regular triangulation of this upper
boundary. Now, the refinement/derefinement algorithm [13, 37] is applied over this regular
mesh to define an adaptive node distribution of the layer corresponding to the surface of
the terrain. These process foundations are summarised. Once the node distribution is
defined on the terrain and the upper boundary, we begin to distribute the nodes located
between both layers. A vertical spacing function is involved in this process.

The node distribution in the domain will be the input to a three-dimensional mesh
generator based on Delaunay triangulation [10]. To avoid conforming problems between
mesh and orography, the tetrahedral mesh will be designed with the aid of an auxiliary
parallelepiped. Next, the points are placed by the appropriate inverse transformation in
their real position, keeping the mesh topology. This process may give rise to mesh tangling
that will have to be solved subsequently. We should, then, apply a mesh optimisation
to improve the quality of the elements in the resulting mesh. Also, the details of the
triangulation and mesh optimisation processes are presented.

2.1.1. Adaptive Discretization of the Terrain Surface. The three-dimensional mesh
generation process starts by fixing the nodes placed on the terrain surface. Their
distribution must be adapted to the orography to minimise the number of required nodes.
First, we construct a sequence of nested meshes T = {τ1 < τ2 < ... < τm} from a regular
triangulation τ1 of the rectangular area under consideration. The τj level is obtained by
previous level τj−1 using the 4-T Rivara algorithm [41]. All triangles of the τj−1 level are
divided in four sub-triangles by introducing a new node in the centres of each edge and
connecting the node introduced on the longest side with the opposite vertex and with
the other two introduced nodes. Thus, new nodes, edges and elements named proper of
level j appear in the τj level. The number of levels m of the sequence is determined by
the degree of discretization of the terrain digitalisation. In other words, the diameter of
the triangulation must be approximately the spatial step of the digitalisation. In this
way we ensure that the mesh is capable of obtaining all the topographic information
by an interpolation of the actual heights on the mesh nodes. Finally, a new sequence
T ′ = {τ1 < τ ′2 < ... < τ ′m′}, m′ ≤ m, is constructed by applying the derefinement
algorithm; details may be seen in [13, 37]. In this step we present the derefinement

Copyright c© 2002 U.L.P.G.C. IUSIANI Report GANA/DDA-02-001
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AN EFFICIENT PACKAGE FOR 3-D WIND SIMULATION 9

parameter ε that fixes the precision with which we intend to approximate the terrain
topography. The difference in absolute value between the resulting heights at any point
of the mesh τ ′m′ and its corresponding real height will be less than ε.

This resulting two-dimensional mesh τ ′m′ may be modified when constructing Delaunay
triangulation in the three-dimensional domain, as its node position is the only information
we use. We are also interested in storing the level in which every node is proper so as to
proceed to the node generation inside the domain. This will be used in the proposed
vertical spacing strategies.

2.1.2. Vertical Spacing Function. As stated above, we are interested in generating a set
of points with higher density in the area close to the terrain. Thus, every node is to be
placed in accordance with the following function

zi = a iα + b . (2.1)

so that when the exponent α ≥ 1 increases, it provides a greater concentration of points
near the terrain surface. The zi height corresponds to the ith inserted point, in such a
way that for i = 0 the height of the terrain is obtained, and for i = n, the height of
the last introduced point. This last height must coincide with the altitude h of the upper
plane that bounds the domain. In these conditions the number of points defined over the
vertical is n+ 1 and (2.1) becomes

zi =
h− z0
nα

iα + z0 ; i = 0, 1, 2, ..., n . (2.2)

It is sometimes appropriate to define the height of a point in terms of the previous one,
thus avoiding the need for storing the value of z0

zi = zi−1 +
h− zi−1

nα − (i− 1)α [iα − (i− 1)α] ; i = 1, 2, ..., n . (2.3)

In (2.2) or (2.3), once the values of α and n are fixed, the points to insert are completely
defined. Nevertheless, to maintain acceptable minimum quality of the generated mesh, the
distance between the first inserted point (i = 1) and the surface of the terrain could be
fixed. This will reduce to one, either α or n, the number of degrees of freedom. Consider
the value of the distance d as a determined one, such that d = z1 − z0. Using (2.2),

d = z1 − z0 =
h− z0
nα

. (2.4)

If we fix α and set free the value of n, from (2.4) we obtain

n =

(
h− z0
d

)1/α

. (2.5)

Nevertheless, in practice, n will be approximated to the closest integer number.
Conversely, if we fix the value of n and set α free, we get

α =
log h−z0

d

log n
. (2.6)
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In both cases, given one of the parameters, the other may be calculated by expressions
(2.5) or (2.6), respectively. In this way, the point distribution on the vertical respects the
distance d between z1 and z0. Moreover, if the distance between the last two introduced
points is fixed, that is, D = zn− zn−1, then the α and n parameters are perfectly defined.
Let us assume that α is defined by (2.6). For i = n− 1, (2.2) could be expressed as

zn−1 =
h− z0
nα

(n− 1)α + z0 . (2.7)

and thus, by using (2.6),

log (n− 1)

log n
=

log h−z0−D
d

log h−z0

d

. (2.8)

From the characteristics which define the mesh, we may affirm a priori that h− z0 >
D ≥ d > 0. Thus, the value of n will be bounded such that, 2 ≤ n ≤ h−z0

d
, and the

value of α cannot be less than 1. Moreover, to introduce at least one intermediate point
between the terrain surface and the upper boundary of the domain, we must verify that

d+D ≤ h− z0. If we call k =
log

h−z0−D

d

log
h−z0

d

, it can be easily proved that 0 ≤ k < 1. So, (2.8)

yields
n = 1 + nk . (2.9)

If we name g(x) = 1 + xk, it can be demonstrated that g(x) is contractive in
[
2, h−z0

d

]

with Lipschitz constant C = 1
21−k , and it is also bounded by

2 ≤ g(x) ≤ 1 +

(
h− z0
d

)k

≤
h− z0
d

. (2.10)

In view of the fixed point theorem, we can ensure that (2.9) has a unique solution which
can be obtained numerically, for example, by the fixed point method, as this converges
for any initial approximation chosen in the interval

[
2, h−z0

d

]
. Nevertheless, the solution

will not generally have integer values. Consequently, if its value is approximated to the
closest integer number, the imposed condition with distance D will not exactly hold, but
approximately.

2.1.3. Determination of the Set of Points. The point generation will be carried out in
three stages. In the first, we define a regular two-dimensional mesh τ1 for the upper
boundary of the domain with the required density of points. Second, the mesh τ1 will be
globally refined and subsequently derefined to obtain a two-dimensional mesh τ ′m′ capable
of fitting itself to the topography of the terrain. This last mesh defines the appropriate
node distribution over the terrain surface. Next, we generate the set of points distributed
between the upper boundary and the terrain surface. In order to do this, some points will
be placed over the vertical of each node P of the terrain mesh τ ′m′ , attending to the vertical
spacing function and to level j (1 ≤ j ≤ m′) where P is proper. The vertical spacing
function will be determined by the strategy used to define the following parameters: the
topographic height z0 of P ; the altitude h of the upper boundary; the maximum possible
number of points n+1 in the vertical of P , including both P and the corresponding upper
boundary point, if there is one; the degree of the spacing function α; the distance between
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the two first generated points d = z1−z0; and the distance between the two last generated
points D = zn − zn−1. Thus, the height of the ith point generated over the vertical of P
is given by (2.2) for i = 1, 2, ..., n− 1.

Regardless of the defined vertical spacing function, we shall use level j where P is proper
to determine the definitive number of points generated over the vertical of P excluding
the terrain and the upper boundary. We shall discriminate among the following cases:

1. If j = 1, that is, if node P is proper of the initial mesh τ1, nodes are generated from
(2.2) for i = 1, 2, ..., n− 1.

2. If 2 ≤ j ≤ m′ − 1, we generate nodes for i = 1, 2, ..., min(m′ − j, n− 1).
3. If j = m′, that is, node P is proper of the finest level τ ′m′ , then any new node is

generated.
This process has its justification, as mesh τ ′m′ corresponds to the finest level of

the sequence of nested meshes T ′ = {τ1 < τ ′2 < ... < τ ′m′}, obtained by the
refinement/derefinement algorithm. Thus the number of introduced points decreases
smoothly with altitude, and they are also efficiently distributed in order to build the
three-dimensional mesh in the domain.

We set out a particular strategy where values of α and n are automatically determined
for every point P of τ ′m′ , according to the size of the elements closest to the terrain and to
the upper boundary of the domain. First, the value of d for each point P is established as
the average of the side lengths of the triangles that share P in the mesh τ ′m′ . A unique value
of D is then fixed according to the desired distance between the last point that would be
theoretically generated over the different verticals and the upper boundary. This distance
is directly determined according to the size of the elements of the regular mesh τ1. Once d
and D are obtained, for every point P of τ ′m′ , their corresponding value of n is calculated
by solving (2.9). Finally, the vertical spacing function is determined when obtaining the
value of α by (2.6). This strategy approximately respects both the required distances
between the terrain surface and the first layer and the imposed distance between the last
virtual layer and the upper boundary.

2.1.4. Three-dimensional Mesh Generation. Once the set of points has been defined,
it will be necessary to build a three-dimensional mesh able to connect the points in an
appropriate way and which conforms with the domain boundary, i.e., a mesh that respects
every established boundary.

Although Delaunay triangulation is suitable to generate finite element meshes with
a high regularity degree for a given set of points, this does not occur in the problem
of conformity with the boundary, as it generates a mesh of the convex hull of the set of
points. It may be thus impossible to recover the domain boundary from the faces and edges
generated by the triangulation. To avoid this, we have two different sorts of techniques:
conforming Delaunay triangulation [35] and constrained Delaunay triangulation [17]. The
first alternative is inadequate for our purpose, as we wish the resulting mesh to contain
certain predetermined points. Moreover, given the terrain surface complexity, this strategy
would imply a high computational cost. The second alternative could provide another
solution, but it requires quite complex algorithms to recover the domain boundary.

To build the three-dimensional Delaunay triangulation of the domain points, we start
by resetting them in an auxiliary parallelepiped, so that every point of the terrain surface
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12 MONTENEGRO ET AL.

is on the original coordinates x, y, but at an altitude equal to the minimum terrain height,
zmin. In the upper plane of the parallelepiped we set the nodes of level τ1 of the mesh
sequence that defines the terrain surface at altitude h. Generally, the remaining points also
keep their coordinates x, y, but their heights are obtained by replacing their corresponding
z0 by zmin in (2.2). The triangulation of this set of points is done using a variant of Watson
incremental algorithm [10] that effectively solves the problems derived from the round-off
errors made when working with floating coma numbers.

Once the triangulation is built in the parallelepiped, the final mesh is obtained by re-
establishing its original heights. This latter process can be understood as a compression
of the global mesh defined in the parallelepiped, such that its lowest plane becomes the
terrain surface. In this way, conformity is ensured.

Sometimes when re-establishing the position of each point to its real height, poor
quality, or even inverted elements may occur. For inverted elements, their volume Ve,
evaluated as the Jacobian determinant |Je| associated with the map from reference
tetrahedron to the physical one e, becomes negative. For this reason, we need a procedure
to untangle and smooth the resulting mesh, as analysed in Sect. 6.

We must also take into account the possibility of getting a high quality mesh by
smoothing algorithms, based on movements of nodes around their initial positions,
depends on the topological quality of the mesh. It is understood that this quality is high
when every node valence, i.e., the number of nodes connected to it, approaches the valence
corresponding to a regular mesh formed by quasi-equilateral tetrahedra.

Our domain mesh keeps the topological quality of the triangulation obtained in the
parallelepiped and an appropriate smoothing would thus lead to high quality meshes.

2.1.5. Mesh Optimisation. The most accepted techniques for improving valid
triangulation quality are based upon local smoothing. In short, these techniques locate
the new positions that the mesh nodes must hold so that they optimise a certain objective
function based upon a quality measurement of the tetrahedra connected to the adjustable
or free node. The objective functions are generally useful for improving the quality of
a valid mesh. They do not work properly, however, in the case of inverted elements,
since they show singularity when the tetrahedra volumes change their sign. To avoid this
problem we can proceed as in [14], where an optimisation method consisting of two stages
is proposed. In the first, the possible inverted elements are untangled by an algorithm that
maximises the negative Jacobian determinants corresponding to the inverted elements. In
the second, the resulting mesh from the first stage is smoothed. We propose here an
alternative to this procedure in which the untangling and smoothing are performed in the
same stage. To do this, we shall use a modification of the objective function proposed in
[9]. Thus, let N(v) be the set of the s tetrahedra attached to free node v, and r = (x, y, z)
be its position vector. Hence, the function to minimise is given by

F (r) =
s∑

e=1

fe(r) =
s∑

e=1

6∑
i=1

(lei )
2

V
2/3
e

. (2.11)

where fe is the objective function associated to tetrahedron e, lei (i = 1, ..., 6) are the
edge lengths of the tetrahedron e and Ve its volume. If N(v) is a valid sub-mesh, then
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AN EFFICIENT PACKAGE FOR 3-D WIND SIMULATION 13

the minimisation of F originates positions of v for which the local mesh quality improves
[9]. Nevertheless, F is not bounded when the volume of any tetrahedron of N(v) is null.
Moreover, we cannot use F if there are inverted tetrahedra. Thus, if N(v) contains any
inverted or zero volume elements, it will be impossible to find the relative minimum by
conventional procedures, such as steepest descent, conjugate gradient, etc. To remedy this
situation, we have modified function fe in such a way that the new objective function is
nearly identical to F in the minimum proximity, but being defined and regular in all R

3.
We substitute Ve in (2.11) by the increasing function

h(Ve) =
1

2
(Ve +

√
V 2

e + 4δ2) . (2.12)

such that ∀Ve ∈ R, h(Ve) > 0, being the parameter δ = h(0). In this way, the new objective
function here proposed is given by

Φ(r) =
s∑

e=1

φe(r) =
s∑

e=1

6∑
i=1

(lei )
2

[h(Ve)]2/3
. (2.13)

The asymptotic behaviour of h(Ve), that is, h(Ve) ≈ Ve when Ve → +∞, will make
function fe and its corresponding modified version φe as close as required, for a value
of δ small enough and positive values of Ve. On the other hand, when Ve → −∞, then
h(Ve) → 0. For the most inverted tetrahedra we shall then have a value of φe further
from the minimum than for the less inverted ones. Moreover, with the proposed objective
function Φ, the problems of F for tetrahedra with values close to zero are avoided. Due to
the introduction of parameter δ, the singularity of fe disappears in φe. As smaller values
of δ are chosen, function φe behaves much like fe. As a result of these properties, we may
conclude that the positions of v that minimise objective functions F and Φ are nearly
identical. Nevertheless, contrary to what happens to F , it is possible to find the minimum
of Φ from any initial position of the free node. In particular, we can start from positions for
which N(v) is not a valid sub-mesh. Therefore, by using the modified objective function
Φ, we can untangle the mesh and, at the same time, improve its quality. The value of δ
is selected in terms of point v under consideration, making it as small as possible and in
such a way that the evaluation of the minimum of Φ does not present any computational
problem. Finally, we would state that the steepest descent method has been the one used
to calculate the minimum of the objective function.

2.1.6. Numerical Experiments. As a practical application of the mesh generator, we have
considered a rectangular area in the south of La Palma island of 45.6 × 31.2 km, where
extreme heights vary from 0 to 2279m. The upper boundary of the domain has been placed
at h = 9 km. To define the topography we used a digitalisation of the area where heights
were defined over a grid with a spacing step of 200 m in directions x and y. Starting from a
uniform mesh τ1 of the rectangular area with an element size of about 2×2 km, four global
refinements were made using Rivara 4-T algorithm [41]. Once the data were interpolated
on this refined mesh, we applied the derefinement algorithm developed in [13, 37] with a
derefinement parameter of ε = 40 m. Thus, the adapted mesh approximates the terrain
surface of Fig. 1 with an error less than that value. The node distribution of τ1 is the one
considered on the upper boundary of the domain.
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14 MONTENEGRO ET AL.

The result obtained is shown in Fig. 2, fixing as the only parameter distance D = 1.5
km. In this case, the mesh has 57193 tetrahedra and 11841 nodes, with a maximum valence
of 26. The node distribution obtained with this strategy has such a quality that it is hardly
modified after five steps of the optimisation process, although there is initial tangling that
is nevertheless efficiently solved; see Fig. 3, where q(e) is the quality measure proposed
in [14] for tetrahedron e. In fact, to avoid inverted tetrahedra, the technique proposed in
Sect. 6 has been efficiently applied. Moreover, the worst quality measure of the optimised
mesh tetrahedra is about 0.2.

We note that the number of parameters necessary to define the resulting mesh
is quite low, as well as the computational cost. In fact, the complexity of 2-D
refinement/derefinement algorithm is linear [37]. Besides, in experimental results we have
approximately obtained a linear complexity in function of the number of points for our
algorithm of 3-D Delaunay triangulation [10]. In the present application only a few seconds
of CPU time on a Pentium III were necesary to construct the mesh before its optimisation.
Finally, the complexity of each step of the mesh optimisation process is also linear. In
practice we have found acceptable quality meshes appling a limited number of steps of
this latter algorithm.

Figure 1. Terrain surface approximated by a refined/derefined mesh
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Figure 2. Resulting mesh after five steps of the optimisation process
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Figure 3. Quality curves of the generated mesh and the resulting mesh after five steps of the optimisation
process. Function q(e) is a quality measure for tetrahedron e
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16 MONTENEGRO ET AL.

A second experiment has been carried out in order to show the behaviour of the mesh
generator when the surface of the terrain has a hole under the sea level. We have consider
only a half of the domain of 10000× 5000× 4000 m3. In Fig. 4, the mesh on the surface
and two lateral walls are detailed. The complete tetrahedral mesh is represented in Figs.
5 and 6 from two point of view.

Figure 4. Mesh obtained for the second numerical experiment
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Figure 5. The complete image of the mesh. First point of view

Figure 6. The complete image of the mesh. Second point of view
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18 MONTENEGRO ET AL.

2.2. Wind Model

2.2.1. Mass Consistent Model in 3-D. This model [32] is based on the continuity
equation for an incompressible flow with constant air density in the domain Ω and no-

flow-through conditions on Γb

~∇ · ~u = 0 in Ω . (2.14)

~n · ~u = 0 on Γb . (2.15)

We formulate a least-square problem in Ω with ~u(ũ, ṽ, w̃) to be adjusted

E(~u) =

∫

Ω

[
α2

1

(
(ũ− u0)

2 + (ṽ − v0)
2
)

+ α2
2 (w̃ − w0)

2
]
dΩ . (2.16)

where the interpolated wind ~v0 = (u0, v0, w0) is obtained from experimental measurements,
and α1, α2 are the Gauss precision moduli. This problem is equivalent to find a saddle
point (~v, φ) of the Lagrangian (see [50])

E (~v) = min
~u∈K

[
E (~u) +

∫

Ω

φ~∇ · ~u dΩ

]
. (2.17)

being ~v = (u, v, w), φ the Lagrange multiplier and K the set of admissible functions. The
Lagrange multipliers technique is used to minimise the problem (2.17), whose minimum
comes to form the Euler-Lagrange equations

u = u0 + Th
∂φ

∂x
, v = v0 + Th

∂φ

∂y
, w = w0 + Tv

∂φ

∂z
. (2.18)

where T = (Th, Th, Tv) is the diagonal transmissivity tensor, with Th = 1
2α2

1

and Tv = 1
2α2

2

.

Since α1 and α2 are constant in Ω, the variational approach results in an elliptic problem
substituting (2.18) in (2.14)

∂2φ

∂x2
+
∂2φ

∂y2
+
Tv

Th

∂2φ

∂z2
= −

1

Th

(
∂u0

∂x
+
∂v0

∂y
+
∂w0

∂z

)
in Ω . (2.19)

The boundary conditions result as follows (Dirichlet condition for open or flow-through

boundaries and Neumann condition for terrain and top)

φ = 0 on Γa . (2.20)

~n · T ~∇µ = −~n · ~v0 on Γb . (2.21)

The classical formulation of the problem given by (2.19)-(2.21), is discretized using a
tetrahedral mesh of finite elements (see [29]) that leads to a set of 4×4 elemental matrices
and 4× 1 elemental vectors, which are assembled into a global linear system of equations.
A preconditioned conjugate gradient method is used for solving this symmetric linear
system.

2.2.2. Horizontal Interpolation. The wind speeds measured at station height zm are
interpolated in function of the distance and the height difference between each point and
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the station [32]

~v0(zm) = ε

N∑
n=1

~vn

d2
n

N∑
n=1

1

d2
n

+ (1− ε)

N∑
n=1

~vn

|∆hn|

N∑
n=1

1
|∆hn|

. (2.22)

where ~vn is the velocity observed at station n, N is the number of stations considered
in the interpolation, dn is the horizontal distance from station n to the point where we
are computing the wind velocity, |∆hn| is the height difference between station n and the
studied point, and ε is a weighting parameter (0 ≤ ε ≤ 1), which allows to give more
importance to one of these interpolation criteria.

2.2.3. Vertical Profile of Wind. We have considered a logarithmic profile in the surface
layer, which takes into account the previous horizontal interpolation, as well as the effect
of roughness and the air stability (neutral, stable or unstable atmosphere, according to
the Pasquill stability class) on the wind intensity and direction. Above the surface layer,
a linear interpolation is carried out using the geostrophic wind. The logarithmic profile is
given by

~v0(z) =
~v∗

k
(log

z

z0
− Φm) z0 < z ≤ zsl . (2.23)

where ~v∗ is the friction velocity, k is von Karman constant, z0 is the roughness length and
zsl is the height of the surface layer. Function Φm depends on the air stability

Φm = 0 (neutral) .

Φm = −5
z

L
(stable) .

Φm = log

[(
θ2 + 1

2

)(
θ + 1

2

)2
]
− 2 arctan θ +

π

2
(unstable) .

(2.24)

where θ = (1−16 z
L
)1/4 and 1

L
= azb

0, with a, b, depending on the Pasquill stability class. L
is the so called Monin-Obukhov length. The friction velocity is obtained at each point from
the interpolated measurements at the height of the stations (horizontal interpolation)

~v∗ =
k ~v0(zm)

log
zm

z0
− Φm

. (2.25)

The height of the planetary boundary layer zpbl above the ground is chosen such that
the wind intensity and direction are constant at that height

zpbl =
γ |~v∗|

f
. (2.26)

where f = 2ω sinϕ is the Coriolis parameter (ω is the earth rotation and ϕ the latitude),
and γ is a parameter depending on the atmospheric stability. The mixing height h is
considered to be equal to zpbl in neutral and unstable conditions. In stable conditions,
Zilitinkevich suggested (see [5])

h = γ′

√
|~v∗| L

f
. (2.27)
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where γ′ is a constant of proportionality. The height of surface layer is zsl = h
10

. From zsl

to zpbl, a linear interpolation with geostrophic wind ~vg is carried out

~v0(z) = ρ(z)~v0(zsl) + [1− ρ(z)]~vg zsl < z ≤ zpbl . (2.28)

ρ(z) = 1−

(
z − zsl

zpbl − zsl

)2(
3− 2

z − zsl

zpbl − zsl

)
. (2.29)

Finally, this model assumes ~v0(z) = ~vg if z > zpbl and ~v0(z) = 0 if z ≤ z0.

2.2.4. Finite element formulation. For the discretization by the finite element method
of the problem given in (2.19),(2.20) and (2.21) we have used a tetrahedral mesh (see
[11, 12] which leads to a set of elemental matrices of order 4× 4,

{Ae}ij =

∫

Ωe

{(
∂ψ̂i

∂ξ

∂ξ

∂x
+
∂ψ̂i

∂η

∂η

∂x
+
∂ψ̂i

∂ϕ

∂ϕ

∂x
)(
∂ψ̂j

∂ξ

∂ξ

∂x
+
∂ψ̂j

∂η

∂η

∂x
+
∂ψ̂j

∂ϕ

∂ϕ

∂x
)+

+(
∂ψ̂i

∂ξ

∂ξ

∂y
+
∂ψ̂i

∂η

∂η

∂y
+
∂ψ̂i

∂ϕ

∂ϕ

∂y
)(
∂ψ̂j

∂ξ

∂ξ

∂y
+
∂ψ̂j

∂η

∂η

∂y
+
∂ψ̂j

∂ϕ

∂ϕ

∂y
)+ (2.30)

+α2 (
∂ψ̂i

∂ξ

∂ξ

∂z
+
∂ψ̂i

∂η

∂η

∂z
+
∂ψ̂i

∂ϕ

∂ϕ

∂z
)(
∂ψ̂j

∂ξ

∂ξ

∂z
+
∂ψ̂j

∂η

∂η

∂z
+
∂ψ̂j

∂ϕ

∂ϕ

∂z
)} · |J| dξ dη dϕ

and 4× 1 elemental vectors,

{be}i =

∫

Ωe

−2α2
1 {u0(

∂ψ̂i

∂ξ

∂ξ

∂x
+
∂ψ̂i

∂η

∂η

∂x
+
∂ψ̂i

∂ϕ

∂ϕ

∂x
)+

+v0(
∂ψ̂i

∂ξ

∂ξ

∂y
+
∂ψ̂i

∂η

∂η

∂y
+
∂ψ̂i

∂ϕ

∂ϕ

∂y
)+ (2.31)

+w0 (
∂ψ̂i

∂ξ

∂ξ

∂z
+
∂ψ̂i

∂η

∂η

∂z
+
∂ψ̂i

∂ϕ

∂ϕ

∂z
)} · |J| dξ dη dϕ

These matrices and vectors are assembled into a linear system of equations which is
solved using a Preconditioned Conjugate Gradient algorithm.
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2.3. Adaptive Mesh Refinement

Nowadays, the most of the codes which use the finite element methods consider adaptive
techniques. In the generation of adaptive meshes, the local refinement of the domain may
be due to the geometry or to the numerical solution. It is carried out computing error
estimators of the numerical solution or at least suitable error indicators for determining
the elements to be refined or derefired in a mesh. Here we propose an error indicator which
takes into account the gradient of the solution in each element.

At this point, one could choose between structured or non-structured meshes. Evidently,
the use of non-structured meshes allows more flexibility for complex geometries using an
optimal number of nodes. In this case, advanced front [27] and Delaunay triangulation
[17, 10] are classical choices. Once the geometry of the domain is discretized, the mesh
must be adapted taking into account the singularities of the numerical solution. This
process implies the addition (refinement) or elimination (derefinement) of nodes in the
current mesh. For this reason, a new mesh must be defined. The changes may affect
the mesh locally or globally, depending on the selected triangulation method. Several
strategies of refinement have been developed for 2-D triangulations and they have been
generalised in 3-D. If we choose a refinement which locally affect the current mesh,
we have to decide between nested or non-nested meshes. The choice is not so clear in
this case. The use of nested meshes has several important advantages. We can obtain
secuences of nested meshes in a minimal computing time. Moreover, the application of
the multigrid method for solving the linear system of equations associated to the problem
is straightforward. On the other hand, the smoothness and the degeneration of the mesh,
and the preservation of surfaces defined on the domain are controllable automatically
from the characteristics of the initial mesh. Thus, if the domain a complex geometry, a
good choice is to obtain the initial mesh using a non-structured mesh generator and then,
to apply a refinement/derefinement technique of nested meshes based on a suitable error
indicator.

Taking into account these ideas, adaptive techniques in 2-D had been developed in the
past which obtained good results in several steady and non-steady problems (see, i.e.,
[13, 37, 30, 50]). In these works, a version of Rivara 4-T local refinement algorithm [41]
was used. In 3-D the problem is substantially different. Among the refinement algorithms
developed in 3-D, we can consider those based on the bisection of tetrahedra [1, 42, 38]
and those which used the 8-subtetrahedron subdivision [4, 25, 26]. In fact, the algorithm
developed in [38] may be understood as the generalization in 3-D of the 4-T Rivara
algorithm. This last one is also based on the bisection of the triangle by its bigger
edge. The disadvantage of this method is the high number of possible cases in which a
tetrahedron may be divided, considering the different possibilities of the 4-T subdivision
on its four faces, during the process of mesh conformity. However, the algoritms proposed
in [4, 25, 26], which genereralise the subdivision in 4 subtriangles of Bank et al [2] in
3-D, are simpler due to a lower number of possible subdivisions of a tetrahedron. These
considerations have led us to implement a version of the 8-subtetrahedron subdivision
algorithm.
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2.3.1. Refinement algorithm We propose a refinement algorithm based on the 8-
subtetrahedron subdivision developed in [26]. Consider an initial triangulation τ1 of the
domain given by a set of n1 tetrahedra t11, t

1
2, ..., t

1
n1

. Our goal is to build a sequence of
m leves of nested meshes T = {τ1 < τ2 < ... < τm}, such that the level τj+1 is obtained

from a local refinement of the previous level τj. The error indicator εji associated to the

element tji ∈ τj which has been used is gradient type and it is defined as follows,

εji = dp
i

∣∣∣~∇φh

∣∣∣ (2.32)

where the parameter α is generally assumed to be 1 or 2, and di, the length of the longest
edge of tetrahedron tji . Note that if p = 1, then εji represents the maximal variation of φh

in the element tji . Once the error indicator εji is computed, such element must be refined

if εji ≥ θεjmax, being θ ∈ [0, 1] the refinement parameter and εjmax, the maximal value of
the error indicators of the elements of τj. From a constructive point of view, initially we
shall obtain τ2 from the initial mesh τ1, attending to the following considerations:

a) 8-subtetrahedron subdivision. A tetrahedron t1i ∈ τ1 is called of type I if ε1i ≥ γε1max.
Later, this set of tetrahedra will be subdivided into 8 subtetrahedra as Figure 7(a) shows;
6 new nodes are introduced in the middle point of its edges and each one of its faces
are subdivided into four subtriangles following the division proposed by Bank [2]. Thus,
four subtetrahedra are determinated from the four vertices of t1i and the new edges. The
other four subtetrahedra are obtained by joining the two nearest opposite vertices of the
octohedron which result inside t1i . This simple strategy is that proposed in [26] or in [4],
in opposite to others based on afin transformations to a reference tetrahedron, as that
analysed in [25] which ensures the quality of the resulting tetrahedra. However, similar
results were obtained by Bornemann et al. [4] with both strategies in their numerical
experiments. On the other hand, for Löhner and Baum [26], our choice produces the
lowest number of distorted tetrahedra in the refined mesh. Evidently, the best of the
three existing options for the subdivision of the inner octohedron may be determined by
analysing the quality of its four subtetrahedra, but this would augment the computational
cost of the algorithm.

Once the type I tetrahedral subdivision is defined, we can find neighbouring tetrahedra
which may have 6, 5, ..., 1 or 0 new nodes introduced in their edges that must be taken into
account in order to ensure the mesh conformity. In the following we analyse each one of
these cases. We must remark that in this process we only mark the edges of the tetrahedra
of τ1 in which a new node has been introduced. The corresponding tetrahedron is classified
depending on the number of marked edges. In other words, until the conformity of τ2 is
not ensured by marking edges, this new mesh will not be defined.

b) Tetrahedra with 6 new nodes. Those tetrahedra that have marked their 6 edges for
conformity reason, are included in the set of type I tetrahedra.

c) Tetrahedra with 5 new nodes. Those tetrahedra with 5 marked edges are also included
in the set of type I tetrahedra. Previously, the edgewithout new node must be marked.

d) Tetrahedra with 4 new nodes. In this case, we mark the two free edges and it is
considered as type I.

Proceeding as in (b), (c) and (d), we improve the mesh quality and simplify the
algorithm considerably due to the global refinement defined in (a) by the error indicator.
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One may think that this procedure can augment the refined region, but we must take
into account that only 1 or 2 new nodes are introduced from a total of 6. Note that
this proportion is less or equal to that arising in the 2-D refinement with the 4-T Rivara
algorithm, in which the probability of finding a new node introduced in the longest edge of
a triangle is 1/3. This fact is accentuated in the proposed algorithm as its generalization
in 3-D.

e) Tetrahedra with 3 new nodes. In this case, we must distinguish two situations:
e.1. If the 3 marked edges are not located on the same face, then we mark the others

and the tetrahedron is introduced in the set of type I tetrahedra. Here, we can make the
previous consideration too, if we compare this step with other algorithms based on the
bisection by the longer edge.

In the following cases, we shall not mark any edge, i.e., any new node will not
be introduced in a tetrahedron for conformity. We shall subdivide them creating
subtetrahedra which will be called transient subtetrahedra.

e.2. If the 3 marked edges are located on the same face of the tetrahedron, then
4 transient subtetrahedra are created as Figure 7(b) shows. New edges are created by
connecting the 3 new nodes one another and these with the vertex opposite to the face
containing them. The tetrahedra of τ1 with these characteristics will be inserted in the
set of type II tetrahedra.

f) Tetrahedra with 2 new nodes. Also in this case, we shall distinguish two situations:
f.1. If the two marked edges are not located on the same face, then 4 transient

subtetrahedra will be constructed from the edges conecting both new nodes and those
with the vertices opposite to the two faces which contain each one. This tetrahedra are
called type III.a; see Figure 7(c).

f.2. If the two marked edges are located on the same face, then 3 transient
subtetrahedra are generated as Figure 7(d) shows. The face determinated by both marked
edges is divided into 3 subtriangles, connecting the new node located in the longest edge
with the vertex opposite and with the another new node, such that these three subtriangles
and the vertex opposite to the face which contains them, define three new subtetrahedra.
We remark that from the two possible choices, the longest marked edge is fixed as reference
in order to take advantage in some cases of the properties of the bisection by the longest
edge. These tetrahedra are called type III.b.

g) Tetrahedra with 1 new node. Two transient subtetrahedra will be created as we can
see in Figure 1(e). The new node is connected to the other two which are not located in
the marked edge. This set of tetrahedra is called type IV.

h) Tetrahedra without new node. These tetrahedra of τ1 are not divided and they will
be inherit by the refined mesh τ2. We call them type V tetrahedra; see Figure 7(f).

This classification process of the tetrahedra of τ1 is carried out by marking their edges
simply. The mesh conformity is ensured in a local level analysing the neighbourhood
between the tetrahedra which contain a marked edge by an expansion process that starts
in the type I tetrahedra of paragraph (a). Thus, when the run along this set of type I

tetrahedra is over, the resulting mesh is conformal and locally refined. Moreover, this
process a low computational cost, since the local expansion stops when we find tetrahedra
whose edges have not to be marked.
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(a) Type I (b) Type II

(c) Type III.a (d) Type III.b

(e) Type IV (f) Type V

Figure 7. Subdivision classification of a tetrahedron in function of the new nodes (white circles).
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Generally, when we want to refine the level τj in which there already exist transient
tetrahedra, we shall perform it in the same way as from τ1 to τ2, except for following
variation: if an edge of any transient tetrahedron must be marked, due to the error
indicator or even to conformity reasons, then all the transient tetrahedra are eliminated
from their parent (deleting process), all the parent edges are marked and this tetrahedron
is introduced into the set of type I tetrahedra. We must remark that it will be only
necessary to define a variable which determines if a tetrahedron is transient or not.

2.3.2. Numerical Experiments The studied case corresponds to a test problem of wind
field adjustment located in a square region of 10000 × 10000 m2, where the topography
of the terrain is given by the function,

z = zmax exp

[
−

((
x− xc

sx

)2

+

(
y − yc

sy

)2
)]

(2.33)

being in our example zmax = 1500, xc = yc = 5000, sx = 1000 and sy = 800. The location
of the stations and the wind measures are shown in Table I. We have considered the height
of 10 m over the terrain for the stations and null vertical component of wind velocities.

Stations m xm in m ym in m um in m/s vm in m/s
1 0.0 0.0 0.0 5.0
2 5000.0 0.0 0.0 5.0
3 10000.0 0.0 0.0 5.0
4 0.0 5000.0 0.0 5.0
5 5000.0 5000.0 0.0 5.0
6 10000.0 5000.0 0.0 5.0
7 0.0 10000.0 0.0 5.0
8 5000.0 10000.0 0.0 5.0
9 10000.0 10000.0 0.0 5.0

Table I. Location of the stations and measures of wind velocities.

Other values of the parameters of the model in this numerical experiment are ε = 0.5,
γ = 0.3, γ′ = 0.4, α = 0.1, k = 0.4, φ = 28.6 ,̊ ug = 0.0 m/s, vg = 10.0 m/s, as well
as a softly stable atmosphere. Figure 8 represents the initial mesh obtained using the
package developed in [12]. From this result, using the error indicator (2.32) with p = 1,
two adaptive refinement steps were carried out with θ = 0.8. The refined meshes obtained
in this process are shown in Figures 9 y 10. We cam observe more concentration of nodes in
region of the mountain where the wind experiments higher variations in speed or direction.
Figures 11, 12 and 13 show the wind velocities obtained after the last refinement over
horizontal planes at 10 m (height of the 8 station at the bottom), at 500 m and at 1500
m (heigh of the top of the mountain). As we could foresee for the value of α considered
here, the wind tends to border the mountain horizontally.
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Figure 8. Initial mesh.

Figure 9. Mesh corresponding to the first refinement step.
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Figure 10. Mesh corresponding to the second refinement step.

Figure 11. Wind velocities at 10 m.
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Figure 12. Wind velocities at 500 m.

Figure 13. Wind velocities at 1500 m.
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2.4. Parameter Estimation using Genetic Algorithms

The efficiency of a mass consistent model for wind field adjustment depends on
several parameters that arise in various stages of the process. First, those involved
in the construction of the initial wind field using horizontal interpolation and vertical
extrapolation of the wind measures registered at meteorological stations. On the other
hand, the Gauss precision moduli which allow from a strictly horizontal wind adjustment
to a pure vertical one. In general, the values of all of these parameters are based on
empirical laws. The main goal of this work is the estimation of these parameters using
genetic algorithms, such that the wind velocities observed at the measurement station are
regenerated as much as possible by the model.

2.4.1. Discussion on the Parameters to Be Estimated. First, we will consider the so
called stability parameter

α =
α1

α2

=

√
Tv

Th
. (2.34)

since the minimum of the functional given by (2.16) is the same if we divide it by α2
2. On

the other hand, for α >> 1 flow adjustment in the vertical direction predominates, while
for α << 1 flow adjustment occurs primarily in the horizontal plane. Thus, the selection
of α allows the air to go over a terrain barrier or around it, respectively [39]. Moreover, the
behaviour of mass consistent models in many numerical experiments has shown that they
are very sensitive to the values chosen for α. Therefore, we shall give particular attention
to this problem. In the past, many authors have studied the parametrisation of stability,
since the difficulty in determining the correct values of α have limited the possible wide
use of mass-consistent models in complex terrain. Sherman [44], Kitada et al. [21] and
Davis et al. [6], proposed to take α = 10−2, i.e., proportional to the magnitude of w/u.
Other authors such as Ross et al. [43] and Moussiopoulos et al. [34] related α to the Froude
number. Geai [16], Lalas et al. [23] and Tombrou et al. [47], make the α parameter vary
in the vertical direction. Finally, Barnard et al. [3] proposed a procedure to obtain α for
each single wind field simulation. The main idea is to use N observed wind speeds to
obtain the wind field and to keep the rest, Nr, as a reference. Then, several simulations
are performed with different values of α. The value which gives the best agreement with
the reference observations is taken to be the final magnitude of the stability parameter.
Since this method provides values of α that are only reliable for each particular case, it
cannot provide an a priori value suitable for other simulations. Here, we follow a version
of the method proposed in [3], using genetic algorithms as optimisation technique which
lead to an automatic selection of α.

The second parameter to be estimate is the weighting coefficient ε (0 ≤ ε ≤ 1) of
(2.22). Note that ε → 1 signifies more importance of the horizontal distance from each
point to the measurement stations, while ε → 0 signifies more importance of the height

difference between each point and the measurement stations [32]. In general, the second
approach has been used for complex terrains. On the other hand, the first approach has
been widely used for problems with regular topography or in 2-D horizontal analysis. In
realistic applications, the possibility of existing zones with complex orography and others
with regular one, suggests that an intermediate value of ε should be more suitable.
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The next parameter to discuss is γ, given in (2.26) and related to the height of the
planetary boundary layer. There exist different versions of where to search this parameter.
Panofsky et al. [36] proposed the interval [0.15,0.25]. On the other hand, Ratto [40] directly
suggested γ = 0.3 in the WINDS code, while γ is located in [0.3,0.4] by de Baas [8].
Therefore, in our simulations, the search space for γ must include all these possibilities.

Finally, we are interested in obtaining suitable values of the parameter γ ′ involved
in the computation of the mixing height for stable atmosphere, see (2.27). Garratt [15]
proposed γ′ = 0.4. Also in the WINDS code one may find bounds of γ ′ around 0.4. Thus,
the value of γ′ will be searched in the surroundings of 0.4.

2.4.2. Genetic Algorithms. Genetic algorithms (GAs) are optimisation tools based on
the natural evolution mechanism. They produce successive trials that have an increasing
probability to obtain a global optimum. This work is based on the model developed
by Levine [24]. The most important aspects of GAs are the construction of an initial
population, the evaluation of each individual in the fitness function, the selection of the
parents of the next generation, the crossover of those parents to create the children, and
the mutation to increase diversity.

Two population replacements are commonly used. The first, the generational
replacement, replaces the entire population each generation [18]. The second, known as
steady-state, only replaces a few individuals each generation [46, 48, 49]. Stopping criteria
are iteration limit exceeded, population too similar, and no change in the best solution
found in a given number of iterations. Initial population is randomly generated.

The selection phase allocates an intermediate population on the basis of the evaluation
of the fitness function. We have considered four selection schemes [24]: proportional
selection (P), stochastic universal selection (SU), binary tournament selection (BT) and
probabilistic binary tournament selection (PBT).

The crossover operator takes bits from each parent and combines them to create a
child. One-point (OP) and uniform (U) crossover operators are used here. The first one
selects randomly the place where each of the parents strings are broken in two substrings.
Children will be the union of first substring of one parent and the second of the other.
Uniform crossover depends on the probability of exchange between two bits of the parents
[45].

The mutation operator is better used after crossover [7]. It allows to reach individuals
on the search space that could not be evaluated otherwise. When part of a chromosome
has been randomly selected to be mutated, the corresponding genes belonging to that
part are changed. This happens with probability p. This work deals with four mutation
operators. Three of them are of the form ν ← ν ± p × ν, where ν is the existing allele
value, and p may be a constant value (C), chosen uniformly from the interval (0, β) with
β ≤ 1 (U), or selected from a Gaussian distribution (G). The fourth operator (R) simply
replaces ν with a value selected uniformly random from the initialisation range of that
gene.

The fitness function plays the role of the environment. It evaluates each string of a
population. This is a measure, relative to the rest of the population, of how well that
string satisfies a problem-specific metric. The values are mapped to a nonnegative and
monotonically increasing fitness value. In the numerical experiments with this wind model,
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we look for suitable values of α, ε, γ and γ ′. For this purpose, the average relative error
of the wind velocities given by the model with respect to the measures at the reference
stations is minimised

F (α, ε, γ, γ′) =

Nr∑

n=1

|~vn − ~v(xn, yn, zn)|

|~vn|

Nr
. (2.35)

where ~v(xn, yn, zn) is the wind velocity obtained by the model at the location of station
n, and Nr is the number of reference stations.

2.4.3. Numerical Experiments. We consider the same wind field problem related to
the southern area of La Palma Island (Canary Islands) which was defined in [33]. A
45600 × 31200 × 9000 m3 domain with real data of the topography is discretized using
the code developed in [29]. The maximum height in this zone of the island is 2279 m. The
mesh contains 11578 nodes and 52945 tetrahedra; see one of the initial meshes in Fig. 14
and the used mesh in Fig. 15. The wind measurements were taken in four stations: MBI,
MBII, MBIII and LPA. From the three cases studied in [33], we have selected case I with
softly unstable conditions and case III with softly stable conditions in order to test the
procedure for different stability conditions of the atmosphere. Due to the small number
of available data, we have used the observed wind speeds of stations MBI, MBII and LPA
to obtain the interpolated wind field (2.22), i.e., N = 3, and the measurement of MBIII
is considered as reference station in the fitness function (2.35), i.e., Nr = 1.

In the first application (case I), the parameter γ ′ is not involved in the modelling due
to the unstable condition of the atmosphere, i.e., h = zpbl. Thus, only α, ε and γ will be
estimated in this case. The experiment has been divided in two stages. First, we fix γ = 0.3
and estimate α ∈ [10−3, 10] and ε ∈ [0, 1]. The second column of Tab. 1 (Stage 1 ) shows
the values obtained for α and ε, which suggest a nearly vertical wind adjustment and
remark the complexity of the terrain respectively. Note that we obtain with the model an
error at station MBIII about 10.7%. The strategy of GAs (BT, U, R) corresponds to the
most efficient selection, crossover and mutation operators after several tests with different
combinations. In the second stage, α, ε and γ ∈ [0.15, 0.5] are estimated. The results are
also shown in the third column of Tab. 1. We observe that α is near the maximum value of
the space of search, ε remains quite small and γ is reduced, such that the error at station
MBIII is 10.7%. We remark that in this experiment the worst evaluation of the fitness
function, corresponding to values of the parameters in the search space, yields an error of
72.19%. Therefore, the knowledge of the studied parameters is essential for the efficiency
of the numerical model.

For the second experiment (case III) we have followed a similar procedure. Now,
γ′ ∈ [0.15, 0.5] must be also considered. First, a problem with two unknown parameters
(α, ε) is solved. The second column of Tab. 2 (Stage 1 ) shows the values obtained for α, ε.
Next, four problems arising from fixing one of the parameters each time, respectively, are
studied (Stages 2-5 ). Finally, the four parameters are estimated at the same time in Stage

6. The atmospheric stable conditions reduce the vertical adjustment predominance arising
in the previous experiment with unstable conditions, as well as augment the importance
of the horizontal distance in the interpolation of the observed wind speeds. The minimum
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Figure 14. Detail of one of the initial finite element mesh constructed for the numerical experiment. We
only plot the triangulation of the terrain and two vertical wall in order to hold clarity

error obtained at station MBIII was about 22.2%, while the error related to the worst
evaluation was 118.04%.

In both experiments, the number of individuals of the initial population was 100, except
for stage 6 in case III where it was 150. Iterations and CPU timings on a 933 MHz Pentium
III are shown in Tab. 1 and Tab. 2 for each stage. Evidently, the computational cost
would be considerably reduced using a massive parallel machine, where the GAs become
competitive with other optimisation methods.

Finally, as example, Fig. 2 shows the wind field obtained by the model, in the second
experiment, at a height of 200m using the values of the parameters corresponding to Stage

6. Here, the measures of the four stations have been taken into account for determining
the interpolated wind field.
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Figure 15. Detail of the optimised finite element mesh used for the numerical experiment

Table II. First experiment corresponding to the case I analysed in [33]. Strategy of genetics algorithms,
best evaluation of the fitness function and values of the parameters (fixed values are written between

brackets)

Stage 1 Stage 2
GAs strategy BT, U, R SU, U, G

Iterations 17 1
CPU time (s) 1548 108
Best Fitness 0.107 0.107

α 9.810 9.727
ε 0.010 0.029
γ (0.300) 0.284
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Table III. Second experiment corresponding to the case III analysed in [33]. Strategy of genetics
algorithms, best evaluation of the fitness function and values of the parameters (fixed values are written

between brackets)

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6
GAs strategy SU, U, G SU, U, R SU, U, R SU, U, R SU, U, R SU, U, R

Iterations 110 147 37 16 29 61
CPU time (s) 8514 12120 2958 1362 2406 7050
Best Fitness 0.234 0.227 0.222 0.223 0.222 0.222

α 4.182 5.041 (5.041) 4.765 5.699 6.080
ε 0.003 0.272 0.281 (0.281) 0.292 0.282
γ (0.300) 0.490 0.493 0.498 (0.498) 0.494
γ′ (0.400) (0.400) 0.154 0.153 0.154 0.153

Figure 16. Wind field solution related to the second experiment at a height of 200 m
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3. CONCLUSIONS AND FUTURE RESEARCH

We have established the main aspects for generating a three-dimensional mesh capable
of adapting to the topography of a rectangular area with minimal user intervention.
In short, an efficient and adaptive point generation has been stated which is well
distributed in the domain under study, because it preserves the topographic information
of the terrain with a decreasing density as altitude increases. Points are generated
using refinement/derefinement techniques in 2-D and the vertical spacing function here
introduced. Next, with the aid of an auxiliary parallelepiped, a proceeding based on
Delaunay triangulation has been set forth to generate the mesh automatically, assuring
conformity with the terrain surface. Nevertheless, the obtained point distribution could
also be useful in generating the three-dimensional mesh with other classical techniques,
such as advancing front [19] and normal offsetting [20]. Finally, the procedure here
proposed for optimising the generated mesh allows us to solve the tangling problems
and mesh quality at the same time.

In adittion, this work represents a study of an adaptive model for wind field adjustment.
We have applied the techniques of tetrahedral mesh refinement proposd by the authors in
[11] to the wind model developed in [32, 33]. The results allow us to conclude that, even
starting from a mesh adapted to the terrain topography, the variations of the solution
make necessary the use of techniques of adaptive mesh refinement. In this problem, we
remark the good behaviour of the gradient-like indicator used in this work, which has
allowed to detect those regions near the terrain where there are strong variations of the
speed and direction of the wind, efficiently. Evidently, if we look for a secuence of wind
field solutions adjusted to experimental data at different times, we should think of adding
a mesh derefinement code to the model, what would allow us to work with quasi-optimal
meshes at each time step.

The estimation of several parameters is essential for the efficiency of a 3-D mass
consistent model for wind field adjustment. The numerical experiments have shown that
these codes are very sensitive to the values chosen for α, ε, γ and γ ′. A methodology for
solving these parameter estimation problems is proposed. Genetic algorithms have proved
to be an efficient and robust tool for these optimisation problems when several parameters
are involved (see also [31]).

Further research is necessary in order to adapt our model for offshore wind simulation.
On one hand, it is essential to introduce in the model the contribution of thermal effects
which not only can deviate wind speed profiles from our log-linear one but produce sea
breezes and low level jets. On the other hand, the modelling of wake effects within large
offshore wind farms should be studied and added to our wind model.
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