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Summary. In this work we develop a procedure to deform a given surface trian-
gulation to obtain its alignment with interior curves. At present, we consider that
these curves are defined by the orthogonal projection from plane cubic splines to
the initial surface triangulation. For example, the curves can represent interfaces
between different materials or boundary conditions, internal boundaries or feature
lines. Another possibility of this procedure is the adaption of a reference mesh to
changing curves in the course of an evolutionary process (for example, aligning of
mesh nodes and edges to moving shocks in compressible flows). Specifically, we pro-
pose a new method that moves the nodes of the mesh, maintaining its topology, in
order to achieve two objectives simultaneously: the piecewise approximation of the
curves by edges of the surface triangulation and the optimization of the resulting
mesh. We will designate this procedure as projecting/smoothing method and it is
based on the smoothing technique that we have introduced for surface triangulations
in previous works. The mesh quality improvement is obtained by an iterative process
where each free node is moved to a new position that minimizes a certain objective
function. The minimization process is done on a surface projection plane attending
to the surface piece-wise approximation and to an algebraic quality measure (mean
ratio) of the set of triangles that are connected to the free node. So, the 3-D local
projecting/smoothing problem is reduced to a 2-D optimization problem. Several
applications of this method are presented.

Key words: Mesh alignment, Moving meshes, Mesh adaptation, Surface
mesh smoothing, Node movement, R-adaptivity

1 Introduction

The numerical simulation of physical problems requires the internal bound-
aries and discontinuities to be properly represented. Usually, the largest errors
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are introduced in a neighborhood of such discontinuities. These errors are of-
ten greatly reduced if the mesh is aligned with the discontinuities. That is why
it is desirable to have a procedure capable of deforming a given triangulation
to get its alignment with a curve. Although there are numerous works dealing
with surface mesh optimization, see for example [9, 10], only a few of them
address the problem of the exact mesh alignment with interior curves. In fact,
the only paper that we have found in the bibliography tackling this question
in similar terms, but for quadrilateral grids is [12]. The authors consider the
problem of aligning a planar grid with multiple embedded curves defined by
basic segments as straight lines or arcs of circle. A different approach to the
problem can be found in [3], where the curve is approximated by a polygonal
line included in the surface triangulation, but in this case the segments are not
edges of the mesh. The paper [19] presents a variant of Ruppert’s algorithm
for producing a 2-D Delaunay triangulation of a domain containing arbitrary
curved inputs. Nevertheless, this algorithm does not allow a dynamical adap-
tion of the mesh without remeshing.

The procedure that we describe in this paper aligns a given surface trian-
gulation with an arbitrary curve and it is based on the surface mesh smooth-
ing technique proposed in [5]. An analytical representation of the curve is
not usually available. Instead, it is approximately known by a sequence of
interpolating data points. We have chosen a parametric cubic spline as inter-
polating curve due it is C2 continuous and it has other interesting properties
that will be used later. Obviously, the grade of approximation of the curve
depends on the element sizes, therefore, a good strategy is to combine the
projecting/smoothing technique with a local mesh refinement [11]. Our pro-
cedure is specially indicated for evolutionary problems where the boundaries
change their shape or position with time; for example, the ones related to fluid-
structure interactions involving large displacement (see, for example [21]), or
crack modeling. The projecting/smoothing technique could be also applied to
domain decomposition, definition of material interfaces, free boundary prob-
lems, etc.

The organization of the paper is as follows. In section 2 a rough description
of the proposed method is presented. In section 3 we propose an objective func-
tion, and the corresponding modification, able to untangle and smooth plane
triangulations simultaneously. The projecting/smoothing method is initially
analyzed for plane triangulations in section 4 and, afterward, it is extended
to triangulations defined on curved surfaces in section 5. Section 6 is devoted
to applications. The paper concludes with a brief discussion of the work and
its possible extensions.

2 Statement of the Projecting/Smoothing Method

Let C be a curve, and suppose that it is embedded in a surface triangulation
TΣ (see Figure 1). The basic idea of the projecting/smoothing method lies in
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relocating the nodes of TΣ closest to C in positions just sited in the curve.
This operation, which we will refer to as node projection onto the curve, goes
on until getting an approximate representation (interpolation) of C by linked
edges of TΣ. A node of TΣ is considered projectable if we can displace it
from its initial position to any point of C in such a way the local mesh does
not get tangled. This projection implies an enforced alteration of the original
positions of the nodes and, in general, has a negative effect on the quality of
the triangles close to C. To avoid this drawback, the remaining nodes are also
displaced to new positions following the smoothing procedure proposed in [5].

N(q)

M(p)

q´

C
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z

x

q

P

Q

p

p´

Fig. 1. The relocation of node p ∈ Σ is performed in the plane P by projecting q
on Q and, consequently, p on C

For 2-D (or 3-D) meshes, the quality improvement can be obtained by an
iterative process where each node of the mesh is moved to a new position
that minimizes an objective function derived from certain algebraic quality
measure of the local mesh [15, 8]. The objective function presents a barrier in
the boundary of the feasible region associated to the free node. In this context
the 2-D (or 3-D) feasible region is the set of points where the free node could
be placed to get a valid local mesh, that is, without inverted elements. The
barrier has an important role because it avoids the optimization algorithm
to create a tangled mesh when it starts with a valid one. We show in [5]
a procedure for smoothing surface triangulations taking into account these
aspects. The basic idea lies in transforming the original problem on Σ into a
two-dimensional one on a plane P . To do this, the local mesh M(p), belonging
to TΣ , is orthogonally projected onto a plane P performing a local mesh N(q),
where p is the free node on Σ and q is its orthogonal projection onto P . The
plane P is suitably chosen in terms of M(p) in order to get a valid mesh on
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P (see Figure 1). Thus, the optimization of M(p) is got by the appropriate
optimization of N(q). It involves the construction of ideal triangles in N(q)
that become near equilateral in M(p).

N(q)

q

q

Q

q´

Fig. 2. The curve Q intersects the feasible region Hq (in gray) and, therefore, the
node q is projectable, being q′ its optimal position on the curve

When Σ is a curved surface, each triangle of M(p) is placed on a different
plane. Therefore, it is not possible to define the feasible region associated to
the free node p. Nevertheless, the feasible region associated to node q is per-
fectly defined in plane P and it is denoted as Hq. Furthermore, its associated
objective function has a barrier at the boundary of Hq (see [6]). This is a
crucial reason for working on P instead of on Σ.

In the present work the curve C is defined as the image of a curve Q
sited on a plane P . Specifically, if we define a plane curve by the parame-
trization Q(u) = (x(u), y(u)) and we consider that f (x, y) is the z coor-
dinate of the underlaying surface (the true surface, if it is known, or the
piece-wise linear interpolation, if it is not), then the curve C is given by
C(u) = (x(u), y(u), f (x(u), y(u))) (see Figure 1). We note that this type
of parametrization can be straightforward introduced in the new meccano
method which has been recently developed by the authors [4]. We remark
also that, although the surface mesh smoothing process can be carried out in
different planes chosen in terms of M(p) [5], the particular way in which C is
defined in the present paper demands a unique plane. A general parametric
curve C(u) = (x(u), y(u), z(u)) will be considered in future works.

Since the problem of getting a piecewise approximation of C by edges of
TΣ is translated to the plane P , the task to determine if a node q can be
projected onto Q and, that being the case, which is its optimal position, is
undertaken by an objective function derived from algebraic quality measures
of the local mesh N(q). This objective function incorporates the modifications
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proposed in [6] in order to deal with tangled meshes. Obviously, a control of
the allowed distance between M(p) and M(p′) is done in the analysis of the
movement of node q.

3 Smoothing and Untangling of Plane Triangulations

Firstly, we will focus our attention on finding an objective function to smooth
a valid plane triangulation. As it is shown in [8], [13], and [14] we can de-
rive optimization functions from algebraic quality measures of the elements
belonging to a local mesh. Let us consider a triangular mesh TP defined in
R

2 and let t be a triangle in the physical space whose vertices are given by
xk = (xk, yk)T ∈ R

2, k = 0, 1, 2. To start with, we introduce an algebraic qual-
ity measure for t. Let tR be the reference triangle with vertices u0 = (0, 0)T ,
u1 = (1, 0)T , and u2 = (0, 1)T . If we choose x0 as the translation vector, the
affine map that takes tR to t is x = Au + x0, where A is the Jacobian matrix
of the affine map referenced to node x0, given by A = (x1 − x0,x2 − x0). We
will denote this type of affine maps as tR

A→ t. Let now tI be an ideal triangle
whose vertices are wk ∈ R

2, (k = 0, 1, 2) and let WI = (w1 − w0,w2 − w0)
be the Jacobian matrix, referenced to node w0, of the affine map tR

WI→ tI
; then, we define S = AW−1

I as the weighted Jacobian matrix of the affine

map tI
S→ t. In the particular case that tI was the equilateral triangle tE , the

Jacobian matrix WI = WE will be defined by w0 = (0, 0)T , w1 = (1, 0)T and
w2 = (1/2,

√
3/2)T .

We can use matrix norms, determinant or trace of S to construct algebraic
quality measures of t. For example, the Frobenius norm of S, defined by
|S| =

√
tr (ST S), is specially indicated because it is easily computable. Thus,

it is shown in [15] that qη = 2σ
|S|2 is an algebraic quality measure of t, where

σ = det (S). We use this quality measure to construct an objective function.
Let x = (x, y)T be the position vector of the free node q, and let Sm be the
weighted Jacobian matrix of the m-th triangle of a valid local mesh N(q)
composed of M triangles, see Figure 2. The objective function associated to
m-th triangle is |Sm|2

2σm
, and the corresponding objective function for the local

mesh is

|Kη|n (x) =

[
M∑

m=1

(
|Sm|2
2σm

)n

(x)

] 1
n

(1)

being n an integer number, typically n = 1 or n = 2.
The feasible region for the local mesh is defined as the interior of the polyg-

onal set Hq =
M⋂

m=1
Hm, where Hm are the half-planes defined by σm (x) ≥ 0.

We say that a triangle is inverted if σ < 0. The objective function (1) presents
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a barrier in the boundary of the feasible region. This barrier avoids the op-
timization method to create a tangled mesh when it starts with a valid one,
but, on the other hand, it prevents the algorithm to untangle it when there
are inverted elements. Therefore, this objective function is only appropriate
to improve the quality of a valid mesh, not to untangle it. To construct an ob-
jective function applicable to deal with tangled meshes we propose to modify
it following the criteria developed in [6]. This modification lies in substituting
σ in (1) by the positive and increasing function

h(σ) =
1
2
(σ +

√
σ2 + 4δ2) (2)

where the parameter δ = h(0) is an appropriate small value.
In this way, the barrier associated with the singularities of |Kη|n (x) will

be eliminated and the modified objective function will be smooth all over R
2

∣∣K ′
η

∣∣
n

(x) =

[
M∑

m=1

(
|Sm|2

2h (σm)

)n

(x)

] 1
n

(3)

This new objective function strongly penalizes the negative values of σ,
so that the minimization process of (3) leads to the construction of a local
mesh N(q′) without inverted triangles, provided it is possible. Note that the
minimum of original and modified functions are nearly identical when Hq �= ∅
and δ tends to zero. With this approach, we can use any standard and effi-
cient unconstrained optimization method to find the minimum of the modified
objective function, see for example [2].

4 Alignment of Plane Triangulations

Node movement provides the mesh with the ability to align with an arbitrary
curve. Suppose that Q is a curve defined on a 2-D triangulation TP , our
objective is to move some nodes of TP , projecting them onto Q, to get an
interpolation of Q by linked edges of TP . To achieve this objective we have
to decide which nodes of TP can be projected onto Q without inverting any
triangle of its local mesh. More accurately, we say that the free node q is
projectable onto Q if there are points of this curve belonging to the feasible
region Hq (see Figure 2).

In general, if q is projectable, its possible placement on Q is not unique.
The projecting/smoothing method must determine if q can be projected onto
Q and, if so, which is its optimal position. The last question can be answered
by using the objective function (3) subject to the constrained x ∈ Q. Thus,
the problem of finding the optimal position to project the free node onto the
curve is

minimize
∣∣K ′

η

∣∣
n

(x) , subject to x ∈ Q (4)
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If x̄ is the position vector of the minimizing point q′ of (4) and σ (x̄) > 0
for all triangle of N(q′), we conclude that q is projectable onto Q and x̄ is its
optimal position. Otherwise, we say that node q is not projectable.

4.1 Curve Definition

The previous criterion allows us to determine whether q is projectable onto
Q or not, but it involves a high computational cost because it needs to solve
the constrained minimization problem (4). Nevertheless, it is clear that most
nodes of TP are not projectable because they are very far from any point of
the curve. Therefore, it is convenient to have an efficient method to select
those nodes, close to some segment of Q, expected to be projectable.

In many situations of practical interest we do not have an analytical repre-
sentation of Q, but Q is approximately known by a sequence of interpolating
data points. Among the options to define an interpolating curve, we have cho-
sen a parametric cubic spline as it has many desired properties: it is a C2

continuous function, it has a very simple local form, small oscillations, etc.
Moreover, each segment of the spline is a degree 3 Bézier curve that lies within
the convex hull of its four defining control points (see, for example [1]). We
will use this property in order to know if a given node is close to some segment
of Q.

Let {P0, P1, . . . , Pm} ⊂ R
2 be a set of interpolating points belonging to

plane P . The parametric cubic spline

Q(u) = (x(u), y(u)), where u ∈ [u0, um] (5)

is an interpolating curve that satisfies Q(ui) = Pi for i = 0, . . . , m and two
additional constraints in order to be fully defined. Usually, these constraints
are imposed at the ends of the curve. For example, it is well known that the
conditions Q′′(u0) = 0 and Q′′(um) = 0 define a spline known as natural.

Every segment of the spline delimited by two consecutive interpolating
points is a degree 3 polynomial. Suppose that Qi(t) = ai + bit + cit2 + dit3,
with ai, bi, ci and di in R

2, is the polynomial associated to the segment
Qi (i = 0, 1, . . . , m − 1) that runs from Pi to Pi+1, being t ∈ [0, 1] the local
parameter, see Figure 3. This one is related with the parameter of the entire
curve by t = (u − ui) / (ui+1 − ui).

4.2 Node Projection onto the Curve

The Qi segment also is a degree 3 Bézier curve, given by Qi(t) =
∑3

j=0 ui
jB

i
j (t)

with t ∈ [0, 1], where Bi
j (t) are the Berstein polynomials and ui

j ∈ R
2 are the

control points. The relation between the polynomial coefficients and the con-
trol points are given by
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0

ui
1
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⎞
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1
3

⎛
⎜⎜⎝

3 0 0 0
3 1 0 0
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3 3 3 3

⎞
⎟⎟⎠
⎛
⎜⎜⎝

ai

bi

ci

di

⎞
⎟⎟⎠ (6)

As we have already said, an interesting property of the Bézier curves estab-
lishes that the Qi segment lies within the convex hull of its control points. If
CH denotes the convex hull of a set of points, we have Qi ⊆ CH

(
ui

0, . . . ,u
i
3

)
.

Note that a necessary (but not sufficient) condition for the node q to be pro-
jectable onto Q is that its feasible region Hq intersects the convex hull of some
segment of the curve. In other words, it must exist a segment Qi such that
Hq ∩CH

(
ui

0, . . . ,u
i
3

) �= ∅. This property allows us to know beforehand which
nodes are not projectable, because they yield an empty intersection for all
segments of the curve. Nevertheless, calculating the set Hq and, moreover, its
intersection with a convex set, is not a trivial problem, so it is more advisable
to deal with a simplified version.

Let Rq and RQi be the minimal rectangles, with sides parallel to the
axes, enclosing the sets N(q) and CH

(
ui

0, . . . ,u
i
3

)
, respectively. Then, due

to Hq ⊂ Rq, it is clear that q is projectable onto Qi only if Rq ∩ RQi �= ∅
(see Figure 3). The computation of this intersection allows us to take a quick
decision about if a node is candidate to be projected onto the curve.

qR

Qi

Q

q´iQR

q

N(q)

q

Fig. 3. The figure shows the situation in which Rq ∩ RQi �= ∅, but node q is not
projectable because the optimal position for the free node, q′, is outside the feasible
region

The algorithm to determine if q is projectable onto Q and, if it is so, which
is its optimal position, can be summarized as follows. For each segment of the
curve analyze Rq ∩ RQi and, if this set is not empty, solve the minimization
problem
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minimize
∣∣K ′

η

∣∣
n

(Qi (t)) , for t ∈ [0, 1] (7)

Let t̄ be the global minimum of (7) and x̄i = Qi (t̄) the corresponding
position of the free node q on the segment Qi. We say that x̄i is an admissible
optimal position for the free node if σm (x̄i) > 0 for m = 1, . . . , M . In order to
determine the optimal position of the free node on Q, we take x̄opt as the best
admissible position for all segments Qi. Obviously, if no admissible position
exists, the conclusion of previous algorithm is that node q is not projectable
onto Q.

Take into account that an admissible projection of a free node on Q can
give rise to a local mesh with very poor quality. Although this effect is partly
palliated after smoothing the remainder nodes, following the procedure de-
scribed in section 3, it is appropriate to tighten the condition σm (x̄i) > 0
enforcing σm (x̄i) > ε, with ε > 0 a prescribed tolerance. Nevertheless, this
more restrictive condition makes it difficult for the nodes to be projected onto
the curve and it could produce situations where some sections of the curve are
not interpolated by edges of TP . This drawback will be studied in the next
subsection but, for that purpose, it needs further clarification.

Up to now, we have accepted that parameter t pertains to the closed
interval [0, 1] and, in consequence, the problem (7) admits a global minimum.
But, with this consideration, the ends of the consecutive segments are shared
and, therefore, a projected point can belong to two segments at the same time.
In order to avoid this ambiguity, we will assume that each segment Qi (t) is
defined for t ∈ [0, 1), except the last one, that it is for t ∈ [0, 1] if the curve is
open. In this way, each point of the curve belongs to a unique segment.

4.3 Discontinuities of the Mesh Alignment with the Curve

It can happen that, after repositioning all the nodes of the mesh, the piecewise
approximation of Q by edges of TP is not continuous. We can detect this
discontinuity if we take into account that the projected nodes are arranged in
the curve. Thus, a section of the interpolated curve among two consecutive
projected nodes is discontinuous if they are not connected by an edge of TP .

As the parameter t ∈ [0, 1) induces an order relation in each segment of
the curve and, in turn, each segment is ordered by its subindex, we can say
that the node p ∈ Qi precedes p′ ∈ Qj if i < j or, in case of i = j, if the
corresponding parameters satisfies tp < tp′ . A possibility to correct a detected
discontinuity in the piecewise approximation of Q is to relax the condition
σm (x̄i) > ε, by decreasing the value of ε. However, there are situations in
which, even taking ε equal to zero, there are discontinuities impossible to
avoid without removing some of the projected nodes. The Figure 4(a) shows
a scheme of this problem. It can be seen that it is impossible to project the
node q (neither r) without tangling the mesh. We propose a solution to this
conflict by enforcing the free node q to be projected, even if a tangled mesh is
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created. The Figure 4(b) shows how the movement of q produces the tangled
triangle abq.

Afterward, the position of q is fixed for subsequent iterations of the pro-
jecting/smoothing algorithm, but the surrounding nodes are free to move in
search of their optimal positions that untangle the mesh and complete the
interpolation of the curve (see 4(c)). So, the algorithm extracts nodes from
the curve if their current positions are not admissible (see the new position of
node a in figure 4(c)).

Sometimes the curve represented by splines has sharp features that we
want to preserve in the piecewise interpolation. To reach this objective we
select, from the interpolating points, a set of prescribed points sited in strategic
locations. Once the projecting/smoothing process has finished, the algorithm
searches among the nodes projected on Q, which one is the optimal candidate,
say q, to be relocated in the position of each prescribed node. If xpres is the
position of certain prescribed point, the node q is chosen, among the nodes
projected on Q and close to xpres, as the one that maximizes the quality of
N (q) when q is enforced to take the position xpres. Obviously, if N (q) is not
valid after the relocation of q, a new iteration of the projecting/smoothing
procedure must be done.

r

Q
a

b

c
q

(a)

r

Q

c

b

a q

(b)

r

q Q

a
b

c

(c)

Fig. 4. The dashed line is non-recoverable without tangling the mesh (a). The free
node q is enforced to be projected (b). The tangled triangle abq is untangled and
the node c is also projected (c)
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5 Extension to Curved Surfaces

We are interested in extending the projecting/smoothing method to curved
surfaces. As we pointed in section 2, the original problem on Σ is transformed
into another one on the plane P . The more significant difference with respect
to the former method lies in searching ideal triangles in N(q) that become
equilateral in M(p). Due to restriction of the extension of this paper, we
summarize in this section our main result relative to this aspect. A detailed
analysis can be carried out in the surface mesh smoothing procedure that is
presented in [5]. Its connection with the problem of surface mesh aligning with
curves could be easily implemented.

1
e

2
e3

e

1
q

2
q

T

R

A

PA

R

Rt

y

z

x

p

q

qN

pM

P

Q

t

Fig. 5. Local surface mesh, M(p), and its projection, N(q), on plane P

Consider that triangle t ∈ N(q) (located in plane P ) is the orthogonal
projection of triangle τ ∈ M(p) (located in plane π), see Figure 5. Let tR
and τR be the references triangles defined in planes P and π, respectively.
Suppose that we chose as ideal triangle in π the equilateral one (τI = τE).
Our goal is to find the ideal triangle tI ⊂ P , moving q on P , such that tI
is mapped into an equilateral one, τE ⊂ π. For this purpose, the following
similarity transformation between the matrices S and SI was proved in [5]

S = S−1
E SISE (8)

where S is defined on the plane π as the 2 × 2 weighted Jacobian matrix
of the affine map that transforms the equilateral triangle into the physical
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one, that is, τE
S→ τ , SE is defined on plane P as the equilateral-weighted

Jacobian matrix of the affine map tE
SE→ t and SI is defined on plane P as the

ideal-weighted Jacobian matrix of the affine map tI
SI→ t.

Matrices S may be used, as it is defined in (8) for any triangle τ ∈ M(p), to
construct the objective function associated to M(p) and, then, solve the opti-
mization problem. Nevertheless, this procedure has important disadvantages.
First, the optimization of M(p), working on the true surface, would require
the imposition of the constraint p ∈ Σ. It would complicate the resolution of
the problem because, in many cases, Σ is not defined by a smooth function.
Moreover, when the local mesh M(p) is on a curved surface, each triangle
is sited on a different plane and the objective function, constructed from S,
lacks barriers. It is impossible to define a feasible region in the same way as
it was done at section 3. Indeed, all the positions of the free node, except
those that make det(S) = 0 for any triangle, produce correct triangulations
of M(p). However, there are another unacceptable positions of the free node.

To overcome these difficulties we proposed in [5] to carry out the opti-
mization of M(p) in an indirect way, working on N(q). With this approach
the movement of the free node will be restricted to Hq ⊂ P , which avoids un-
acceptable surface triangulations to be formed. Then, the original smoothing
problem is transformed in a two-dimensional approach on P . The algorithm
to determine the optimal projection of a free node p ∈ Σ onto the curve C is
reduced to the one presented in section 4 for reaching the optimal projection
of q onto Q. If x̄opt is the optimal projection of the free node q onto Q, then
the corresponding position on the surface is given by ȳopt = (x̄opt, f(x̄opt))T ,
where f(x) is the z coordinate of the underlaying surface. If this one is not
known analytically, we take the initial triangulation as reference surface. The
algorithm follows the usual smoothing procedure when the free node is not
projectable on C. The discontinuities of the mesh alignment with the curve
are solved by using the same idea of section 4.3.

In order to prevent a loss of the details of the original geometry when
we are smoothing the mesh, our algorithm evaluates the difference of heights
([∆z]) between the centroid of the triangles of M(p) and the reference sur-
face, every time a new position of the free node is calculated. If this distance
exceeds a threshold, ∆(p), the movement of the node is aborted and the pre-
vious position is stored. This threshold ∆(p) is established attending to the
size of the elements of M(p). That is, the algorithm evaluates the average
distance between the free node and the nodes connected to it, and takes ∆(p)
as percentage of this distance. Other possibility is to fix ∆(p) as a constant
for all local meshes. In the particular case in which we have an explicit rep-
resentation of the surface by a function f(x, y), ∆(p) can be established as a
percentage of the maximum difference of heights between the original surface
and the initial mesh.
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6 Applications

In this section we present an application that shows the satisfactory behav-
ior of the projecting/smoothing technique. In particular, we have applied the
projecting/smoothing technique to the Igea surface triangulation (see Fig-
ure 6) obtained from http://www.cyberware.com/. The mesh contains 67170
triangles and 33587 nodes.

Fig. 6. Original mesh of Igea obtained from http://www.cyberware.com/

Our goal is to obtain a new triangulation (maintaining the initial mesh
topology) after applying the projecting/smoothing procedure to reach the
alignment of the new mesh with the contours of a mask and of a star drawn
on the face of Igea. These curves are defined by the spline piece-wise inter-
polation of a few points that are placed on a front view of Igea. In Figure 7
we show the polylines that connect the fixed points for the definition of the
mask and the star. Moreover, we construct several reference windows to define
surface patches and to evaluate the coordinate transformation from the image
parametric space to the physical one. In order to keep the sharp angles of the
star drawing, we have prescribed 10 points as the extremes of 10 splines. We
propose the following strategy to get our objective.

Initially, we apply the smoothing technique [5] to the whole triangulation.
In this case, the projection plane is chosen in terms of the local mesh to be op-
timized. The resulting mesh, after 4 iterations of our optimization procedure,
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Fig. 7. Point input data for the definition of the curves, approximation of the splines
as polylines and reference windows

is shown in Figure 8. The value of the average mesh quality (measured with
the algebraic quality metric based on the condition number proposed in [8])
increases from 0.794 to 0.913. A more significant data is that average quality
of the worst 100 triangles increases from 0.379 to 0.575. We have fixed ∆(p)
as 10% of average distance between the free node and the nodes connected to
it. More details about this application can be seen in [17].

In order to reduce the computational cost of the alignment step, the pro-
jecting/smoothing process is carried out on the surface patches associated
to the mask and to the star. For this purpose, we select the set of triangles
whose centroids are included in the reference windows of the mask and of
the star. Then, we apply the projecting/smoothing procedure to these two
sets separately. We note that, in the former process, the boundary of each
patch triangulation is fixed. So, we obtain an appropriate connection of the
modified local meshes with the rest of the surface triangulation. These ideas
could be used for a parallel implementation of the simultaneous aligning and
smoothing local technique.

In Figure 9 it is presented a general view of the surface triangulation of
Igea after applying 12 iterations of the aligning and smoothing procedure.
The approximation of the contours by edges of the resulting triangulation is
marked. After the application of our algorithm the values of minimum and
average qualities become 0.100 (same value than in previous meshes) and
0.911, respectively. The average quality of the worst 100 triangles is 0.519.
Therefore, the mesh qualities are similar before and after the application of
the projecting/smoothing technique.
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Fig. 8. Optimized mesh of Igea after 4 iterations of our smoothing procedure

Fig. 9. Aligned and optimized mesh of Igea after 12 iterations of the local project-
ing/smoothing procedure
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Two details of the initial and final meshes (Figures 8 and 9) are shown in
Figures 10(a) and (b), respectively. We represent the same marked edges be-
fore and after the local projecting/smoothing process. We note that it is very
difficult to determine a priori which are the best edges for a suitable approxi-
mation of the contours of the mask and the star. However, the algorithm finds
appropriate nodes (and consequently edges) automatically.

(a)

(b)

Fig. 10. Detail of the initial mesh of Igea with marked edges before projection
(a). The same edges are remarked after the algorithm has projected them onto the
contours of the mask and the star (b)
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7 Concluding Remarks and Future Research

In this paper we have introduced the projecting/smoothing technique which is
able to align a surface triangulation with arbitrary curves without producing,
in general, a significant decrease in the minimum quality of the mesh. Indeed,
the average quality is increased in many cases as the remainder part of the
mesh undergoes a smoothing process.

In present work the curves have been defined by splines whose interpolating
points are fixed on a plane. Applications of this technique can be done in
a straightforward manner, for example, in environmental modeling [16, 18]
for aligning topographic surface meshes to significant contours, as coastlines,
river banks, etc. In addition, this particular curve definition can be applied
on different patches of a more general surface.

Our method for aligning and smoothing of surface triangulations could
be generalized by using a global parametric space (in similar terms as it is
proposed in [7, 20]) which makes the projection on a plane unnecessary. So,
general parametric curves embedded on the surface will be considered. An-
other more ambitious generalization lies in extending the present method to
align a tetrahedral mesh with interior surfaces. This is an open problem. It is
clear that the mesh alignment problem is not always possible to solve. Gen-
erally, the existence of an admissible solution can not be assured. Moreover,
several admissible solutions may exit. Obviously, the existence of solution of
the problem depends on size, quality and topology of the initial mesh and
regularity of the embedded curves or surfaces.
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