$h(\sigma)$ calculation

This document briefly explains some minor modifications made to the original $h(\sigma)$ function described in [1], as well as some technical details related to δ calculation.

- sigma_medio: $\frac{1}{m} \sum_{i=1}^{m} |\sigma_i|$
- sigma_min: $\min(\sigma_i)$, where σ_i is the determinant of the weighted Jacobian matrix associated with the i-th tetrahedron of the local mesh.
- $delta_min = Re(\sqrt{EpsilonEfectivo(EpsilonEfectivo sigma_min)})$
- $\delta = \max\{delta_min, 10^{-4}sigma_medio\}$

The program uses a default effective epsilon, given by:

 $Epsilon Efectivo = machine_epsilon * EpsSafetyFactor$

where *machine_epsilon* is a typical machine epsilon for double precision numbers and *EpsSafetyFactor* is a "safety" factor used to prevent numerical problems. Values in this implementation are:

machine_epsilon =
$$2.220446^{-16}$$

EpsSafetyFactor = 10^{11}

Asymptotic epsilon ε has the following value: $asimptotic_epsilon = 10^{-10}$. Note that $\varepsilon \ll \delta$. Figure 1 shows a modification of $h(\sigma)$ function presented in [1]. This new function is given by

Figure 1: Representation of $h(\sigma)$ function

References

 J.M. Escobar, E. Rodríguez, R. Montenegro, G. Montero, J.M. González-Yuste, Simultaneous untangling and smoothing of tetrahedral meshes, *Computer Methods in Applied Mechanics* and Engineering, 192 (25) 2775–2787 (2003).