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Abstract

We experimentally study how reordering techniques affect the rate of convergence of pre-
conditioned Krylov subspace methods for nonsymmetric sparse linear systems, where the
preconditioner is a sparse approximate inverse. In addition, we show how the reordering
reduces the number of entries in the approximate inverse and thus, the amount of storage
and computation required for a given accuracy. These properties are illustrated with several
numerical experiments taken from the discretization of PDEs by a finite element method
and from a standard matrix collection.
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1 Introduction

The solution of sparse linear systems
�������	�
������������������������ �

, by pre-
conditioned Krylov methods is studied. Here

�
is a large, sparse, nonsymmetric

and nonsingular matrix. We focus our work on sparse approximate inverse precon-
ditioners. These preconditioners are specially interesting in a parallel environment
since their construction and application at each step of the iterative method, i.e.
matrix-vector products, are highly parallelizable. On the other hand, even on se-
quential computations, sparse approximate inverse preconditioners may be useful
for solving those problems for which other types of preconditioner such as ILU
fail. The approximate inverse here considered, is a version of the SPAI proposed by
Grote and Huckle [1], and both theoretical and computational aspects have been an-
alyzed in [2]. We present results of the effect of reordering not only on the amount
�
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of entries in the sparse approximate inverse, but also on the number of steps of the
iterative solver. Although the inverse

��� �
is usually full, regardless of the ordering

chosen, we experimentally show how the fill-in of the sparse approximate inverse
is dependent on the ordering of

�
. A similar study has been carried out by Benzi

and Tůma [3] as well as Bridson and Tang [4] for factorized approximate inverses.
Also for interesting results on the effect of ordering for incomplete factorization in
the convergence of Krylov subspace methods see [5–7].

The computation of the sparse approximate inverse is presented in section 2. In
section 3, some considerations about the reordering techniques, Minimum Degree
[8], Reverse Cuthill-Mckee [9] and Minimum Neighboring [10], are discussed. In
section 4 we describe the preconditioned BiCGSTAB algorithm [11]. Numerical
experiments are presented in order to show the effect of the ordering algorithms
on the convergence of BiCGSTAB for the solution of nonsymmetric systems of
linear equations when such sparse approximate inverses are used as precondition-
ers. Similar numerical problems which were carried out for other iterative solvers
like GMRES [12,13] and QMRCGSTAB [14] have not been included here since
they led to the same conclusions. Results of systems with a matrix belonging to
the Harwell-Boeing collection [15] and others arising from the finite element dis-
cretization of different problems are presented and commented upon in section 5.
Finally, our conclusions are exposed in section 6.

2 Sparse approximate inverse computation

We consider a left preconditioning with matrix
�

, such that
� �

is close to the
identity. Hence, using Frobenius matrix norm, the problem to solve is

�����	�
� ��� � ����� ��� � � ��� � ����� ��� � ���
(1)

�
being an arbitrary vectorial subspace of the linear space

 � �����
of all �����

real matrices. The parameter
�

represents the accuracy of the approximate inverse�
in the subspace � . In [2] a non-factorized approximate inverse

�
is proposed

for a fixed sparsity pattern which is automatically captured for a given number
of nonzero entries. Let � be a subset of � � �"! �$#�#%# � �'&(�)� � �"! �*#%#%# � �+& and

� �
� � �  � � �
�-,/.10�2 3 ��4 �65 �87 �:9 ��,� �;& . Denote by <>= the number of nonzero en-
tries in the ? -th row of

� � �
and by

7 = �A@ 7 =B @ #%#%# @ 7 =CED the column indices

of these nonzero entries. We have � �
�F=HG �JILK ? �M7 = �HN � K ? �M7 =B N �$#�#%# � K ? �M7 =CED N>O , where�QP 7 = � @ 7 =B @ #�#%# @ 7 =C D P�� . Let R 0�2 3 be the �S�T� matrix whose only nonzero entry

is U 0�2 3 � � . With this notation, the solution to problem (1) for the sparsity pattern� is summarized in the following result.

Theorem 2.1 Let
� �  � � ���

be nonsingular and let
�

be the subspace of matri-



ces with sparsity pattern � . Then, the solution to problem (1) is

� �
��=MG �

C D� � G �
����� K�� =� N���	� K�
 =� � � N ���	� K�
 =� N

�� = 2 � (2)

��� � � � � ��� B� � � � ��=HG �
CD� � G �

 ���	� K � =� N�� B����� K 
 =� � � N ����� K 
 =� N (3)

where, for all ? � � � �"! �*#�#%# � �'& , ����� K 
 =� N � � and 
 =� is the Gram matrix of the

rows
7 = � �M7 =B �*#%#�# �M7 =� of matrix

�
with respect to the Euclidean inner product, � =� is the

matrix which results from replacing the last row of 
 =� by � 0 D � � ? � � 0 D� � ? �*#%#�# � � 0 D� � ? ,

and
�� = 2 � is the matrix obtained evaluating the symbolic determinant which results

from replacing the last row of
���	� K�
 =� N by R = 2 0 D � � R = 2 0 D� �$#�#%# � R = 2 0 D� , with �TP�� P < = .

The proof of this theorem is similar to that developed in [2] for the case of right
preconditioning.

In [1,16,17], the authors present different algorithms to obtain an approximate in-
verse as close to

� � �
as required. We have followed such techniques but chang-

ing the selection method for entries in
�

and the solver for problem (1). Also in
[19,20,18], different strategies for choosing the sparsity pattern of

�
and different

ways for solving (1) are proposed. Taking into account equation (2), here the com-
putation of

�
is carried out in parallel for each row ? . Our algorithm allows us to

start from any entry of row ? . However, since the diagonals of the selected matrices
have nonzero entries and the expression of the optimal diagonal preconditioner is
well known, we have started from the diagonal approach in the applications. The
next entry to be considered is selected from a set of candidates which is defined
following the criterion proposed in [1]. Thus, our algorithm automatically searches
one by one the non null entries in matrix

�
, starting from the diagonal structure.

Denote by ���= � . � = � � U�� = , the residual corresponding to the vector
. � = which rep-

resents the ? -th row of
�

, and let �L= be the set of indices of the non null entries in� �= , i.e., �L= � � 7 � � � �H! �*#%#�# � �'& , �*= 0����4 & . Here, U � = is the ? -th row of the identity
matrix. If � = � ��� � � � �"! �*#%#%# � �+& , . = � �� 4 & , then the new entry is searched in the
set � = � � 9�� �! = , � 360��� 4 �65 7 � � = & , with �" = being the complementary set of � = .
Indeed, the only entries considered in

. � = are those affecting to non null ones of � �= .
We assume that � = F � 9 & � I 7 = � �M7 =B �*#%#�# �M7 =C D O is not empty, with < = being the actual

number of non null entries of
. � = and

7 =C D � 9 �
for all

9 � � = . Frobenius matrix
norm may be parallelized as

��� � � � � ��� B� � ��=HG � ��� . � = ��� U � = ��� BB (4)



Thus, taking into account equations (3) and (4), for each
9

we compute

��� . � = � � U � = ��� BB � � � CED�� G �
 ���	� K � =� N�� B���	� K 
 =� � � N ���	� K 
 =� N (5)

where, for all ? ,
���	� K�
 =� N ,

���	� K 
 =� N and
� U�� K � =� N have the same above definitions,

with � P � P < = . The index
9 = which makes minimal the value of � . � = ��� U�� = � B is

selected. This strategy defines the new selected index
9 = only attending to the set� = and leading us to an actual optimum where all the entries given by the indices

of � = are updated. Therefore, the row corresponding to
. � = is searched in the set� = � � . � = � � � ,/. = 0 � 4 �65 7 ,� � = F � 9 =/& & , of which entries are computed at each

stage by

. � = � CED�� G �
����� K � =� N���	� K 
 =� � � N ���	� K 
 =� N � . � � (6)

where
� . � � is the vector with non null entries

7 =� � ��P�� P � � . Each of them is
obtained evaluating the corresponding determinant which results from replacing the
last row of

���	� K�
 =� N by U � � , with � P � P < = . Equation (6) is obtained identifying
columns in (2).

Evidently, the computation of
��� . � = ��� U�� = ��� B and

. � = is updated adding the contri-
bution of the last entry

9 � � = to the previous sum from � to < = � � . In prac-
tice,

���	� K 
 =� N is computed using Cholesky decomposition since 
 =� is a sym-
metric and positive definite matrix. It only involves the factorization of the last
row and column if we take advantage of 
 =� � � decomposition. Moreover, note

that
���	� K � =� N , ���	� K 
 =� N is the value of the last unknown of the system 
 =� � � �

K � 0 D � = � � 0 D� = �*#%#�# � � 0 D� = N � and only a complete forward-substitution is carried out. Fi-

nally, to obtain
� . �

is to solve the system 
 =�	�
�
� U � , with

� . 0 D
 � � � � � � �TP�� P�� � .
Sparse approximate inverse algorithm.
Start from the optimal diagonal preconditioner
for ? � � to �

while
��� . � = ��� U � = ��� B� � = and < = @ � = do

Compute � �= � . � = � � U � =
Define �L= � � 7�� � � �"! �*#%#%# � �+& , �*= 0��� 4 &
Define � = � ��� � � � �H! �*#%#�# � �'& , . = � �� 4 &
Define � = � � 9 � �  = , � 3 0��� 4 � 5 7�� � =/&
Select

9 = � � = for which
��� . � = � � U � = ��� B is minimal

Update
. � = using (6)

end
end



3 Some remarks on reordering

We have considered several reordering techniques in order to illustrate the effect of
ordering on the iterative solution of linear systems of equations using SPAI precon-
ditioners. The original ordering corresponds to matrices directly arising from the
Finite Element Method with unstructured meshes and adaptive mesh refinement.
The minimum degree ordering has been used to reduce the fill-in in factorization of
matrices with symmetric sparsity pattern. Its performance is discussed in [8]. The
Reverse Cuthill-Mckee algorithm [9] is a modification of the Cuthill-Mckee algo-
rithm [22] that simply takes the reverse ordering of that obtained by the latter. The
general characteristics of these algorithms are the reduction of bandwidth and pro-
file. The Minimum Neighbouring algorithm [10] is a variant of the Minimum De-
gree algorithm which works by eliminating the selected nodes in the structure of the
graph associated with the matrix

�
, such that no new edge is defined and inserted

in the graph. It chooses a node which has the minimum number of neighbours. This
algorithm is specially useful when we look for an incomplete factorization with the
same sparsity pattern as matrix

�
, e.g. the ILU(0) preconditioner which will be

used in the numerical experiments of this paper. These reordering algorithms are
summarized in [21,7]. In all the algorithms, we start from a pseudo-peripheral node
searched by George’s algorithm [23].

The main objective of this work is to answer the following questions:
1. Does the reordering reduce the amount of entries in the SPAI preconditioners?
2. Does it improve the convergence of iterative solvers with such preconditioners?
Let � be the permutation matrix corresponding to a reordering scheme. Since�
���
�
�
�H� � �

���
�T� �

� , when we reorder a matrix, its approximate inverse should
tend to the reordered inverse. Then, since � is orthogonal and the Frobenius norm
is invariant with respect to the product by orthogonal matrices, it yields

���
���
� �
�
�

��� ��� � � �����	�� 
	��
��� ��� � �
� �
�
�

��� ��� �
� �����	�
	� � � � � � � � � � � � � � � � (7)

and also � � �
� �

�
� (8)

Equation (7) means that the accuracy of the best preconditioner
�

of matrix
�

in
the subspace � is equal to the accuracy of the best preconditioner

� �
of matrix

� �
�
� in the subspace � � ��� (for any permutation matrix � ).

Now, let � � , � �� be the patterns generated by our SPAI algorithm corresponding to
the original matrix

�
and the reordered matrix � �

�
� , respectively, for the same

accuracy. Our SPAI algorithm always obtains the best approximate inverse in each



subspace of
� �������

that it generates. Thus, if the reordering is efficient in such a
way that

� ���	�
	� �� ��� � � �
�
�

��� ��� � P �����	 � 
 � 
 � � � ��� � �
� �
�
�

� � ��� � (9)

then, from equations (7) and (9), we obtain

�����	�
	� �� ��� � � �
�
�

��� ��� � P � ���	�
	� � � � � ��� � � (10)

that is, if (9) is satisfied, the application of our algorithm to the reordered matrix
� �
�
� improves the accuracy of the result obtained for the original matrix

�
.

So we will look for reordering techniques which allow the generation of patterns� �� satisfying (9). Evidently, if the permutation matrix � is such that � ���� � � � � � ,
then we can ensure that relation (9) is satisfied and thus also inequality (10) is held,
but in this case more nonzero entries would be involved and the computational cost
would increase. Nevertheless, relation (9) may be satisfied even if � �� �� � � � � � .
For example, suppose that � �� contains less nonzero entries than � � � � � but in bet-
ter locations. The behaviour of different reordering techniques in the reduction of
the amount of entries in the approximate inverse for a given accuracy

�
is illustrated

in the numerical experiments.

If (9) is assumed, the reordered SPAI preconditioners acquire better properties for
the performance of the iterative solver [2]. To study the closeness of the condition
number (related to the spectral norm) of

� �
� �
�
� to � we proceed as follows. On

one hand we have
���
���
� �
�
�
��� B � ��� � � � � � � � ��� ��� � ��� B P � � ���

� �
� �
�
�

� � ��� B (11)

and on the other hand, assuming that
���
� �
� �
�
�

� � ��� B @ � we can use the Banach
lemma [24, chapter 1, lemma 1.2.1] to obtain

���
� � �

� �
�
�
� � � ��� B � ���

� ��� �8��� � �
� �
�
�
� � � � ��� B P �� � � � � � � � � ��� � B (12)

Finally, equations (11) and (12) yield,

� B � � � � � � � � P � � ���
� �
� �
�
�

��� ��� B� � � � � � � � � ��� � B (13)

From the well-known characterization of normality (see e.g. [25, chapter 3, pp.
156-157]:

� � � �������
is normal if and only if

� � = ��� � � ��� = � � � ; 5 7 � � �"! �$#�#%# � � ,
the

� � �
� �
�
�
�
’s departure from normality may be estimated with the quantity

��
��=MG � � �	� = � �
� = �

B
(14)



with � � = & � =MG � � � � =/& � =HG � being the eigenvalues and singular values of
� �
���
�
� (non

increasing modules sequence). To evaluate (14) we consider the following relation
��=HG � �	� = �

B P
��=MG � �

B= (15)

which is satisfied for all square matrix [25, chapter3, theorem 3.3.13]. Furthermore,
take into account that

� �
is the solution to the optimization problem

���
���
� �
�
�

��� ��� � � �����	�� 
 � �� ��� � �
� �
�
�

� � ��� � (16)

the orthogonal projection theorem yields

���
� �
� �
�
�
���
B� � � � K � � � � � � N (17)

that is ��=HG � �
B= �

��=HG � � = (18)

Hence, using (15) and (18) we obtain

��
��=HG � � � � = � �
� = �

B � ��
� ��=HG � �	� = �

B � ! ��=HG � �	� = � � = �
��=HG � �

B=��
P !

�
� ��=HG � � B= � ���

��=MG � � � = � � P !
�

� ��=HG � � B= � ���
��=HG � � = �

� !
� � � �
��� �

��=HG � �
B= � !

� � � � ��� � ��� � � � � � � ���
B�

(19)

Finally, the eigenvalues and singular values are clustered at � (see [1]),
��=HG � � � �
� = �

B P ���
� �
� �
�
�

��� ��� B� (20)

��=HG � � � � � = �
B P ���

� �
� �
�
�

��� ��� B� (21)

4 Iterative solver

The BiCGSTAB algorithm proposed in [11] is a variant of the BiCG algorithm
which provides a smoother convergence behaviour than CGS algorithm [26]. We



have used it in our numerical experiments since it has proved to be an efficient itera-
tive solver in convection-diffusion problems of the type solved here [27]. A precon-
ditioned version of this algorithm is presented below. When we use an incomplete
factorization, the preconditioning involves the classical procedures of backward
and forward substitution twice in each iteration. On the other hand, if we use the
SPAI preconditioner, only two matrix-vector products are required, which is the
main feature from the point of view of parallelization.

5 Numerical experiments

We begin with a study of a problem in the Harwell-Boeing matrix collection:
orsreg1. This is an oil reservoir simulation matrix for a

! � � ! � ��� full grid of
size � � ! ! 4 � with ��� � ���J����� nonzero entries. Tables 1-3 show the results
obtained with preconditioned BiCGSTAB after Original, Minimum Degree and
Reverse Cuthill-Mckee reordering of matrix

�
, respectively. The performance of

ILU(0) is compared with several SPAI preconditioners corresponding to different
levels of fill-in. We present the number of iterations, the number of entries in

�
and the Frobenius norm of the residual matrix.

The values of ��� for SPAI in the reordering cases become lower than those in the
original ordering from

� = � 4 # !
. However, in the other cases the norm of residual

matrix is always reduced with reordering and thus it does not contradict the above
theoretical results. On the other hand, the number of BiCGSTAB iterations always
decreased when we used reordering except for the first SPAI which gave instabili-
ties to the convergence behaviour of the iterative method. We also observed in this
experiment that with similar storage requirements to the ones of ILU(0), a faster
convergence with SPAI (

� = � 4 # � , or even
� = � 4 # !

if reordered by Reverse Cuthill-
Mckee) is produced. Figure 1 represents the performance of BiCGSTAB algorithm
when ILU(0) and SPAI(0.3) are constructed after reordering. The main conclusion
is that SPAI might compete with ILU in a parallel framework. Furthermore, if we
apply a suitable reordering algorithm to both strategies this competitiveness still
continues.

The second example is a convection-diffusion problem (convdifhor [28]) defined in	 4 � ��
L� 	 4 � ��
 by the equation,� ���� � � � �  B � � B �  B ��� B�� ���
where

� � � � 4�� K � � �B N ��� � � B � K �B � � N , � � � 4 ��� inside the triangles � � 4 # � �H4 � ,� � �M4 # � � , � 4 # � �H4 # � � & and � �84 �H4 # � � , �84 # � �H4 # � � , � 4 # � � � � & , elsewhere � � � 4 B , and
� �

� 4�� inside the triangles � � 4 # � �M4 � , � � �H4 � , � � �H4 # � � & and � �84 �H4 # � � , �84 # � � � � , �84 � � � & ,
elsewhere

� � � . Dirichlet boundary conditions, � � 4
on
� � � and � � � on

� �



4
were considered. Elsewhere on the boundary we set null Neumann conditions.

The matrix corresponds to an unstructured triangular mesh of finite elements with� � ����� 4 and � � � �����J� ! .

Tables 4-7 are similar to those of the previous problem. The reduction of the amount
of entries in the SPAI matrices is between 40 and 50 per cent for Minimum Degree
and Reverse Cuthill-Mckee. The Minimum Neighbouring does not affect to ��� .
Furthermore, the number of iterations of BiCGSTAB was reduced by both reorder-
ings from 60 to 70 per cent. Since we are interested in the effect of the reordering
of
�

in the characteristics of the SPAI preconditioners, the sparsity pattern of ma-
trix

�
with

� = � 4 # � is shown in Figures 2(a)-(d) for Original, Minimum Degree,
Reverse Cuthill-Mckee and Minimum Neighbouring orderings, respectively. Any
non null entry is represented by a point. The pattern corresponding to the original
ordering represents a full matrix, as expected. However, a certain parallelism with
the structure of

�
is noticed. The bandwidth and profile reduction carried out by

the Reverse Cuthill-Mckee algorithm in matrix
�

are somehow saved in matrix
�

,
even though there is a tendency to exploit some entries outside the profile. This
is clearly illustrated in Figure 2(c). The patterns of SPAI matrices corresponding
to Minimum Degree and Minimum Neighbouring also save in part the structures
of the reordered matrix

�
, respectively, even when our SPAI algorithm should not

produce matrices
�

with symmetric structure. In Figure 3 we compare the con-
vergence behaviour of BiCGSTAB-SPAI(0.2) for all these reorderings. Clearly, the
reordering produced by Minimum Degree and Reverse Cuthill-Mckee have a ben-
eficial effect in the rate of convergence of the preconditioned BiCGSTAB-SPAI
algorithm.

Table 1
orsreg1: Original Ordering and left preconditioned BiCGSTAB

Preconditioner Iter. �����
	�� �����
	������������� ��� 	���������� �
Unprecond. �����  � "!#� !�$&%(' �����������

ILU(0) �*) %+�,%(-�- %"$.!�! �
SPAI /=10�!�$2'  �3�3 -"!#�#) !�$2 �  �'4$5)�)
SPAI /=10�!�$2� %('�3 '�'�%(� !�$6�*)  � 4$2-�%
SPAI /=10�!�$6� ��' %7!#-���- !�$5)"- %(-4$2'#)
SPAI /=10�!�$2- ��3 %�%7!# �� !�$5)"� %�%"$6���
SPAI /=10�!�$2 -#) -�%8)"��  4$2 �� �4$2��'

The third numerical experiment is also a convection-diffusion problem (cuaref
[28]) given in

	 4 � ��
 � 	 4 � ��
 by the equation,� � �� � �
� B ���� � � �  B � � B �  B ��� B � � 4



Table 2
orsreg1: Minimum Degree and left preconditioned BiCGSTAB

Preconditioner Iter. ��� �
	 � �����
	�����������1� ��� 	 ����� ��� �
Unprecond. �  � "!#�  � "!#� !�$&%(' �����������

ILU(0) -���% %+�,%(-�- %"$.!�! �
SPAI /=�0 !�$2' %(-�3�' -���3�- !�$2 ��  ��4$2'� 
SPAI /=�0 !�$2� )"- )4%(3�3 !�$2��%  "!�$23�-
SPAI /=�0 !�$6� -�' %7!#'#)"� !�$5)"' %(-4$.!# 
SPAI /=�0 !�$2-  �% %(-����"! !�$23�� �4$2 ��
SPAI /=�0 !�$2 %+� %(3�'�3�� %"$2-�3 �4$2-�'

Table 3
orsreg1: Reverse Cuthill-McKee and left preconditioned BiCGSTAB

Preconditioner Iter. ��� �
	 � �����
	�����������1� ��� 	 ����� ��� �
Unprecond. �  � "!#�  � "!#� !�$&%(' �����������

ILU(0)  �' %+�,%(-�- %"$.!�! �
SPAI /=�0 !�$2' ��%7! �,%(�� !�$2 �3  �-4$2���
SPAI /=�0 !�$2� ��� )�!�!#� !�$2�"! %(34$2�#)
SPAI /=�0 !�$6�  #) 3�-"!"� !�$2'�' %�%"$2'� 
SPAI /=�0 !�$2- %(3 %7!#'"!#� !�$5)"� �4$.!#�
SPAI /=�0 !�$2 %( %(-�-� � !�$23�� �4$5)��

where

� � ��� K � � �B N ��� ��� B � � � B ��� K �B ��� N � � � � B � , � � � � and
� � � 4 � .

The boundary conditions are the same as the above case. The matrix corresponds
to a refinement step of an unstructured mesh of finite elements with � ��� � !/4 and��� � � ! � ! 4 . Tables 8-11 indicate the performance of ILU(0) and SPAI precon-
ditioners for cuaref. The reduction of the amount of entries in SPAI for a given
accuracy of the approximate inverse is also evident here (from 20 to 30 per cent
approximately for Minimum Degree and Reverse Cuthill-Mckee). Moreover, the
number of iterations of BiCGSTAB is drastically reduced from 75 to 85 and from
60 to 70 per cent, respectively. The sparsity pattern of SPAI(0.2) matrices corre-
sponding to the original ordering and the reordering algorithms considered here
have similar properties to Figure 2. We conclude, as in the previous problem and
also in other experiments carried out, that the sparsity pattern of SPAI seems to start
from a structure similar to that typical of

�
obtained by reordering, and tends to a

full matrix as we augment its accuracy. The convergence curves in this case do not
show up any significant differences to Figure 3 in the second problem. Minimum
Degree and Reverse Cuthill-Mckee are preferable to Minimum Neighbouring or the
original ordering. However, we have noticed that if � � is increased, the differences
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Fig. 1. Comparison of the performance of BiCGSTAB-ILU(0) and BiCGSTAB-SPAI with
reordering for orsreg1.

between Minimum Degree and Reverse Cuthill-Mckee are more appreciable and
that the first one becomes a better choice.
Table 4
convdifhor: Original Ordering and left preconditioned BiCGSTAB

Preconditioner Iter ��� �
	 � �����
	 ������ ����� ��� 	 ����� ��� �
Unprecond. � %(3�'"! %(3�'"! !�$&%(� %(-� #)"3

ILU(0) )�� %(-��,%( %"$.!�! �
SPAI /E= 0�!�$2' �,%+� -�%('�% !�$2 ��  � 4$6�� 
SPAI /E= 0�!�$6� -"!# %7!#'�3�- !�$2�"! %('4$23�3
SPAI /E= 0�!�$2- %8)4%  �%8)"-�� %"$2'� %( 4$5)"�
SPAI /E= 0�!�$2 ��- �����#!#' � $.!#' �4$5)�!
SPAI /E= 0�!�$&%  �% %('#)"'#)"� %( 4$2�"! � $2-�'



Table 5
convdifhor: Minimum Degree and left preconditioned BiCGSTAB

Preconditioner Iter ��� �
	 � �����
	�����������1� ��� 	 ����� ��� �
Unprecond. � %(3�'"! %(3�'"! !�$&%(� %(-� #)"�

ILU(0) �#) %(-��,%( %"$.!�! �
SPAI /=�0 !�$2' %('�'  �'�%8) !�$2 "! %(34$2�� 
SPAI /=�0 !�$6� 3�3 '� ���� !�$6�*) %(�4$&%(�
SPAI /=�0 !�$2- '�� %�%+��'�% !�$2��� %�%"$6�� 
SPAI /=�0 !�$2 �#!  �'�3�3�  4$.! % )*$5)"�
SPAI /=�0 !�$&%  �% 3� ���'�� '4$23� -4$2���

Table 6
convdifhor: Reverse Cuthill-McKee and left preconditioned BiCGSTAB

Preconditioner Iter �����
	�� �����
	 ������ ����� ��� 	���������� �
Unprecond. %+�*)�) %(3�'"! !�$&%(� %(-� #)" 4$23

ILU(0) -�% %(-��,%( %"$.!�! �
SPAI /E=10�!�$2' %+���  ���%7! !�$&%(3 %(34$2��%
SPAI /E=10�!�$6� 3� '�%( �' !�$6��' %(�4$2��%
SPAI /E=10�!�$2- '�' %�%(-���� !�$2��� %�%"$2'#)
SPAI /E=10�!�$2 �,%  �'� #)�! %"$23�' )*$23��
SPAI /E=10�!�$&% %(� ���"!#3�- '4$2�#) � $.! %

Table 7
convdifhor: Minimum Neighbouring and left preconditioned BiCGSTAB

Preconditioner Iter ��� �
	 � �����
	 ������ ����� ��� 	 ����� ��� �
Unprecond. � %(3�'"! %(3�'"! !�$&%(� %(-� #)4%"$2�

ILU(0) ��� %(-��,%( %"$.!�! �
SPAI /E= 0�!�$2' -�3#) -�%('�% !�$2 �-  � 4$6�,%
SPAI /E= 0�!�$6�  �3�� %7!#'�3�- !�$2�"! %('4$23��
SPAI /E= 0�!�$2- %8)"-  �%8)"-�� %"$2'� %( 4$5)"�
SPAI /E= 0�!�$2 ��' �����#!#' � $.!#' �4$2'�3
SPAI /E= 0�!�$&%  �% %('#)"'#)"� %( 4$2�"! � $2-�'



(a) Original Ordering (b) Minimum Degree

(c) Reverse Cuthill-Mckee (d) Minimum Neighbouring

Fig. 2. Sparsity pattern of SPAI(0.3) matrix with different orderings for convdifhor.
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Fig. 3. Comparison of the performance of BiCGSTAB-SPAI with reordering for convdifhor.

Table 8
cuaref : Original Ordering and left preconditioned BiCGSTAB

Preconditioner Iter �����
	�� �����
	�����������1� ��� 	���������� �
Unprecond. %8)��#! )"�� "! !�$&%+� )" ��4$2��%

ILU(0) -#)"� �� �%( "! %"$.!�! �
SPAI /= 0�!�$6� ����� -� � � #) !�$2'� -� 4$5)"�
SPAI /= 0�!�$2- ����� '�%+�#!�! %"$&%(�  ��4$2 ��
SPAI /= 0�!�$2  �%+� %(�� "!�)"�  4$23� %8)*$&%( 

Table 9
cuaref : Minimum Degree and left preconditioned BiCGSTAB

Preconditioner Iter �����
	�� �����
	�����������1� ��� 	 � � � ��� �
Unprecond. -�3�� )"�� "! !�$&%+� )�!#�4$&%+�

ILU(0) '�3 �� �%( "! %"$.!�! �
SPAI /E=10�!�$6� %( ��  ��� ���' !�$6��� -�%"$2��'
SPAI /E=10�!�$2- )"3 �*)4%+�*) !�$23"!  �� $2'�'
SPAI /E=10�!�$2 ��% %7!#'�-"!#  4$.!"� %('4$5)�)



Table 10
cuaref : Reverse Cuthill-McKee and left preconditioned BiCGSTAB

Preconditioner Iter �����
	�� ��� �
	 ����������1� ��� 	 ����� ��� �
Unprecond.. � )"�� "! )"�� "! !�$&%+� )�!#-4$2���

ILU(0)  "! �� �%( "! %"$.!�! �
SPAI /=10�!�$6�  �%(�  ���'���� !�$6�*) -�%"$2'�3
SPAI /=10�!�$2- %8)"� �����"!#� !�$2���  �� $2��'
SPAI /=10�!�$2 )" %7!#-�-�3�% %"$23�� %('4$2'#)

Table 11
cuaref : Minimum Neighbouring and left preconditioned BiCGSTAB

Preconditioner Iter �����
	 � �����
	������������� ��� 	���������� �
Unprecond. %8)"-�3 )"�� "! !�$&%+� )" ��4$2��%

ILU(0) %7!# �� �%( "! %"$.!�! �
SPAI /=�0 !�$6� �#)�) -� � � #) !�$2'� -� 4$5)"�
SPAI /=�0 !�$2- �,%7! '�%+�#!�! %"$&%(�  ��4$2 ��
SPAI /=�0 !�$2  "!#3 %(�� "!�)"�  4$23� %8)*$&%( 

6 Conclusions

We have experimentally proved that reordering techniques have beneficial effects
on the performance of sparse approximate inverses which are used as precondi-
tioners in iterative solvers based on Krylov subspace methods. The reduction of
the number of nonzero entries due to the reordering allows one to obtain sparse
approximate inverses with similar accuracy to those obtained without reordering,
but at a lower storage requirement and computational cost. In addition, the reorder-
ing provides better quality preconditioners since the number of steps of an iterative
solver for convergence is generally reduced.

Further research must be carried out on the effect of other reordering techniques
which take into account the numerical values of the entries of

�
(see e.g. [29,30]).

Though these techniques are usually too expensive, when several linear systems
involving the same matrix are solved, they may be a competitive choice for use on
parallel machines.
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