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Abstract

The quality improvement in mesh optimisation techniques that preserve its connectivity are
obtained by an iterative process in which each node of the mesh is moved to a new position
that minimises a certain objective function. The objective function is derived from some
quality measure of the local submesh, that is, the set of tetrahedra connected to the ad-
justable or free node. Although these objective functions are suitable to improve the quality
of a mesh in which there are non inverted elements, they are not when the mesh is tan-
gled. This is due to the fact that usual objective functions are not defined on all R

3 and
they present several discontinuities and local minima that prevent the use of conventional
optimisation procedures. Otherwise, when the mesh is tangled, there are local submeshes
for which the free node is out of the feasible region, or this does not exist. In this paper we
propose the substitution of objective functions having barriers by modified versions that
are defined and regular on all R

3. With these modifications, the optimisation process is also
directly applicable to meshes with inverted elements, making a previous untangling proce-
dure unnecessary. This simultaneous procedure allows to reduce the number of iterations
for reaching a prescribed quality. To illustrate the effectiveness of our approach, we present
several applications where it can be seen that our results clearly improve those obtained by
other authors.
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1 Introduction

In finite element simulation the mesh quality is a crucial aspect for good numer-
ical behaviour of the method. In a first stage, some automatic 3-D mesh generator
constructs meshes with poor quality and in special cases, for example when node
movement is required, inverted elements may appear. So, it is necessary to develop
a procedure that optimises the pre-existing mesh. This process must be able to
smooth and untangle the mesh.

The most usual techniques to improve the quality of a valid mesh, that is, one
that does not have inverted elements, are based upon local smoothing. In short,
these techniques consist of finding the new positions that the mesh nodes must hold,
in such a way that they optimise an objective function. Such a function is based on a
certain measurement of the quality of the local submesh, N (v), formed by the set of
tetrahedra connected to the free node v. As it is a local optimisation process, we can
not guarantee that the final mesh is globally optimum. Nevertheless, after repeating
this process several times for all the nodes of the current mesh, quite satisfactory
results can be achieved. Usually, objective functions are appropriate to improve
the quality of a valid mesh, but they do not work properly when there are inverted
elements. This is because they present singularities (barriers) when any tetrahedron
of N (v) changes the sign of its Jacobian determinant. To avoid this problem we can
proceed as Freitag et al in [9,11,12], where an optimisation method consisting of
two stages is proposed. In the first one, the possible inverted elements are untangled
by an algorithm that maximises their negative Jacobian determinants [11]; in the
second, the resulting mesh from the first stage is smoothed using another objective
function based on a quality metric of the tetrahedra of N (v) [12]. Two of these
objective functions are presented in Section 2. After the untangling procedure, the
mesh has a very poor quality because the technique has no motivation to create
good-quality elements. Moreover, the quality of the mesh could decrease during
the untangling process. This effect may be clearly seen if we apply this process
to a valid mesh. As remarked in [9], it is not possible to apply a gradient-based
algorithm to optimise the objective function because it is not continuous all over
R

3, making it necessary to use other non-standard approaches to overcome the
problem. Tinoco et al have instead proposed in [22,23] a displacement of barriers
introducing global parameters, calculated in terms of area, in order to obtain convex
structured grids for two-dimensional domains.

In Section 3 we propose an alternative to these procedures, such that the untan-
gling and smoothing are carried out in the same stage. So, we obtain meshes with
better quality just after untangling than those algorithms based on maximising the
minimum Jacobian determinant and, thus, the number of smoothing iterations for
reaching a given quality is smaller. For this purpose, we use a suitable modification
of the objective function in such a way that it is regular all over R

3. When a feasible
region (subset of R

3 where v could be placed, being N (v) a valid submesh) exists,



the minima of the original and modified objective functions are very close and,
when this region does not exist, the minimum of the modified objective function is
located in such a way that it tends to untangle N (v). The latter occurs, for example,
when the fixed boundary of N (v) is tangled. With this approach, we can use any
standard and efficient unconstrained optimisation method to find the minimum of
the modified objective function, see for example [2]. In Section 4 we analyse the
main steps to implement conventional optimisation algorithms.

In this work we have applied the proposed modification to two different objec-
tive functions derived from each algebraic mesh quality metrics studied in [13], but
it would also be possible to apply it to other objective functions which have barriers
like those presented in [14]. The results for a test problem and a practical applica-
tion are shown in Section 5. Finally, conclusions and future research are presented
in Section 6.

2 Objective Functions

Several tetrahedron shape measures [5] could be used to construct an objective
function. Nevertheless those obtained by algebraic operations are specially indi-
cated for our purpose because they can be computed very efficiently. The above
mentioned algebraic mesh quality metrics and the corresponding objective func-
tions are shown in this Section.

Let T be a tetrahedral element in the physical space whose vertices are given
by xk = (xk, yk, zk)

T ∈ R
3, k = 0, 1, 2, 3 and TR be the reference tetrahedron

with vertices u0 = (0, 0, 0)T , u1 = (1, 0, 0)T , u2 = (0, 1, 0)T and u3 = (0, 0, 1)T .
If we choose x0 as the translation vector, the affine map that takes TR to T is
x =Au + x0, where A is the Jacobian matrix of the affine map referenced to node
x0, and expressed as

A =















x1 − x0 x2 − x0 x3 − x0

y1 − y0 y2 − y0 y3 − y0

z1 − z0 z2 − z0 z3 − z0















(1)

Let now TI be an equilateral tetrahedron with all its edges of length one and
vertices located at v0 = (0, 0, 0)T , v1 = (1, 0, 0)T , v2 = (1/2,

√
3/2, 0)T , v3 =

(

1/2,
√

3/6,
√

2/
√

3
)T

. Let v =Wu be the linear map that takes TR to TI . Its Ja-
cobian matrix is



W =















1 1/2 1/2

0
√

3/2
√

3/6

0 0
√

2/
√

3















(2)

The affine map that takes TI to T is given by x =AW−1
v + x0, and its Jaco-

bian matrix is S = AW−1. This weighted matrix S is independent of the node
chosen as reference; it is said to be node invariant [13]. We can use matrix norms,
determinant or trace of S to construct algebraic quality measures of T . For exam-
ple, the Frobenius norm of S, defined by |S| =

√

tr (STS), is specially indicated

because it is easily computable. Thus, it is shown in [13] that both qη (S) = 3σ
2

3

|S|2

and qκ (S) = 3
|S||S−1|

are algebraic quality measures of T , where σ = det (S).
The maximum value of these quality measures is the unity and it corresponds to
equilateral tetrahedron. On the other hand, any flat tetrahedron has quality measure
zero. We can derive optimisation functions from these quality measures. Thus, let
x = (x, y, z)T be the free node position of v, and let Sm be the weighted Jacobian
matrix of the m-th tetrahedron of N (v). We define the objective function of x,
associated to an m-th tetrahedron as

ηm =
|Sm|2

3σ
2

3
m

(3)

or

κm =
|Sm| |S−1

m |
3

=
|Sm| |Σm|

3σm

(4)

where Σm = σmS−1
m is the adjoint matrix of Sm. Then, the corresponding objective

functions for N (v) can be constructed by using the p-norm of (η1, η2, . . . , ηM) or
(κ1, κ2, . . . , κM) as

|Kη|p (x) =

[

M
∑

m=1

ηp
m (x)

]

1

p

(5)

or

|Kκ|p (x) =

[

M
∑

m=1

κp
m (x)

]

1

p

(6)

where M is the number of tetrahedra in N (v). The objective function |Kη|1 was
deduced and used in [1] for smoothing and adapting of 2-D meshes. The same
function was introduced in [4], for both 2 and 3-D mesh smoothing, as a result
of a force-directed method. Functions |Kκ|p are proposed and widely analysed in
[9,12]. Finally, both type of functions, among others, are studied and compared in
[14]. Note that the above objective functions can be only used for smoothing valid
meshes, that is, σm > 0, ∀m = 1, ..., M .

Although these optimisation functions are smooth in those points where N (v)
is a valid submesh, they became discontinuous when the volume of any tetrahedron



of N (v) goes to zero. It is due to the fact that |Kη|p and |Kκ|p approach infinity
when σm tends to zero and its numerators are bounded below. In fact, it is possible
to prove that |Sm| and |Σm| reach their minima, with strictly positive values, when
v is placed in the geometric centre of the fixed face of the m-th tetrahedron. The
positions where v must be located to get N (v) to be valid, i.e., the feasible region,
is the interior of the polyhedral set P defined as

P =
M
⋂

m=1

Hm (7)

where Hm are the half-spaces defined by σm (x) > 0 (the shaded region of Fig. 1a).
This set can occasionally be empty, for example, when the fixed boundary of N (v)
is tangled (Fig. 1c). In this situation, functions |Kη|p and |Kκ|p stop being useful
as optimisation functions. On the other hand, when the feasible region exists, that
is int P 6= ∅, the objective functions tend to infinity as v approaches the boundary
of P . Due to these singularities, a barrier is formed which avoids reaching the
appropriate minimum by using gradient-based algorithms, when these start from
a free node outside the feasible region (see Fig. 1b). In other words, with these
algorithms we can not optimise a tangled mesh N (v) with the above objective
functions, even if the feasible region exists.

P

(a)

P

(b) (c)

Fig. 1. (a) A valid mesh with the free node inside the feasible region. (b) Non valid mesh
with the free node outside the feasible region. (c) Non valid mesh with fixed boundary
tangled.

3 Modified Objective Functions

We propose a modification in the previous objective functions (5) and (6), so
that the barrier associated with their singularities will be eliminated and the new
functions will be smooth all over R

3. An essential requirement is that the minima
of the original and modified functions are nearly identical when int P 6= ∅. Our



δ
σ

h(σ)

Fig. 2. Representation of function h (σ).

modification consists of substituting σ in (5) or (6) by the positive and increasing
function

h(σ) =
1

2
(σ +

√
σ2 + 4δ2) (8)

being the parameter δ = h(0). We represent in Fig. 2 the function h(σ).

Thus, the new objective functions here proposed are given by

∣

∣

∣K∗
η

∣

∣

∣

p
(x) =

[

M
∑

m=1

(η∗
m)p (x)

]

1

p

(9)

and

|K∗
κ|p (x) =

[

M
∑

m=1

(κ∗
m)p (x)

]

1

p

(10)

where

η∗
m =

|Sm|2

3h (σm)
2

3

(11)

and

κ∗
m =

|Sm| |Σm|
3h (σm)

(12)

are the modified objective functions for the m-th tetrahedron.

The behaviour of h(σ) in function of δ parameter is such that, lim
δ→0

h(σ) = σ,

∀σ ≥ 0 and lim
δ→0

h(σ) = 0, ∀σ ≤ 0. Thus, if int P 6= ∅, then ∀x ∈ int P we

have σm (x) > 0, for m = 1, 2, . . . , M and, as smaller values of δ are chosen,



h (σm) behaves very much as σm, so that, original objective functions and their
corresponding modified versions are very close in the feasible region. Particularly,
in the feasible region, as δ → 0, functions

∣

∣

∣K∗
η

∣

∣

∣

p
and |K∗

κ|p converge pointwise to

|Kη|p and |Kκ|p, respectively. Besides, by considering that ∀σ > 0, lim
δ→0

h′(σ) = 1

and lim
δ→0

h(n)(σ) = 0, for n ≥ 2, it is easy to prove that the derivatives of these

objective functions verify the same property of convergence. As a result of these
considerations, it may be concluded that the positions of v that minimise original
and modified objective functions are nearly identical when δ is small. Actually, the
value of δ is selected in terms of point v under consideration, making it as small as
possible and in such a way that the evaluation of the minimum of modified functions
does not present any computational problem.

In particular, let γ be the machine epsilon (0 < γ << 1), then, to avoid divisions
by zero when computing the modified objective functions (11) and (12), we have to
impose h(σ) ≥ γ for all the tetrahedra of N(v). As h(σ) is an increasing function,
the worst case corresponds to σ = σmin, where σmin = min

m=1,...,M
(σm). It can be

proved that for the following selection of δ,

δ ≥ δmin =











√

γ(γ − σmin) if σmin < γ

0 if σmin ≥ γ
(13)

the condition h(σ) ≥ γ is assured. In practice, we use a modified value of γ by
introducing a security factor. Note that when the free node is clearly inside of a
feasible region (σmin ≥ γ), our modified objective functions coincide with the
original ones.

Suppose that int P = ∅, then the original objective functions, |Kη|p and |Kκ|p,
are not suitable for our purpose because they are not correctly defined. Neverthe-
less, modified functions are well defined and tend to solve the tangle. We can reason
it from a qualitative point of view by considering that the dominant terms in

∣

∣

∣K∗
η

∣

∣

∣

p

or |K∗
κ|p are those associated to the tetrahedra with more negative values of σ and,

therefore, the minimisation of these terms imply the increase of these values. It must
be remarked that h (σ) is an increasing function and

∣

∣

∣K∗
η

∣

∣

∣

p
and |K∗

κ|p tend to ∞
when the volume of any tetrahedron of N (v) tends to −∞, since lim

σ→−∞
h (σ) = 0.

In conclusion, by using the modified objective functions, we can untangle the
mesh and, at the same time, improve its quality.

For a better understanding of the behaviour of the objective functions and their
modifications, we propose the following test example. Let us consider a simple 2-
D mesh formed by three triangles, vBC, vCA and vAB, as shown in Fig. 3(a),
where we have fixed A(0,−1), B(

√
3, 0), C(0, 1) and v(x, y) is the free node. In

this case, the feasible region is the interior of the equilateral triangle ABC. In Fig.



4(a) we show |Kη|2 (solid line) and
∣

∣

∣K∗
η

∣

∣

∣

2
for δ = 0.1, 0.2, 0.3 (dashed lines) as

a function of x for a fixed value y = 0 (the y-coordinate of the optimal solution).
A similar plot is shown in Fig. 5(a) for |Kκ|2 (solid line) and |K∗

κ|2 (dashed lines).
We can see that original objective functions present several local minima and dis-
continuities, opposite to the modified ones. Besides, the original functions reach
their absolute minima outside the feasible region. Vertical asymptotes in original
objective functions correspond to positions of the free node for which σ = 0 for
any tetrahedra of the local mesh. As might be expected, the optimal solution for the
two modified function results in v(

√
3/3, 0). The original and modified functions

are nearly identical in the proximity of this point, as can be seen in Fig. 4(a) and
5(a). In addition, note that the effect of increasing the value of δ in the modified
functions is only significant far from the optimal location.

v

C

B

A

(a)

v

C

A

B´

(b)

Fig. 3. Test example: (a) valid mesh and (b) tangled mesh.

Let us now consider the tangled mesh obtained by changing the position of point
B(

√
3, 0) to B′(−

√
3, 0); see Fig. 3(b). Here, the mesh is constituted by the trian-

gles vB′C, vCA and vAB ′, where vB′C and vAB′ are inverted. The feasible re-
gion does not exist in this new situation. The graphics of functions |Kη|2 and

∣

∣

∣K∗
η

∣

∣

∣

2
are represented in Fig. 4(b). Similarly, |Kκ|2 and |K∗

κ|2 are shown in Fig. 5(b). Al-
though the mesh can not be untangled, we get v(−

√
3/3, 0) as the optimal position

of the free node by using our modified objective functions. For this position the
three triangles are ”equally inverted” (same negative values of σ). In this particular
example the same result could be achieved by maximising the minimum value of σ
in the mesh, as proposed in [11].
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Fig. 4. (a) Transversal cut of |Kη|2 (solid line, δ = 0) and
∣

∣K∗
η

∣

∣

2
(dashed lines,

δ = 0.1, 0.2, 0.3) for the test example represented in Fig. 3(a); (b) the same objective
functions for the tangled mesh of Fig. 3(b).

4 Optimisation of the Modified Objective Functions

Conventional optimisation algorithms, such as steepest descent or Newton, re-
quire the evaluation of the gradient and, in some cases, the Hessian of the objective
function. So, in this Section we calculate the first and second derivatives of η∗ and
κ∗ with respect to arbitrary parameters α and β that represent any of the x, y and
z coordinates of the free node. In order to obtain these derivatives we will consider
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Fig. 5. (a) Transversal cut of |Kκ|2 (solid line, δ = 0) and |K∗
κ|2 (dashed lines,

δ = 0.1, 0.2, 0.3) for the test example represented in Fig. 3(a); (b) the same objective
functions for the tangled mesh of Fig. 3(b).

the inner product of two matrices, R and S, as

(R, S) = tr(RT S) (14)

so, the Frobenius norm of S is |S| =
√

(S, S). If we denote ∂α as the partial
derivative operator respect to α, such that ∂αR = [∂αrij] for an n × n R = [rij]



matrix, 1 ≤ i, j ≤ n, it is possible to show that the derivative of η∗ is

∂αη∗ = 2η∗

[

(∂αS, S)

|S|2
− ∂ασ

3
√

σ2 + 4δ2

]

(15)

For κ∗ we have

∂ακ∗ = κ∗

[

(∂αS, S)

|S|2
+

(∂αΣ, Σ)

|Σ|2
− ∂ασ√

σ2 + 4δ2

]

(16)

To obtain the second derivatives, we must take into account that S, Σ and σ are
linear functions of x, y, z, and thus ∂αβS, ∂αβΣ and ∂αβσ are zero. With these
considerations we have

∂αβη∗ =
∂αη∗∂βη∗

η∗
+ 2η∗





(∂αS, ∂βS)

|S|2
− 2 (∂αS, S) (∂βS, S)

|S|4
+

σ∂ασ∂βσ

3 (σ2 + 4δ2)
3

2





(17)
and for κ∗ we have

∂αβκ∗ =
∂ακ∗∂βκ∗

κ∗
+ κ∗

[

(∂αS, ∂βS)

|S|2
+

(∂αΣ, ∂βΣ)

|Σ|2
−

−2 (∂αS, S) (∂βS, S)

|S|4
− 2 (∂αΣ, Σ) (∂βΣ, Σ)

|Σ|4
+

σ∂ασ∂βσ

(σ2 + 4δ2)
3

2



 (18)

Equations (17) and (18) can be simplified since (∂αS, ∂αS) = 3
2
, (∂αS, ∂βS) = 0,

if α 6= β.

If δ satisfies equation (13), the derivatives of our modified objective functions,
∣

∣

∣K∗
η

∣

∣

∣

p
and |K∗

κ|p, can be easily evaluated through the previous expressions without

computational problems, since γ ≤ h(σ) ≤
√

σ2 + 4δ2.

5 Applications

To check the effectiveness of the proposed techniques we first consider a regular
mesh of a unit cube with 750 tetrahedra and 216 nodes. Initially, the nodes were
uniformly distributed, but 22% of them are replaced in random position to get a
tangled mesh with valid connectivity. The random redistribution is done in such a
way that the nodes originally belonging to an edge or a face of the cube are forced to
stay in the same edge or face. In order to do so, some coordinates are fixed and the
others take values in the interval [0, 1]. The fixed coordinates also remain inalterable
in the optimisation process. Thus, for these nodes, the objective function has only
one or two variables. The initial tangled mesh, shown in Fig. 6(a), has 146 inverted
tetrahedra and an average quality measure of qκ = 0.461 (the average quality of the



regular mesh is 0.749). Here we have chosen as quality measure qκ = 1/κ for valid
tetrahedra and qκ = 0 for inverted ones. The result after eight sweeps of the mesh
optimisation process with

∣

∣

∣K∗
η

∣

∣

∣

2
is shown in Fig. 6(b). In this case, the steepest

descent algorithm was used for the optimisation of the objective functions.

(a)

(b)

Fig. 6. (a) The tangled mesh of the unit cube and (b) the resulting mesh after eight steps of
the optimisation process.



In Table 1 we present the evolution in the number of inverted tetrahedra, Ninv,
and the average quality measure, qκ, of the unit cube mesh in terms of the number
of iterations. For this test we have taken four objective functions:

∣

∣

∣K∗
η

∣

∣

∣

1
,

∣

∣

∣K∗
η

∣

∣

∣

2
,

|K∗
κ|1 and |K∗

κ|2.

In order to compare the behaviour of our SUS algorithm (simultaneous untan-
gling and smoothing) with Opt-MS developed by Freitag (see [8]), we consider the
initial unit cube with the same uniform distribution of 216 nodes. This mesh is tan-
gled applying three different random redistributions of its inner nodes, such that we
obtain three initial tangled meshes with Ninv = 34, 122 and 153 inverted tetrahe-
dra and qκ = 0.653, 0.467 and 0.460 average quality measure, respectively. SUS
algorithm untangles these meshes in one single iteration, while Opt-MS package
does it after three iterations (see table 2). Besides, using 5 smoothing steps after
these untangling iterations, we get better values of minimum and average quality
measure, qmin

κ and qκ, in all cases. Note that SUS algorithm always obtains final
meshes with similar values of quality.

To complicate this test problem, we now consider two tangled meshes of the
unit cube including 10648 nodes and 55566 tetrahedra, with Ninv = 1890 and
7221 inverted tetrahedra, respectively. Last two rows of table 2 contains the results
obtained by Opt-MS and SUS algorithms. Note that the differences between both
procedures are emphatized in these applications.

Table 1
Number of inverted tetrahedra and average quality in terms of the number of iterations of
the mesh optimisation process for the cube test (216 nodes and 750 tetrahedra).

Obj. Function
∣

∣K∗
η

∣

∣

1

∣

∣K∗
η

∣

∣

2
|K∗

κ|1 |K∗
κ|2

Iteration Ninv qκ Ninv qκ Ninv qκ Ninv qκ

0 146 0.461 146 0.461 146 0.461 146 0.461

1 61 0.629 11 0.704 89 0.598 86 0.636

2 2 0.731 0 0.799 18 0.691 0 0.753

3 0 0.827 0 0.826 1 0.813 0 0.828

4 0 0.850 0 0.836 0 0.832 0 0.847

5 0 0.857 0 0.841 0 0.849 0 0.855

6 0 0.860 0 0.843 0 0.856 0 0.858

7 0 0.861 0 0.845 0 0.859 0 0.860

8 0 0.862 0 0.845 0 0.861 0 0.860



Table 2
Comparative results using Opt-MS and Simultaneous Untangling and Smoothing tech-
niques for the unit cube test, using 5 smoothing steps after Iunt untangling iterations.

Initial Mesh Opt-MS SUS

Nnod Ntet Ninv qκ Iunt qmin
κ qκ Iunt qmin

κ qκ

216 750 34 0.653 3 0.224 0.779 1 0.518 0.846

122 0.467 3 0.162 0.761 1 0.517 0.847

153 0.460 3 0.148 0.787 1 0.516 0.847

10648 55566 1890 0.701 7 0.0035 0.691 3 0.455 0.794

7221 0.565 8 0.000025 0.572 4 0.456 0.793

We have also used these untangling and optimisation techniques to construct 3-D
meshes adapted to complex surfaces as those defined by irregular terrains [15] and
[16]. The aim is to create a tetrahedral mesh of a region bounded in its lower part
by the terrain and in its upper part by a horizontal plane. To do this we make a 3-D
Delaunay triangulation of a previously established distribution of points [6], whose
density increases with the complexity of the orography. The point generation in the
domain is done over different layers defined from the terrain to the upper part of
the domain. The adaptive position of nodes in the terrain surface is automatically
determined by applying a 2-D refinement/derefinement algorithm of nested meshes
[7]. To avoid conforming problems between mesh and orography, the tetrahedral
mesh will be designed with the help of an auxiliary parallelepiped, in such a way
that every terrain node is projected on its lower plane. Once the 3-D Delaunay tri-
angulation of the set of points has been constructed on the parallelepiped, points are
replaced on their real positions keeping the mesh topology. In this last stage there
can be occasional low quality elements, or even inverted elements, thus making it
necessary to apply any untangling and optimisation procedures.

As a practical application of our mesh generator and the optimisation procedure
we have taken under consideration a rectangular area in Isla de La Palma (Canary
Islands) of 22.8×15.6 km, where extreme heights vary from 0 to 2279 m. The upper
boundary of the domain has been placed at h = 6 km. To define the topography
we had a digitalisation of the area where heights were defined over a grid with a
spacing step of 200 m in directions x and y. Starting from a uniform 2-D mesh τ1 of
the rectangular area with a size of elements about 2× 2 km, six global refinements
were made using Rivara 4-T algorithm [20]. Once the data were interpolated on
this refined mesh, the derefinement algorithm developed in [7] and [19] with a
derefinement parameter of ε = 25 m was used. Thus, the adapted mesh nears the
terrain surface with an error less than that value. The node distribution of τ1 is the
one considered on the upper boundary of the domain.

The meshes have 81068 tetrahedra and 16504 nodes, with a maximum valence of
36, see Fig. 7. The initial tangled mesh has 574 inverted tetrahedra with an average
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Fig. 7. Rectangular area of Isla de La Palma (Canary Islands): (a) initial mesh with 574
inverted tetrahedra and (b) resulting valid mesh after ten steps of the optimisation process.

quality measure qκ = 0.626; see Fig. 8. The node distribution is hardly modified
after ten steps of the optimisation process using
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Fig. 8. Quality curves of the generated mesh and the resulting mesh after ten steps of the
optimisation process. Function qκ(e) is a quality measure for tetrahedron e.

disappear in the first step of this process and average quality measure increases to
qκ = 0.706. This measure tends to stagnate quickly; in the 5-th step we obtain
qκ = 0.732 and in the 10-th step qκ = 0.734. After this optimisation process, the
worst quality measure of the optimised mesh tetrahedra is 0.112. We remark that the
number of parameters necessary to define the resulting mesh is quite low, as well
as the computational cost. In fact, the complexity of 2-D refinement/derefinement
algorithm is linear [19]. Besides, in experimental results we have approximately
obtained a linear complexity in function of the number of points for our algorithm
of 3-D Delaunay triangulation [6]. In the present application only a few seconds of
CPU time on an XEON were necessary to construct the mesh before its optimisa-
tion. The complexity of each step of the mesh optimisation process is also linear.
In practice, also a few seconds of CPU time were necessary to obtain the optimised
mesh applying ten steps of this latter procedure and using BFGS method [2] to
minimise the objective function.

Finally, table 3 shows the results of SUS algorithm for three new tangled meshes
of La Palma problem. Starting from the mesh represented in Fig. 7(b), a percent-
age of its inner nodes has been randomly moved a bounded distance, h/3, around
the initial positions, obtaining Ninv = 431, 3441 and 10051 inverted tetrahedra,
respectively. We observe that only a few iterations are necessary for untangling.
Moreover, the quality of these meshes after 5 smoothing steps are nearly identical.
In general, the final quality of a mesh, after a sufficient number of iterations of
the optimisation process, depends more on the mesh topology than on the initial
state of tangling. In fact, it always exists a limit of quality defined by the given
connectivities of the nodes of the mesh.



Table 3
Comparative results using Simultaneous Untangling and Smoothing techniques for La
Palma test, using 5 smoothing steps after Iunt untangling iterations.

Initial Mesh SUS

Nnod Ntet Ninv qκ Iunt qmin
κ qκ

16504 81068 431 0.723 2 0.112 0.735

3441 0.667 3 0.112 0.735

10051 0.547 4 0.118 0.734

6 Conclusions and Future Research

In this paper we present a way to avoid the singularities of common objective
functions used to optimise tetrahedral meshes. To do so, we propose a modification
of these functions in such a way that it makes them regular all over R

3. Thus, the
modified objective functions can be used to smooth and untangle the mesh simul-
taneously. With this approach we reduce the number of iterations for reaching a
prescribed quality of the mesh, as it can be seen in the applications. We observe
that, even, the number of iterations for untangling is less than the one required
by the procedure that maximises the minimum Jacobian determinant. Besides, the
mesh obtained with our algorithm, just after untangling, has clearly better qual-
ity. The regularity shown by the modified objective functions allows the use of
standard optimisation algorithms as steepest descent, conjugate gradient, Newton,
etc. In principle, a similar modification could be also applicable to other objective
functions having the same behaviour as those studied here. These techniques can
be implemented in a parallel algorithm, as reported in [10], in order to reduce the
computational time of the process.

In our applications we have observed that the behaviour is similar in both types
of objective functions,
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is more appropriate from a computational point of view.

We have efficiently used these techniques in the generation of 3-D meshes adap-
ted to complex surfaces [15] and [16], and in other applications [17]. They could
also be applied to any other process that implies node movement, such as mesh
smoothing for free surface methods and the construction of solution-adapted me-
shes. The objective functions used in this work are based on quality measures that
only take into account geometrical criteria. Nevertheless, we could also use some
error indicator which allows the optimisation of the pre-existing mesh attending to
the numerical solution of the considered problem.

A promising field of study would combine the 3-D refinement/derefinement of
nested meshes with node movement, where the ideas presented here could be in-



troduced. Good recent results have been obtained in [3], [21] and [18] using these
techniques, for determining the shape and size of the elements in anisotropic prob-
lems.
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