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Abstract Many different complex systems depend on a large number n of mutually
independent random Boolean variables. The most useful representation
for these systems –usually called complex stochastic Boolean systems
(CSBSs)– is the intrinsic order graph. This is a directed graph on 2n

vertices, corresponding to the 2n binary n-tuples (u1, . . . , un) ∈ {0, 1}n

of 0s and 1s. In this paper, different duality properties of the intrinsic
order graph are rigorously analyzed in detail. The results can be applied
to many CSBSs arising from any scientific, technical or social area.
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1. Introduction
The study of complex systems is at present one of the most relevant

research areas in Computer Science and Engineering. In this paper, we
focus our attention on the complex stochastic Boolean systems (CSBSs),
that is, those complex systems which depend on a certain number n of
random Boolean variables. These systems can appear in any knowledge
area, since the assumption “random Boolean variables” is satisfied very
often in practice.

Using the statistical terminology, a CSBS can be modeled by the n-
dimensional Bernoulli distribution. As is well known (see, e.g., [Stuart,
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et al, 1998]), this distribution consists of n random variables x1, . . . , xn,
which only take two possible values, 0 or 1, with probabilities

Pr {xi = 1} = pi, Pr {xi = 0} = 1− pi (1 ≤ i ≤ n) .

In the following, we assume that the marginal Bernoulli variables
x1, . . . , xn are mutually independent, so that the probability of occur-
rence of each binary n-tuple, u = (u1, . . . , un) ∈ {0, 1}n, can be com-
puted as the product

Pr {(u1, . . . , un)} =
n∏

i=1

Pr {xi = ui} =
n∏

i=1

pui
i (1− pi)

1−ui , (1.1)

that is, Pr {(u1, . . . , un)} is the product of factors pi if ui = 1, 1-pi if
ui = 0. Throughout this paper, the binary n-tuples (u1, . . . , un) of 0s
and 1s will be also called binary strings or bitstrings, and the parameters
p1, . . . , pn of the n-dimensional Bernoulli distribution will be also called
basic probabilities.

Example 1.1 Let n = 3 and u = (1, 0, 1) ∈ {0, 1}3. Let p1 = 0.1,
p2 = 0.2, p3 = 0.3. Then, using Eq. (1.1), we have

Pr {(1, 0, 1)} = p1 (1− p2) p3 = 0.024.

One of the most relevant questions in the analysis of CSBSs consists
of ordering the binary strings (u1, . . . , un) according to their occurrence
probabilities. Of course, the theoretical and practical interest of this
question is obvious. For instance, in [González, 2002; González, et al,
2004] the authors justify the convenience of using binary n-tuples with
occurrence probabilities as large as possible, in order to solve, with a low
computational cost, some classical problems in Reliability Theory and
Risk Analysis.

Of course, computing and ordering all the 2n binary n-tuple probabil-
ities (in decreasing or increasing order) is only feasible for small values
of n. For large values of the number n of basic Boolean variables (the
usual situation in practice), we need an alternative strategy. For this
purpose, in [González, 2002] we have established a simple, positional
criterion that allows one to compare two given binary n-tuple proba-
bilities, Pr {u} ,Pr {v}, without computing them, simply looking at the
positions of the 0s and 1s in the n-tuples u, v. We have called it the
intrinsic order criterion, because it is independent of the basic proba-
bilities pi and it intrinsically depends on the positions of the 0s and 1s
in the binary strings.
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The intrinsic order, denoted by “�”, is a partial order relation on the
set {0, 1}n of all binary n-tuples. The usual representation of this kind
of binary relations is the Hasse diagram [Stanley, 1997]. In particular,
the Hasse diagram of the partially ordered set ({0, 1}n ,�) is referred to
as the intrinsic order graph for n variables.

In this context, the main goal of this paper is to state and rigor-
ously prove some properties of the intrinsic order graph. Some of these
properties can be found in [González, 2011]. In particular, we focus
our attention on several duality properties of this graph. For this pur-
pose, this paper has been organized as follows. In Section 2, we present
some previous results on the intrinsic order relation and the intrinsic
order graph, enabling non-specialists to follow the paper without diffi-
culty and making the presentation self-contained. Section 3 is devoted to
provide different duality properties of the intrinsic order graph. Finally,
conclusions are presented in Section 4.

2. The Intrinsic Order Relation and its Graph
The Intrinsic Order Relation

In the context of the CSBSs defined in Section 1, the following simple
question arises: Given a certain n-dimensional Bernoulli distribution,
how can we order two given binary n-tuples, u, v ∈ {0, 1}n, by their
occurrence probabilities, without computing them? Of course, the or-
dering between Pr (u) and Pr (v) depends, in general, on the parameters
pi of the Bernoulli distribution, as the following simple example shows.

Example 2.1 Let n = 3, u = (0, 1, 1) and v = (1, 0, 0). Using Eq. (1.1)
for p1 = 0.1, p2 = 0.2, p3 = 0.3, we have:

Pr {(0, 1, 1)} = 0.054 < Pr {(1, 0, 0)} = 0.056,

while for p1 = 0.2, p2 = 0.3, p3 = 0.4, we have:

Pr {(0, 1, 1)} = 0.096 > Pr {(1, 0, 0)} = 0.084.

However, for some pairs of binary strings, the ordering between their oc-
currence probabilities is independent of the basic probabilities pi, and it
only depends on the relative positions of their 0s and 1s. More precisely,
the following theorem [González, 2002; González, 2003] provides us with
an intrinsic order criterion –denoted from now on by the acronym IOC–
to compare the occurrence probabilities of two given n-tuples of 0s 1s
without computing them.



4 ELECTRICAL ENGINEERING AND INTELLIGENT SYSTEMS

Theorem 2.2 Let n ≥ 1. Let x1, . . . , xn be n mutually independent
Bernoulli variables whose parameters pi = Pr {xi = 1} satisfy

0 < p1 ≤ p2 ≤ . . . ≤ pn ≤
1
2
. (2.1)

Then the probability of the n-tuple v = (v1, . . . , vn) ∈ {0, 1}n is intrinsi-
cally less than or equal to the probability of the n-tuple u = (u1, . . . , un) ∈
{0, 1}n (that is, for all set {pi}n

i=1satisfying (2.1)) if and only if the ma-
trix

Mu
v :=

(
u1 . . . un

v1 . . . vn

)
either has no

(
1
0

)
columns, or for each

(
1
0

)
column in Mu

v there exists (at
least) one corresponding preceding

(
0
1

)
column (IOC).

Remark 2.3 In the following, we assume that the parameters pi always
satisfy condition (2.1). Note that this hypothesis is not restrictive for
practical applications because, if for some i : pi > 0.5, then we only need
to consider the variable xi = 1− xi, instead of xi. Next, we order the n
Bernoulli variables by increasing order of their probabilities.

Remark 2.4 The
(
0
1

)
column preceding to each

(
1
0

)
column is not re-

quired to be necessarily placed at the immediately previous position, but
just at previous position.

Remark 2.5 The term corresponding, used in Theorem 2.2, has the
following meaning: For each two

(
1
0

)
columns in matrix Mu

v , there must
exist (at least) two different

(
0
1

)
columns preceding to each other. In

other words: For each
(
1
0

)
column in matrix Mu

v , the number of preceding(
0
1

)
columns must be strictly greater than the number of preceding

(
1
0

)
columns.

Remark 2.6 IOC can be equivalently reformulated in the following
way, involving only the 1-bits of u and v (with no need to use their
0-bits). Matrix Mu

v satisfies IOC if and only if either u has no 1-bits
(i.e., u is the zero n-tuple) or for each 1-bit in u there exists (at least)
one corresponding 1-bit in v placed at the same or at a previous position.
In other words, either u has no 1-bits or for each 1-bit in u, say ui = 1,
the number of 1-bits in (v1, . . . , vi) must be greater than or equal to the
number of 1-bits in (u1, . . . , ui).

The matrix condition IOC, stated by Theorem 2.2 or by Remark 2.6,
is called the intrinsic order criterion, because it is independent of the
basic probabilities pi and it only depends on the relative positions of the
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0s and 1s in the binary n-tuples u, v. Theorem 2.2 naturally leads to the
following partial order relation on the set {0, 1}n [González, 2003]. The
so-called intrinsic order will be denoted by “�”, and we shall write u � v
(u � v) to indicate that u is intrinsically greater (less) than or equal to
v. The partially ordered set (from now on, poset, for short) ({0, 1}n ,�)
on n Boolean variables, will be denoted by In.

Definition 2.7 For all u, v ∈ {0, 1}n

v � u iff Pr {v} ≤ Pr {u} for all set {pi}n
i=1 s.t. (2.1)

iff Mu
v satisfies IOC.

Example 2.8 Neither (0, 1, 1) � (1, 0, 0), nor (1, 0, 0) � (0, 1, 1) be-
cause the matrices (

1 0 0
0 1 1

)
and

(
0 1 1
1 0 0

)
do not satisfy IOC (Remark 2.5). Therefore (0, 1, 1) and (1, 0, 0) are
incomparable by intrinsic order, i.e., the ordering between Pr { (0, 1, 1)}
and Pr { (1, 0, 0)} depends on the basic probabilities pi, as Example 2.1
has shown.

Example 2.9 (1, 1, 0, 1, 0, 0) � (0, 0, 1, 1, 0, 1) because matrix(
0 0 1 1 0 1
1 1 0 1 0 0

)
satisfies IOC (Remark 2.4). Thus, for all {pi}6i=1 s.t. (2.1)

Pr {(1, 1, 0, 1, 0, 0)} ≤ Pr {(0, 0, 1, 1, 0, 1)} .

Example 2.10 For all n ≥ 1, the binary n-tuples(
0,

n

.̂ . ., 0
)
≡ 0 and

(
1,

n

.̂ . ., 1
)
≡ 2n − 1

are the maximum and minimum elements, respectively, in the poset In.
Indeed, both matrices(

0 . . . 0
u1 . . . un

)
and

(
u1 . . . un

1 . . . 1

)
satisfy IOC, since they have no

(
1
0

)
columns!

Thus, for all u ∈ {0, 1}n and for all {pi}n
i=1 s.t. (2.1)

Pr
{(

1,
n

.̂ . ., 1
)}

≤ Pr {(u1, . . . , un)} ≤ Pr
{(

0,
n

.̂ . ., 0
)}

.
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Many different properties of the intrinsic order can be immediately de-
rived from its simple matrix description IOC [González, 2002; González,
2003; González, 2007]. For instance, denoting by wH (u) the Hamming
weight –or weight, simply– of u (i.e., the number of 1-bits in u), by u(10

the decimal representation of u, and by ≤lex the usual lexicographic
(truth-table) order on {0, 1}n, i.e.,

wH (u) :=
n∑

i=1

ui, u(10 :=
n∑

i=1

2n−iui, u ≤lex v iff u(10 ≤ v(10

then we have the following two necessary (but not sufficient) conditions
for intrinsic order (see [González, 2003] for the proof).

Corollary 2.11 For all n ≥ 1 and for all u, v ∈ {0, 1}n

u � v ⇒ wH (u) ≤ wH (v) ,

u � v ⇒ u(10 ≤ v(10 .

A Hasse Diagram: The Intrinsic Order Graph
Now, the graphical representation of the poset In = ({0, 1}n ,�) is

presented. The usual representation of a poset is its Hasse diagram
(see [Stanley, 1997] for more details about these diagrams). Specifically,
for our poset In, its Hasse diagram is a directed graph (digraph, for
short) whose vertices are the 2n binary n-tuples of 0s and 1s, and whose
edges go upward from v to u whenever u covers v, denoted by u . v.
This means that u is intrinsically greater than v with no other elements
between them, i.e.,

u . v ⇔ u � v and @ w ∈ {0, 1}n s.t. u � w � v.

A simple matrix characterization of the covering relation for the in-
trinsic order is given in the next theorem; see [González, 2006] for the
proof.

Theorem 2.12 (Covering relation in In) Let n ≥ 1 and let u, v ∈
{0, 1}n. Then u B v if and only if the only columns of matrix Mu

v differ-
ent from

(
0
0

)
and

(
1
1

)
are either its last column

(
0
1

)
or just two columns,

namely one
(
1
0

)
column immediately preceded by one

(
0
1

)
column, i.e.,

either

Mu
v =

(
u1 . . . un−1 0
u1 . . . un−1 1

)
(2.2)

or there exists i (2 ≤ i ≤ n) s.t.

Mu
v =

(
u1 . . . ui−2 0 1 ui+1 . . . un

u1 . . . ui−2 1 0 ui+1 . . . un

)
. (2.3)
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Example 2.13 For n = 4, we have

6 . 7 since M6
7 =

(
0 1 1 0
0 1 1 1

)
has the pattern (2.2),

10 . 12 since M10
12 =

(
1 0 1 0
1 1 0 0

)
has the pattern (2.3).

The Hasse diagram of the poset In will be also called the intrinsic
order graph for n variables, denoted as well by In.

For small values of n, the intrinsic order graph In can be directly con-
structed by using either Theorem 2.2 (matrix description of the intrinsic
order) or Theorem 2.12 (matrix description of the covering relation for
the intrinsic order). For instance, for n = 1: I1 = ({0, 1} ,�), and its
Hasse diagram is shown in Figure 1.1.

0
|
1

Figure 1.1. The intrinsic order graph for n = 1.

Indeed I1 contains a downward edge from 0 to 1 because (see Theorem
2.2) 0 � 1, since matrix

(
0
1

)
has no

(
1
0

)
columns! Alternatively, using

Theorem 2.12, we have that 0 B 1, since matrix
(
0
1

)
has the pattern

(2.2)! Moreover, this is in accordance with the obvious fact that

Pr {0} = 1− p1 ≥ p1 = Pr {1} , since p1 ≤ 1/2 due to Eq. (2.1)!

However, for large values of n, a more efficient method is needed. For
this purpose, in [González, 2006] the following algorithm for iteratively
building up In (for all n ≥ 2) from I1 (depicted in Figure 1.1), has been
developed.

Theorem 2.14 (Building up In from I1) Let n ≥ 2. The graph of
the poset In = {0, . . . , 2n − 1} (on 2n nodes) can be drawn simply by
adding to the graph of the poset In−1 =

{
0, . . . , 2n−1 − 1

}
(on 2n−1

nodes) its isomorphic copy 2n−1 + In−1 =
{
2n−1, . . . , 2n − 1

}
(on 2n−1

nodes). This addition must be performed placing the powers of 2 at con-
secutive levels of the Hasse diagram of In. Finally, the edges connecting
one vertex u of In−1 with the other vertex v of 2n−1 + In−1 are given by
the set of 2n−2 vertex pairs{

(u, v) ≡
(
u(10 , 2n−2 + u(10

) ∣∣ 2n−2 ≤ u(10 ≤ 2n−1 − 1
}

.
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Figure 1.2 illustrates the above iterative process for the first few val-
ues of n, denoting all the binary n-tuples by their decimal equivalents.
Basically, we first add to In−1 its isomorphic copy 2n−1 + In−1. This ad-
dition must be performed by placing the powers of two, 2n−2 and 2n−1,
at consecutive levels in the intrinsic order graph. The reason is simply
that

2n−2 . 2n−1 since matrix M2n−2

2n−1 has the pattern (2.3).

Then, we connect one-to-one the nodes of “the second half of the first
half” to the nodes of “the first half of the second half”: A nice fractal
property of In!

0
|
1

0
|
1
|
2
|
3

0
|
1
|
2
| �
3 4

� |
5
|
6
|
7

0
|
1
|
2
| �
3 4

� | �
5 8
| � |
6 9
| � |
7 10

� | �
11 12

� |
13
|

14
|

15

Figure 1.2. The intrinsic order graphs for n = 1, 2, 3, 4.

Each pair (u, v) of vertices connected in In either by one edge or by a
longer path, descending from u to v, means that u is intrinsically greater
than v, i.e., u � v. On the contrary, each pair (u, v) of non-connected
vertices in In either by one edge or by a longer descending path, means
that u and v are incomparable by intrinsic order, i.e., u � v and v � u.



Duality in Complex Stochastic Boolean Systems 9

The edgeless graph for a given graph is obtained by removing all its
edges, keeping its nodes at the same positions. In Figures 1.3 & 1.4, the
edgeless intrinsic order graphs of I5 & I6, respectively, are depicted.

0
1
2
3 4

5 8
6 9 16
7 10 17

11 12 18
13 19 20
14 21 24
15 22 25

23 26
27 28

29
30
31

Figure 1.3. The edgeless intrinsic order graph for n = 5.

0
1
2
3 4

5 8
6 9 16
7 10 17 32

11 12 18 33
13 19 20 34
14 21 24 35 36
15 22 25 37 40

23 26 38 41 48
27 28 39 42 49

29 43 44 50
30 45 51 52
31 46 53 56

47 54 57
55 58

59 60
61
62
63

Figure 1.4. The edgeless intrinsic order graph for n = 6.

For further theoretical properties and practical applications of the
intrinsic order and the intrinsic order graph, we refer the reader to
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e.g., [González, 2002; González, 2006; González, 2007; González, 2010;
González, 2011; González, et al, 2004].

3. Duality Properties in the Intrinsic Order Graph
First, we need to set the following nomenclature and notation.

Definition 3.1 The complementary n-tuple uc of a given binary n-
tuple u = (u1, . . . , un) ∈ {0, 1}n is obtained by changing its 0s by 1s and
its 1s by 0s

uc = (u1, . . . , un)c = (1− u1, . . . , 1− un) .

The complementary set Sc of a given subset S ⊆ {0, 1}n of binary n-
tuples is the set of the complementary n-tuples of all the n-tuples of S

Sc = {uc | u ∈ S } .

Remark 3.2 Note that for all u = (u1, . . . , un) ∈ {0, 1}n and for all
S, T ⊆ {0, 1}n, we obviously have

(i) (uc)c = u, (ii) (Sc)c = S, (iii) u ∈ S ⇔ uc ∈ Sc,

(iv) (S ∪ T )c = Sc ∪ T c, (v) wH (u) + wH (uc) = n.

The following proposition states a duality property of the intrinsic
order, that explains the symmetric structure of the intrinsic order graph.

proposition 3.3 Let n ≥ 1 and u, v ∈ {0, 1}n. Then

u . v ⇔ vc . uc,

u � v ⇔ vc � uc.

Proof. Clearly, the
(
0
0

)
,
(
1
1

)
,
(
0
1

)
and

(
1
0

)
columns in matrix Mu

v , respec-
tively become

(
1
1

)
,
(
0
0

)
,
(
0
1

)
and

(
1
0

)
columns in matrix Mvc

uc .
Hence, on one hand, using Theorem 2.12, we have that u . v iff matrix
Mu

v has either the pattern (2.2) or the pattern (2.3) iff matrix Mvc

uc has
either the pattern (2.2) or the pattern (2.3), respectively, iff vc . uc.
On the other hand, using Theorem 2.2, we have that u � v iff matrix
Mu

v satisfies IOC iff matrix Mvc

uc satisfies IOC iff vc � uc. �

Next corollary provides us with two easy criteria for rapidly identifying
pairs of complementary binary strings in the intrinsic order graph.
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Corollary 3.4 Let n ≥ 1 and u, v ∈ {0, 1}n. Then u and v are com-
plementary n-tuples if and only if their decimal equivalents sum up to
2n− 1 if and only if they are placed at symmetric positions (with respect
to the central point) in the (edgeless) graph In.

Proof. Using Definition 3.1, we have that u and v are complementary
n-tuples if and only if

u + v =
(
1,

n

.̂ . ., 1
)
≡ 2n − 1.

Using Proposition 3.3, we have that u and v are complementary n-tuples
if and only if they are placed at symmetric positions (with respect to
the central point) in the (edgeless) graph In. �

Hence, the simplest way to verify that two binary n-tuples are com-
plementary, when we use their decimal representations, is to check that
they sum up to 2n − 1.

Example 3.5 The binary 5-tuples 6 ≡ (0, 0, 1, 1, 0) & 25 ≡ (1, 1, 0, 0, 1)
are complementary, since 6 + 25 = 31 = 25 − 1. Alternatively, we can
see that 6 and 25 are placed at symmetric positions (with respect to the
central point) in the edgeless graph I5, depicted in Figure 1.3.

Example 3.6 The complementary 6-tuple of the binary 6-tuple 50 ≡
(1, 1, 0, 0, 1, 0) is 13 ≡ (0, 0, 1, 1, 0, 1), since

(
26 − 1

)
−50 = 63−50 = 13.

Alternatively, we can see that 13 is the symmetric node (with respect to
the central point) of 50 in the edgeless graph I6, depicted in Figure 1.4.

Many different consequences can be derived from Proposition 3.3.
Some of them are presented in the following corollaries. Before each
of them we give some definitions required to understand the statements
of the corollaries.

Definition 3.7 For every binary n-tuple u ∈ {0, 1}n, the set Cu (the
set Cu, respectively) is the set of all binary n-tuples v whose occurrence
probabilities Pr {v} are always less (greater, respectively) than or equal
to Pr {u}, i.e., according to Definition 2.7, those n-tuples v intrinsically
less (greater, respectively) than or equal to u, i.e.,

Cu = {v ∈ {0, 1}n | u � v} ,

Cu = {v ∈ {0, 1}n | v � u} .
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Definition 3.8 For every binary n-tuple u ∈ {0, 1}n, Inc (u) is the
set of all binary n-tuples v intrinsically incomparable with u, i.e.,

Inc (u) = {v ∈ {0, 1}n | u � v, u � v} = {0, 1}n − (Cu ∪ Cu) .

Corollary 3.9 For all n ≥ 1 and for all u ∈ {0, 1}n, we have

(i) (Cu)c = Cuc , (ii) (Cu)c = Cuc
, (iii) (Inc (u))c = Inc (uc) .

Proof. To prove (i) it suffices to use Remark 3.2, Proposition 3.3 and
Definition 3.7. Indeed

v ∈ (Cu)c ⇔ vc ∈ Cu ⇔ u � vc ⇔ v � uc ⇔ v ∈ Cuc .

Clearly (ii) is equivalent to (i); see Remark 3.2. Finally, to prove (iii),
we use (i), (ii), Remark 3.2 and Definition 3.8

v ∈ (Inc (u))c ⇔ vc ∈ Inc (u) ⇔ vc /∈ (Cu ∪ Cu)

⇔ v /∈ (Cu ∪ Cu)c ⇔ v /∈ Cuc ∪ Cuc ⇔ v ∈ Inc (uc) ,

as was to be shown. �

The following definition (see [Stanley, 1997]) deals with the general
theory of posets.

Definition 3.10 Let (P,≤) be a poset and u ∈ P . Then
(i) The lower shadow of u is the set

∆ (u) = {v ∈ P | v is covered by u} = {v ∈ P | u B v} .

(ii) The upper shadow of u is the set

∇ (u) = {v ∈ P | v covers u} = {v ∈ P | v B u} .

Particularly, for our poset P = In, on one hand, regarding the lower
shadow of u ∈ {0, 1}n, using Theorem 2.12, we have

∆ (u) = {v ∈ {0, 1}n | u B v}
= {v ∈ {0, 1}n | Mu

v has either the pattern (2.2) or (2.3)} .

and, on the other hand, regarding the upper shadow of u ∈ {0, 1}n, using
again Theorem 2.12, we have

∇ (u) = {v ∈ {0, 1}n | v B u}
= {v ∈ {0, 1}n | Mv

u has either the pattern (2.2) or (2.3)} .
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Corollary 3.11 For all n ≥ 1 and for all u ∈ {0, 1}n, we have

(i) ∆ (u) = ∇c (uc) , (ii) ∇ (u) = ∆c (uc) .

Proof. To prove (i), we use Remark 3.2, Proposition 3.3 and Definition
3.10. Indeed,

v ∈ ∆ (u) ⇔ u B v ⇔ vc B uc ⇔ vc ∈ ∇ (uc) ⇔ v ∈ ∇c (uc) .

Clearly (ii) is equivalent to (i); see Remark 3.2. �

The following definition (see [Diestel, 2005]) deals with the general
theory of graphs.

Definition 3.12 The neighbors of a given vertex u in a graph, are all
those nodes adjacent to u (i.e., connected by one edge to u). The degree of
a given vertex u –denoted by δ (u)– in a graph is the number of neighbors
of u.

In particular, for (the cover graph of) a Hasse diagram, the neighbors of
vertex u either cover u or are covered by u. In other words, the set N (u)
of neighbors of a vertex u is the union of its lower and upper shadows,
i.e.,

N (u) = ∆ (u) ∪∇ (u) , δ (u) = |N (u)| = |∆ (u)|+ |∇ (u)| . (3.1)

Corollary 3.13 For all n ≥ 1 and for all u ∈ {0, 1}n, the sets of
neighbors of u and uc are complementary. In particular, any two com-
plementary n-tuples u and uc have the same degree.

Proof. Using Remark 3.2, Corollary 3.11, Definition 3.12 and Eq. (3.1),
we have

N c (u) = [∆ (u) ∪∇ (u)]c = ∆c (u) ∪∇c (u)
= ∇ (uc) ∪∆ (uc) = N (uc)

and consequently

δ (u) = |N (u)| = |N c (u)| = |N (uc)| = δ (uc) ,

as was to be shown. �
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4. Conclusions
The analysis of CSBSs can be performed by using the intrinsic order-

ing between binary n-tuples of 0s and 1s. The duality property of the
intrinsic order relation for complementary n-tuples (obtained by chang-
ing 0s into 1s and 1s into 0s), implies many different properties of CSBSs.
Some of these properties has been rigorously proved and illustrated by
the intrinsic order graph.
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González, L. (2006). A picture for complex stochastic Boolean systems: The intrinsic

order graph. Lect. Notes Comput. Sc., 3993:305-312.
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González, L., Garćıa, D., and Galván, B. (2004). An intrinsic order criterion to eval-
uate large, complex fault trees. IEEE Trans. on Reliab., 53:297-305.

Stanley, R.P. (1997). Enumerative Combinatorics, Vol. 1. Cambridge: Cambridge Uni-
versity Press.

Stuart, A., Ord, J.K. (1998). Kendall’s Advanced Theory of Statistics, Vol. 1. New
York: Oxford University Press.




