
Abstract

In this work we develop a procedure to deform a given surface triangulation to ob-

tain its exact alignment with interior curves. These curves, defined by splines, can

represent internal interfaces between different materials, internal boundaries, etc. An

important feature of this procedure is the possibility to adapt a reference mesh to

curves that change their shape or their position in the course of an evolutive process.

The method moves the nodes of the mesh, maintaining its topology, in order to achieve

two objectives: the piecewise approximation of the curve by edges of the mesh, and

the optimization of the deformed mesh resulting from the previous process. The over-

all method, which we will designate as projecting/smoothing, is based on a surface

mesh smoothing technique, where the quality improvement of the mesh is obtained

by an iterative process in which each node of the mesh is moved to a new position

that minimizes a certain objective function. The objective function is derived from

the algebraic quality measure mean ratio extended to the set of triangles connected to

the free node. The projecting/smoothing method allows us to track an object moving

through the reference mesh without the necessity of remeshing.

Keywords: mesh alignment, moving meshes, mesh adaptation, surface mesh smooth-

ing, node movement, R-adaptivity.

1 Introduction

The numerical simulation of physical problems requires the internal boundaries and

discontinuities to be properly represented. Usually, the largest errors are introduced

in a neighborhood of such discontinuities. These errors are often greatly reduced

if the mesh is aligned with the discontinuities. That is why it is desirable to have a

procedure capable of deforming a given triangulation to get its alignment with a curve.
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Although there are numerous works dealing with r-adaptivity, that is, mesh adaption

allowing only changes in the position of the nodes, only a few of them consider the

problem of the exact mesh alignment with interior curves. In fact, the only paper

that we have found in the bibliography tackling this question in similar terms, but for

quadrilateral grids is [2]. The authors consider the problem of aligning a planar grid

to of multiple embedded curves defined by basic segments as straight lines or arcs of

circle. A different approach to the problem can be found in [3], where the curve is

approximated by a polygonal line included in the surface triangulation, but in this case

the segments are not edges of the mesh. The paper [4] present a variant of Ruppert’s

algorithm for producing a 2-D Delaunay triangulation of a domain containing arbitrary

curved inputs. Nevertheless, this algorithm does not allow a dynamical adaption of the

mesh without remeshing.

The procedure that we describe in this paper align a given surface triangulation

with an arbitrary curve. Usually we have not an analytical representation of the curve.

Instead, it is approximately known by a sequence of interpolating data points. We

have chosen a parametric cubic spline as interpolating curve due it is C2 continu-

ous and it has others interesting properties that will be used later. Obviously, the

grade of approximation of the curve depends on the element sizes, therefore, a good

strategy is to combine the projecting/smoothing technique with a local mesh refine-

ment [5]. Our procedure is specially indicated for evolutionary problems in which

the boundaries change their shape or position with time. For example the ones related

to fluid-structure interactions involving large displacement (see, for example [6]), or

crack modeling. The projecting/smoothing technique could be also applied to domain

decomposition, definition of material interfaces, free boundary problems, etc.

The organization of the paper is as follows. In section 2 a rough description of the

proposed method is presented. In section 3 we propose an objective function, and the

corresponding modification, able to untangle and smooth plane triangulations simul-

taneously. The projecting/smoothing method is analyzed for plane triangulations in

section 4. Its extension to curved surfaces is straightforward derived from the surface

mesh smoothing technique proposed in [1]. Section 5 is devoted to applications with

a particular mention to the alignment of surface triangulations with contours delimit-

ing relevant orographic features. The paper concludes with a brief discussion of the

work and its possible extensions.

2 Description of the Projecting/Smoothing Method

Let C be a curve, and suppose that it is embedded in a surface mesh TΣ. The basic

idea consists of relocating the nodes of TΣ closest to C in positions just sited in the

curve. This operation, which we will refer to as node projection onto the curve, goes

on until getting an approximate representation (interpolation) of C by linked edges

of TΣ. A node of TΣ is considered projectable if we can displace it from its initial

position to any point of C in such a way the local mesh does not get tangled. This

projection implies an enforced alteration of the original positions of the nodes and,
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in general, has a negative effect on the quality of the triangles close to C. To avoid

this drawback, the remaining nodes are also displaced to new positions following the

smoothing procedure proposed in [1].
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Figure 1: The relocation of node p ∈ Σ is performed in the plane P by projecting q
on Q and, consequently, p on C.

For 2-D (or 3-D) meshes the quality improvement can be obtained by an iterative

process in which each node of the mesh is moved to a new position that minimizes an

objective function derived from certain algebraic quality measure of the local mesh

[7, 8]. The objective function presents a barrier in the boundary of the feasible region.

In this context the feasible region is the set of points where the free node could be

placed to get a valid local mesh, that is, without inverted elements. This barrier has

an important role because it avoids the optimization algorithm to create a tangled

mesh when it starts with a valid one, but these objective functions are only directly

applicable to plane meshes. We shown in [1] a way to extend the smoothing procedure

to curved meshes. The basic idea consist of transforming the original problem on Σ
into a two-dimensional one on a plane P . To do this, the local mesh M(p), belonging

to TΣ, is orthogonally projected onto a plane P performing a local mesh N(q), where

p is the free node on Σ and q is its orthogonal projection onto P . The plane P is

suitably chosen in terms of M(p) in order to get a valid mesh on P (see Fig. 1). Thus,

the optimization of M(p) is got by the appropriated optimization of N(q). It involves

the construction of ideal triangles in N(q) that become near equilateral in M(p).
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When Σ is a curved surface each triangle of M(p) is placed on a different plane

and it is impossible to define a feasible region. Nevertheless, this region, denoted as

Hq, is perfectly defined for N(q) and its associated objective function has a barrier at

the boundary of Hq (see [9]). This is a crucial reason of working on P instead of on

Σ.

In the present work the curve C is defined as the image of a curve Q sited on a plane

P . Specifically, if we define a plane curve by the parametrization Q(u) = (x(u), y(u))
and we consider that f (x, y) is the z coordinate of the underlaying surface (the true

surface, if it is known, or the piece-wise linear interpolation, if it is not), then the

curve C is given by C(u) = (x(u), y(u), f (x(u), y(u))) (see Fig. 1). This type of

parametrization can be straightforward introduced in the new meccano method which

has been recently developed by the authors [10, 11]. We remark that, although the

surface mesh smoothing process can be carried out in different planes chosen in terms

of M(p) [1], the particular way in which C is defined demands a unique plane. A

general parametric curves C(u) = (x(u), y(u), z(u)) could be considered in future

works.

The problem of getting a piecewise approximation of C by edges of TΣ is translated

to the plane P . Each node q sited on P is projected onto Q if its corresponding local

mesh does not get tangled (see Fig. 1 and 2). Note that, in this work, we consider

two kinds of projections: the projection onto a plane and that onto a curve. The task

to determine if a node can be projected onto Q and, that being the case, which is

its optimal position, is undertaken by an objective function derived from algebraic

N(q)

q

q

Q

q´

Figure 2: The curve Q intersects the feasible region Hq (in gray) and, therefore, the

node q is projectable, being q′ its optimal position on the curve.
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quality measures of the local mesh N(q). This objective function incorporates the

modifications proposed in [9] in order to deal with tangled meshes.

3 Objective Function for Smoothing and Untangling

Plane Triangulations

Firstly, we will focus our attention on finding an objective function to smooth a valid

plane triangulation. As it is shown in [8], [12], and [13] we can derive optimization

functions from algebraic quality measures of the elements belonging to a local mesh.

Let us consider a triangular mesh TP defined in R
2 and let t be an triangle in the

physical space whose vertices are given by xk = (xk, yk)
T ∈ R

2, k = 0, 1, 2. To

start with, we introduce an algebraic quality measure for t. Let tR be the reference

triangle with vertices u0 = (0, 0)T , u1 = (1, 0)T , and u2 = (0, 1)T . If we choose

x0 as the translation vector, the affine map that takes tR to t is x = Au + x0, where

A is the Jacobian matrix of the affine map referenced to node x0, given by A =

(x1 − x0,x2 − x0). We will denote this type of affine maps as tR
A→ t. Let now tI be

an ideal triangle (equilateral in this case) whose vertices are wk ∈ R
2, (k = 0, 1, 2)

and let WI = (w1 − w0,w2 − w0) be the Jacobian matrix, referenced to node w0, of

the affine map tR
WI→ tI ; then, we define S = AW−1

I as the weighted Jacobian matrix

of the affine map tI
S→ t. In the particular case that tI was the equilateral triangle tE ,

the Jacobian matrix WI = WE will be defined by w0 = (0, 0)T , w1 = (1, 0)T and

w2 = (1/2,
√

3/2)T .

We can use matrix norms, determinant or trace of S to construct algebraic quality

measures of t. For example, the Frobenius norm of S, defined by |S| =
√

tr (ST S),
is specially indicated because it is easily computable. Thus, it is shown in [7] that

qη = 2σ

|S|2
is an algebraic quality measure of t, where σ = det (S). We use this quality

measure to construct an objective function. Let x = (x, y)T
be the position vector of

the free node, and let Sm be the weighted Jacobian matrix of the m-th triangle of a

valid local mesh of M triangles. The objective function associated to m-th triangle is
|Sm|2

2σm
, and the corresponding objective function for the local mesh is

|Kη|n (x) =

[

M
∑

m=1

(

|Sm|2
2σm

)n

(x)

]
1

n

(1)

being n an integer number, typically n = 1 or n = 2.

In this context the feasible region is defined as the set of points where the free node

must be located to get the local mesh to be valid. More precisely, the feasible region

is the interior of the polygonal set H =
M
⋂

m=1

Hm, where Hm are the half-planes defined

by σm (x) ≥ 0. We say that a triangle is inverted if σ < 0. The objective function

(1) presents a barrier in the boundary of the feasible region. This barrier avoids the
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optimization method to create a tangled mesh when it starts with a valid one, but,

on the other hand, it prevents the algorithm to untangle it when there are inverted

elements. Therefore, this objective function is only appropriate to improve the quality

of a valid mesh, not to untangle it. To construct an objective function applicable to

deal with tangled meshes we propose to modify it following the criteria developed in

[9]. This modification consists of substituting σ in (1) by the positive and increasing

function

h(σ) =
1

2
(σ +

√
σ2 + 4δ2) (2)

being the parameter δ = h(0).

In this way, the barrier associated with the singularities of |Kη|n (x) will be elimi-

nated and the new function will be smooth all over R
2.

The modified objective function is

∣

∣K ′
η

∣

∣

n
(x) =

[

M
∑

m=1

(

|Sm|2
2h (σm)

)n

(x)

]
1

n

(3)

This new objective function strongly penalizes the negative values of σ, so that, the

minimization process of (3) leads to the construction of a local mesh N(q) without

inverted triangles, provided it is possible. Note that the minimum of original and

modified functions are nearly identical when H 6= ∅ and δ tends to zero. With this

approach, we can use any standard and efficient unconstrained optimization method

to find the minimum of the modified objective function, see for example [14]

4 Alignment with Curves Defined on Plane Triangula-

tions

Node movement provides the mesh the ability to align with an arbitrary curve. Sup-

pose that Q is a curve defined on a 2-D triangulation TP , our objective is to move some

nodes of TP , projecting them onto Q, to get an interpolation of Q by linked edges of

TP . To achieve this objective we have to decide which nodes of TP can be projected

onto Q without inverting any triangle of its local mesh. More accurately, we say that

the free node q is projectable onto Q if there are points of this curve belonging to the

feasible region Hq (see Fig. 2).

In general, if q is projectable, its possible placement on Q is not unique. The

projecting/smoothing method must determine if q can be projected onto Q and, if so,

which is its optimal position. The last question can be answered by using the objective

function (3) subject to the constrained x ∈ Q. Thus, the problem of finding the optimal

position to project the free node on the curve is

minimize
∣

∣K ′
η

∣

∣

n
(x) , subject to x ∈ Q (4)
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If x̄ is the minimizing position of (4) and σ (x̄) > 0 for all triangle of N(q), we

conclude that q is projectable onto Q and x̄ is its optimal position. Otherwise, q is not

projectable.

4.1 Curve Definition

The previous criterion allows to determine whether q is projectable onto Q or not,

but it involves a high computational cost because it needs to solve the constrained

minimization problem (4). Nevertheless, it is clear that most nodes of TP are not

projectable because they are very far from any point of the curve. Therefore, it is

convenient to have an efficient method to select those nodes, close to some segment

of Q, expected to be projectable.

In many situations of practical interest we have not an analytical representation of

Q, but Q is approximately known by a sequence of interpolating data points. Among

the options to define an interpolating curve, we have chosen a parametric cubic spline

as it has many desired properties: it is a C2 continuous function, it has a very simple

local form, it is minimally oscillating, etc. Moreover, each segment of the spline is

a degree 3 Bézier curve that lies within the convex hull of its four defining control

points (see, for example [15]). We will use this property in order to know if a given

node is close to some segment of Q.

Let {P0, P1, . . . , Pm} be a set of interpolating points belonging to R
2 and consider

that {u0, u1, . . . , um} is the corresponding knot vector. The parametric cubic spline

Q(u) = (x(u), y(u)), where u ∈ [u0, um] (5)

is an interpolating curve that satisfies Q(ui) = Pi for i = 0, . . . ,m and two additional

constraints in order to be fully defined. Usually, these constraints are imposed at the

ends of the curve. For example, the conditions Q′′(u0) = 0 and Q′′(um) = 0 define a

spline known as natural.

Every segment of the spline delimited by two consecutive interpolating points is a

degree 3 polynomial. Suppose that Qi(t) = ai + bit + cit2 + dit3, with ai, bi, ci and

di in R
2, is the polynomial of the segment Qi (i = 0, 1, . . . ,m − 1) that runs from Pi

to Pi+1, being t ∈ [0, 1] the local parameter. This one is related with the parameter of

the entire curve by t = (u − ui) / (ui+1 − ui)

4.2 Procedure to Project Nodes onto the Curve

The Qi segment also is a degree 3 Bézier curve, given by Qi(t) =
∑

3

j=0
ui

jB
i
j (t) with

t ∈ [0, 1], where Bi
j (t) are the Berstein polynomials and ui

j ∈ R
2 are the control

points. The relation between the polynomial coefficients and the control points are

given by
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As we said, an interesting property of the Bézier curves establishes that the Qi

segment lies within the convex hull of its control points. If CH denotes the convex

hull of a set of points, we have Qi ⊆ CH (ui
0, . . . , ui

3). Note that a necessary (but

not sufficient) condition for the node q to be projectable onto Q is that its feasible

region Hq intersects the convex hull of some segment of the curve. In other words, it

must exist a segment Qi such that Hq ∩ CH (ui
0, . . . , ui

3) 6= ∅. This property allows

us to know beforehand which nodes are not projectable, because they yield an empty

intersection for all segments of the curve. Nevertheless, calculating the set Hq and,

moreover, its intersection with a convex set, is not a trivial problem, so it is more

advisable to deal with a simplified version.

Let Rq and RQi
be the minimal rectangles, with sides parallel to the axes, enclosing

the sets N(q) and CH (ui
0, . . . , ui

3), respectively. Then, due to Hq ⊂ Rq, it is clear that

q is projectable onto Qi only if Rq ∩ RQi
6= ∅ (see Fig. 3). The computation of

this intersection allows us to take a quick decision about if a node is candidate to be

projected onto the curve.

qR

Qi

Q

q´
iQR

q

N(q)

q

Figure 3: The figure shows the situation in which Rq ∩ RQi
6= ∅, but node q is not

projectable because the optimal position for the free node, q′, is outside the feasible

region.
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The algorithm to determine if q is projectable onto Q and, if it is so, which is

its optimal position, can be summarized as follows. For each segment of the curve

analyze Rq ∩ RQi
and, if this set is not empty, solve the minimization problem

minimize
∣

∣K ′
η

∣

∣

n
(Qi (t)) , for t ∈ [0, 1] (7)

Let t̄ be the global minimum of (7) and x̄i = Qi (t̄) the corresponding position of

the free node q on the segment Qi. We say that x̄i is an admissible position for the free

node if σm (x̄i) > 0 for m = 1, . . . ,M . In order to determine the optimal position of

the free node, we take x̄opt as the best admissible position for all segments.

The projection of a free node on Q can give rise to a local mesh with very poor

quality. Although this effect is partly palliated after smoothing the remainder nodes,

following the procedure described in section 3, it is appropriate to tighten the condition

σm (x̄i) > 0 enforcing σm (x̄i) > ε, with ε > 0 a prescribed tolerance. Nevertheless,

this more restrictive condition makes it difficult for the nodes to be projected onto

the curve and it could produce situations in which some sections of the curve are not

interpolated by edges of TP . This drawback will be studied in the next subsection but,

for that purpose, it needs further clarification.

Up to now, we have accepted that parameter t pertains to the closed interval [0, 1]
and, in consequence, the problem (7) admits a global minimum. But, with this con-

sideration, the ends of the consecutive segments are shared and, therefore, a projected

point can belong to two segments at the same time. In order to avoid this ambiguity,

we will assume that each segment Qi (t) is defined for t ∈ [0, 1), except the last one,

that it is for t ∈ [0, 1] if the curve is open. In this way, each point of the curve belongs

to a unique segment.

4.3 Detection and Reconstruction of Discontinuities of the Inter-

polated Curve

It can happen that, after repositioning all the nodes of the mesh, the piecewise approx-

imation of Q by edges of TP is not continuous. We can detect this discontinuity if we

take into account that the projected nodes are arranged in the curve. Thus, a section

of the interpolated curve among two consecutive projected nodes is discontinuous if

they are not connected by an edge of TP .

As the parameter t ∈ [0, 1) induces an order relation in each segment of the curve

and, in turn, each segment is ordered by its subindex, we can say that the node p ∈ Qi

precedes p′ ∈ Qj if i < j or, in case of i = j, if the corresponding parameters

satisfies tp < tp′ . A possibility to correct a detected discontinuity in the piecewise

approximation of Q is to relax the condition σm (x̄i) > ε, by decreasing the value

of ε. However, there are situations in which, even taken ε equal to zero, there are

discontinuities impossible to avoid without removing some of the projected nodes.

The Fig. 4(a) shows a scheme of this problem. It can be seen that it is impossible to
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project the node q (neither r) without tangling the mesh. We propose a solution to this

conflict by enforcing the free node q to be projected, even if a tangled mesh is created.

The Fig. 4(b) shows how the movement of q produces the tangled triangle abq.

Afterward, the position of q is fixed for subsequent iterations of the projecting/smoothing

algorithm, but the surrounding nodes are free to move in search of their optimal posi-

tions that untangle the mesh and complete the interpolation of the curve (see 4(c)). The

algorithm extracts nodes from the curve if their current positions are not admissible

(see the new position of node a in figure 4(c)).

Sometimes the curve represented by splines has sharp features that we want to

preserve in the piecewise interpolation. To reach this objective we select, from the

interpolating points, a set of prescribed points sited in strategic locations. Once the

projecting/smoothing process has finished, the algorithm searches among the nodes

projected on Q, which one is the optimal candidate, say q, to be relocated in the po-

sition of each prescribed node. If xpres is the position of certain prescribed point,

the node q is chosen, among the nodes projected on Q and close to xpres, as the one

that maximizes the quality of N (q) when q is enforced to take the position xpres.

Obviously, if N (q) is not valid after the relocation of q, a new iteration of the project-

ing/smoothing procedure must be done.

r

Q
a

b

c

q

(a)

r

Q

c

b

a q

(b)

r

q
Q

a

b

c

(c)

Figure 4: The dashed line is non-recoverable without tangling the mesh (a). The free

node q is enforced to be projected (b). The tangled triangle abq is untangled and the

node c is also projected (c).
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4.4 Extension to Curved Surfaces

We only will point out here that the projecting/smoothing method can be extended

to curved surfaces following the surface mesh smoothing technique developed in [1].

As we pointed in section 2, the original problem on Σ is transformed in another one

on the plane P . The more significant difference with respect to the former method

consists of searching ideal triangles in N(q) that become equilateral in M(p).

5 Applications

In this section we present two applications that demonstrate the satisfactory behavior

of the projecting/smoothing technique. All the quality measures have been calculated

by using the algebraic quality metric based on the condition number proposed in [8].

The first example is a NACA012 profile inserted in an uniform plane mesh with

8364 triangles. The profile, defined by a spline with 36 interpolating points, has been

represented with two different angles of attack. We have chosen two prescribed points

sited in the leading and trailing edges in order to get a better approximation to the

real shape of the profile. The nodes of the triangulation projected on the spline are

drawn in bold in order to show up the figure. The number of iterations of the pro-

jecting/smoothing algorithm has been 4 for both angles of attack. Note that these 4
iterations was enough to outline the complete contour of the profile in all the cases.

All the triangles of the initial mesh are identical, so all of them have the same quality,

0.866. The minimum quality after the projecting/smoothing process was 0.357 and

0.513 for the meshes of the Figs. 5(a) and 5(b), respectively. The average quality was

nearly identical for both meshes, 0.875.

The second example corresponds to a surface mesh of a bull, obtained from www-

c.inria.fr/gamma/, in which we have inserted the emblem of the Miura’s bull breeders,

see Fig. 6. In Fig. 7(a) it is shown a detail of the initial mesh and the interpolating

points (in bold) used to define the 26 splines composing the emblem. Fig. 7(b) shows

the same detail after 5 iterations of the projecting/smoothing process. In this case the

points in bold corresponds to the nodes of the mesh projected on the curve. We have

used 26 prescribed points in the extremes of the splines in order to keep the sharp

angles of the original drawing.

6 Concluding Remarks and Future Research

In this paper we have introduced the projecting/smoothing technique which is able

to align a surface triangulation with arbitrary curves without producing, in general, a

significant decrease in the minimum quality of the mesh. Indeed, the average quality

is increased in many cases as the remainder part of the mesh undergoes a smoothing

process.

The technique presented here allows the mesh to align with interior curves which
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can represent objects moving in a fixed mesh. An important feature of this procedure

is the possibility to adapt a reference mesh to curves that change their shape or position

in the course of an evolutionary process.

In present work the curves have been defined by splines which interpolating points

are given on a plane. In future research, general parametric curves embedded on the

surface will be considered. Another more ambitious generalization lies in extending

the present method to align a tetrahedral mesh with interior surfaces.
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(a)

(b)

Figure 5: NACA012 profile inserted in an uniform mesh with 0◦ angle of attack (a)

and 30◦ (b).
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Figure 6: Mesh of a bull with an emblem inserted in its back.
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(a)

(b)

Figure 7: Detail of the initial mesh including the interpolating points that define the

splines (a). The same detail, remarking the nodes of the mesh projected on the curve,

after 5 iterations of the projecting/smoothing process (b).
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