Modelo Numérico de Ajuste de Campos de Viento

G. Montero, R. Montenegro, J. M. Escobar, E. Rodríguez, J. M. González-Yuste

Instituto Universitario de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería Universidad de Las Palmas de Gran Canaria

- Modelo de ajuste de campos de viento
 - * Ecuaciones de gobierno
 - * Interpolación horizontal
 - * Extrapolación vertical
- Corrección del campo con un modelo gaussiano
 - * Elevación por flotación
 - * Elevación por momento
- Estimación de parámetros en el modelo de viento
 - * Algoritmos Genéticos

Modelo de ajuste de campos de viento (1)

Los modelos de masa consistente son modelos de diagnóstico para construir campos de viento:

- Leyes físicas de un fluido incompresible
- Diseño empírico de perfiles de viento
- Medidas de velocidades en estaciones

Se basan en la ecuación de continuidad con densidad del aire constante en un dominio Ω

$$\vec{\nabla} \cdot \vec{u} = 0$$
 en Ω

y condiciones de impenetrabilidad en el terreno (y en la frontera superior)

$$\vec{n} \cdot \vec{u} = 0$$
 en Γ_b

Modelo de ajuste de campos de viento (2)

Se plantea un problema de mínimos cuadrados:

Ajustar un campo de velocidades $\vec{u}(\tilde{u}, \tilde{v}, \tilde{w})$ a otro $\vec{v}_0(u_0, v_0, w_0)$ que se obtiene a partir de medidas experimentales

$$E(\widetilde{u},\widetilde{v},\widetilde{w}) = \int_{\Omega} \left[\alpha_1^2 \left((\widetilde{u} - u_0)^2 + (\widetilde{v} - v_0)^2 \right) + \alpha_2^2 (\widetilde{w} - w_0)^2 \right] d\Omega$$

Equivalente a encontrar un punto silla $(\vec{v}(u, v, w), \phi)$ de Ξ

$$\Xi\left(\vec{v}\right) = \min_{\vec{u}\in K} \Xi\left(\vec{u}\right), \qquad \qquad \Xi\left(\vec{u}\right) = E\left(\vec{u}\right) + \int_{\Omega} \phi \vec{\nabla} \cdot \vec{u} \, d\Omega$$

La técnica de los multiplicadores de Lagrange conduce a las ecuaciones de Euler-Lagrange

$$u = u_0 + T_h \frac{\partial \phi}{\partial x}, \quad v = v_0 + T_h \frac{\partial \phi}{\partial y}, \quad w = w_0 + T_v \frac{\partial \phi}{\partial z}$$

Tensor diagonal de trasm.: $T = (T_h, T_h, T_v), T_h = \frac{1}{2\alpha_1^2}, T_v = \frac{1}{2\alpha_2^2}$

Modelo de ajuste de campos de viento (3)

Las ecuaciones de Euler-Lagrange producen el siguiente problema elíptico,

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{T_v}{T_h} \frac{\partial^2 \phi}{\partial z^2} = -\frac{1}{T_h} \left(\frac{\partial u_0}{\partial x} + \frac{\partial v_0}{\partial y} + \frac{\partial w_0}{\partial z} \right) \quad \text{en } \Omega$$

con condición Dirichlet nula en fronteras abiertas y Neumann sobre el terreno y la frontera superior.

$$\phi = 0 \text{ en } \Gamma_a$$
$$\vec{n} \cdot T \, \vec{\nabla} \mu = -\vec{n} \cdot \vec{v}_0 \text{ en } \Gamma_b$$

Construcción del campo inicial $\vec{v}_0(u_0, v_0, w_0)$

Interpolación horizontal

$$\vec{v}_0(z_m) = \underbrace{\varepsilon \frac{\sum\limits_{n=1}^{N} \frac{\vec{v}_n}{d_n^2}}{\sum\limits_{n=1}^{N} \frac{1}{d_n^2}}}_{0 \le \varepsilon \le 1} + (1 - \varepsilon) \frac{\sum\limits_{n=1}^{N} \frac{\vec{v}_n}{|\Delta h_n|}}{\sum\limits_{n=1}^{N} \frac{1}{|\Delta h_n|}}$$

Extrapolación Vertical Velocidad de fricción: $\vec{v}^* = \frac{k \vec{v}_0(z_m)}{\log \frac{z_m}{z_0} - \Phi_m}$ Altura de Capa Límite Platenaria: $z_{pbl} = \frac{\gamma |\vec{v}^*|}{f}$ $f = 2\omega \sin \varphi$ es el parámetro de Coriolis ω es la velocidad de rotación de la Tierra y φ la latitud γ es un parámetro que depende de la estabilidad atmosférica Altura de la Capa de Mezcla:

- $h = z_{pbl}$ en condiciones neutras e inestables
- $h = \underbrace{\gamma'}_{f} \sqrt{\frac{|\vec{v}^*|L}{f}}$ en condiciones estables Parámetro de proporcionalidad.

Altura de la Capa Superficial: $z_{sl} = \frac{h}{10}$

Modelo de ajuste de campos de viento (6)

9

Perfi l Logarítmico-lineal de velocidades de viento

$$\begin{aligned} \vec{v}_0(z) &= 0 \qquad z \leq z_0 \\ \vec{v}_0(z) &= \frac{\vec{v}_s^*}{k!} \left(\log \frac{z}{z_0} - \Phi_m \right) \qquad z_0 < z \leq z_{sl} \\ \Phi_m &= 0 \qquad (Atmósfera Neutra) \\ \Phi_m &= -5\frac{z}{L} \qquad (Atmósfera estable) \\ \Phi_m &= \log \left[\left(\frac{\theta^2 + 1}{2}\right) \left(\frac{\theta + 1}{2}\right)^2 \right] - 2 \arctan \theta + \frac{\pi}{2} \qquad (Atmósfera inestable) \\ \theta &= (1 - 16\frac{z}{L})^{1/4}, \frac{1}{L} = az_0^b \qquad (a, b, dependen de la estabilidad de Pasquill) \\ \vec{v}_0(z) &= \rho(z) \ \vec{v}_0(z_{sl}) + \left[1 - \rho(z) \right] \ \vec{v}_g \qquad z_{sl} < z \leq z_{pbl} \\ \rho(z) &= 1 - \left(\frac{z - z_{sl}}{z_{pbl} - z_{sl}} \right)^2 \left(3 - 2\frac{z - z_{sl}}{z_{pbl} - z_{sl}} \right) \end{aligned}$$

Corrección del campo con un modelo gaussiano (1)

Corrección de la velocidad vertical considerando elevación por flotación

Corrección vertical en la pluma

Valor del parámetro t (tiempo transcurrido) hasta d_f

$$t_f = \frac{-|\vec{v}_0(x_c, y_c, z_c)| + \sqrt{|\vec{v}_0(x_c, y_c, z_c)|^2 + 2a_d d_f}}{a_d}$$

Parametrización de la aceleración, velocidad y posición verticales,

$$a_{0}(t) = \frac{-4w_{c}t_{f} + 6(z_{H} - z_{c}')}{t_{f}^{2}} + \frac{6w_{c}t_{f} - 12(z_{H} - z_{c}')}{t_{f}^{3}}t$$

$$w_{0}(t) = w_{c} + \frac{-4w_{c}t_{f} + 6(z_{H} - z_{c}')}{t_{f}^{2}}t + \frac{3w_{c}t_{f} - 6(z_{H} - z_{c}')}{t_{f}^{3}}t^{2}$$

$$x(t) = x_{c} + u_{0}(x_{c}, y_{c}, z_{c})t + \frac{1}{2}a_{dx}t^{2} \qquad y(t) = y_{c} + v_{0}(x_{c}, y_{c}, z_{c})t + \frac{1}{2}a_{dy}t^{2}$$

$$z(t) = z_{c}' + w_{c}t + \frac{-2w_{c}t_{f} + 3(z_{H} - z_{c}')}{t_{f}^{2}}t^{2} + \frac{w_{c}t_{f} - 2(z_{H} - z_{c}')}{t_{f}^{3}}t^{3}$$

Corrección del campo con un modelo gaussiano (3)

Corrección de la velocidad vertical debida a la elevacón por momento

Estimación de parámetros en el modelo de viento

Ajuste de campos de viento en un problema test

m	x_m	y_m	u_m	v_m
1	0.0	0.0	0.0	5.0
2	5000.0	0.0	0.0	5.0
3	10000.0	0.0	0.0	5.0
4	0.0	5000.0	0.0	5.0
5	5000.0	5000.0	0.0	5.0
6	10000.0	5000.0	0.0	5.0
7	0.0	10000.0	0.0	5.0
8	5000.0	10000.0	0.0	5.0
9	10000.0	10000.0	0.0	5.0

Situación de las estaciones y medidas consideradas

- $\star \quad 10000 \; m \times 10000 \; m \times 7000 \; m$
- ★ 9 Estaciones
- ★ 1229 Nodos
- ★ 5272 Tetraedros

Función del terreno

La topografía viene dada por:

$$z = z_{max} \exp\left[-\left(\left(\frac{x - x_c}{s_x}\right)^2 + \left(\frac{y - y_c}{s_y}\right)^2\right)\right]$$

Datos de entrada

 $\begin{aligned} z_{max} &= 1500 \qquad x_c = y_c = 5000 \qquad s_x = 1000 \qquad s_y = 800 \\ \varepsilon &= 0.5 \qquad \gamma = 0.3 \qquad \gamma' = 0.4 \qquad \alpha = 0.1 \\ k &= 0.4 \qquad \phi = 28.6^\circ \qquad u_g = 0.0 \ m/s \qquad v_g = 10.0 \ m/s \\ \hline \text{Condiciones ligeramente estables} \end{aligned}$

Experimentos numéricos (3)

Refi namiento de mallas

- Indicador de error tipo gradiente
- 2 pasos de refi namiento adaptativo
- Mayor concentración de nodos donde existe mayor variación de la velocidad y dirección del viento

Experimentos numéricos (4)

Velocidades de viento

10 m (8 estaciones más bajas) $500\ m$

1500 m (cima de la montaña)

Experimentos numéricos (5)

Discretización del terreno

Región de La Palma con una chimenea

- $\star \quad 22803 \times 15600 \times 9000 \; m^3$
- \star 4 estaciones
- ★ Chimenea: $r_i = 20m$, $r_e = 40m$, h = 200m

Detalles de la malla (chimenea)

Exprimentos numéricos (6)

Refi namiento local en la pluma

Malla	Nodos	Tetraedros	
0	28387	153085	
1	28652	154595	
2	29996	160960	
3	33277	177473	
4	33322	177685	
5	34551	183659	
6	34626	184017	

Detalle de la malla en la chimenea (todas las aristas)

Exprimentos numéricos (7)

Campo inicial de velocidades

Campo ajustado de velocidades

Experimentos numéricos (8)

13135 nodos - 64684 tetraedros

19205 nodos - 99422 tetraedros

Resultados obtenidos con algoritmos genéticos

	Etapa 1	Etapa 2	Etapa 3	Etapa 4	Etapa 5	Etapa 6
Estrategia de GAs	SU, U, G	SU, U, R				
Iteraciones	81	82	93	123	435	431
tiempo de CPU (s)	9613	9478	10970	14758	50849	75692
Menor error	0.1810	0.1612	0.1248	0.1213	0.1191	0.1187
lpha	10.000	9.968	(9.968)	9.922	9.995	9.999
ε	0.672	0.780	0.808	(0.808)	0.810	0.808
γ	(0.300)	0.244	0.234	0.230	(0.230)	0.231
γ'	(0.400)	(0.400)	0.164	0.151	0.150	0.150

Exprimentos numéricos (9)

Velocidades de viento a 500m

Líneas de corriente a 500m

- Modelo de ajuste de campos de viento
 - * Mínima intervención del usuario
 - * Rapidez de computación mediante técnicas numéricas avanzadas
 - * Mayor precisión en las zonas conflictivas mediante refi namiento
- Corrección del campo con un modelo gaussiano
 - Ventajas de un campo velocidades de divergencia nula en un modelo de transporte de contaminantes
 - * Técnica útil para resolver otro tipo de problemas acoplados al modelo de viento (sombras de anemómetros, ...)

• Estimación de parámetros en el modelo de viento

- * Ajuste del modelo a datos reales
- * Desarrollo de leyes de comportamiento de los parámetros para diferentes condiciones meteorológicas

