
Abstract

The data structures used to model meshes for solving problems by finite element
methods is based on different arrays. In these arrays information is stored related
to, among other components, nodes, edges, faces, tetrahedral and connectivity. These
structures provide optimum results which, in many cases, incur additional program-
ming. In adaptively solving problems, the meshes undergo refinement/derefinement
processes, to improve the numeric solution with each step. These processes produce
new elements and eliminate others, so the arrays should reflect the state of the mesh
in each of these steps. Using traditional language, memory should be pre-assigned at
the outset of the program, so it is only required to estimate the changes taking place
in the mesh. In the same respect, it was necessary to compact the arrays to recover
space from erased elements. With the advent of languages such as C, memory can
be assigned dynamically, resolving most of the problem. However, arrays are costly
to maintain, as they require adapting the mesh treatment to the data model, and not
inversely. The object-oriented program suggests a new focus in implementing data
structures to work with meshes. The classes create data types that may be adjusted
to the needs of each case, allowing each element to be modeled on an independent,
exclusive basis. Inheritance and encapsulation enable us to simplify the programming
tasks and increase code reuse. We propose a data structure based on objects for treat-
ing meshes. Finally, we present an implementation of a local refinement algorithm
based on the subdivision of tetrahedra in 8-sub-tetrahedra and some experiments.

Keywords: 3-D triangulations, unstructured grids, nested meshes, adaptive refine-
ment, object oriented methods, data structures, finite element method.

1



1 Introduction

Most programs currently using the finite element method rely on adapted techniques
based on a committed error estimation with our numerical solution, or at least on
reliable error indicators that specify the elements that should be refined or derefined
in the mesh.

In adaptive mesh generation we may consider two different aspects: domain dis-
cretization in accordance with its geometry or numerical solution. There are many
ways to approach these aspects. We first need to consider whether the meshes are
structured or unstructured. In this respect, the use of unstructured meshes clearly pro-
vides more flexibility when meshing complex geometries using an optimum number
of nodes. In this case, the classic methods of obtaining three-dimensional triangula-
tions is based mainly on advancing front algorithms [1] or in those based on Delaunay
triangulation [2, 3]. Once the domain geometry has been discretized, the mesh should
be adapted to the specific numerical solution. This process involves the introduction
(refinement) or elimination (derefinement) of nodes in the current mesh. The changes
may alter the current mesh locally or globally, depending on the method of triangu-
lation chosen. Different refinement strategies have been developed for 2-D triangula-
tions, and they have been generalized to 3-D. If we choose a refinement that affects
the current mesh locally, another question is raised: nested or unnested meshes? In
this case the answer is not clear. We may obtain families of nested mesh sequences in
a minimal CPU time. Furthermore, the multigrid method can be more easily applied
to solve the equations system associated with the problem. We may also automati-
cally control the smoothness and degeneration of the mesh, as well as maintaining the
defined surfaces in the domain, according to the characteristics of the initial mesh. If
the domain has a complex geometry, a good way to proceed involves obtaining the
initial mesh with an unstructured mesh generator and, subsequently, applying a nested
local mesh refinement and derefinement technique using an error indicator appropriate
to the problem. If we attempt to solve a developing problem, we may automatically
approximate any initial solution defined in the domain. With the refinement and dere-
finement technique, we obtain optimum piecewise interpolation capable of approxi-
mating this solution with desired precision. In general, this technique can be applied
to any function defined in the domain discretely or analytically.

With these ideas, techniques were developed previously which were adaptable to
2-D and obtained good results in different stationary and evolutive problems, see for
example [4, 5, 6]. In these studies Rivara’s 4-T local refinement algorithm was used;
all the triangles must be refined, bearing in mind the error indicator, they are divided
into four sub-triangles using a new node in the centers of its sides and bringing to-
gether the node introduced in the biggest side with the opposing vertex and the other
two new nodes. Choosing the particular refinement algorithm is very important, as
the derefinement algorithm may be understood as the inverse of the refinement algo-
rithm. Rivara’s 4-T refinement algorithm contains good properties in terms of mesh
smoothness and degeneration. In addition, the number of possibilities that appear in
the relation between a father element and sons is less than with other refinement al-

2



gorithms in 2-D, after ensuring the conformity of the mesh. Thus, it would be more
complicated to develop a derefinement algorithm, coupled with the local refinement
algorithm as proposed in [7]; all the triangles that must be refined, maintaining the
error indicator, they are divided into four subtriangles by introducing a new node in
the centers of the sides and joining them to each other.

In 3-D, we have a different problem. Paradoxically, the extension of an adaptive
algorithm that may be simpler than another in 2-D, may not be simpler in 3-D. Thus,
in the refinement algorithms developed in 3-D we note that they are based on the
tetrahedral bisection [8, 9, 10] and those that use the 8-subtetrahedral subdivision
[11, 12, 13]. The algorithm developed in [10] may be understood as the generalization
to 3-D of Rivara’s 4-T algorithm, which is itself based on the bisection of the triangle
by its largest side. The problem in this extension to 3-D is the increased number
of possible cases in which the tetrahedron may be divided, maintaining the possible
differences of the 4-T divisions in their four faces, during the process of conformity
of the mesh. However, the algorithms analyzed in [11, 12, 13], which themselves
generalize to 3-D the partition into four sub-triangles as proposed in [7], are more
simple due to the number of possible partitions in a tetrahedron is much less than
the case of the generalization of the 4-T algorithm. Furthermore, as mesh quality is
ensured in all these cases, we have chosen to implement a version of the algorithm
which uses the subdivision in 8-subtetrahedra. This algorithm will be considered in
section 3 of this paper and section 4 is devoted to the its implementation.

In section 5, applications of the refinement algorithm on three-dimensional meshes,
generated by a version of Delaunay triangulation method presented in [3], are carried
out. This triangulation method is widely accepted due to the quality of the meshes
produced. However, it presents serious problems, particularly in 3-D, because of the
rounding errors which occur in the computer and which are exacerbated by problems
inherent in this method of triangulation itself. In [3] a procedure is presented for
constructing a three dimensional triangulation similar to Delaunay technique which
solves these problems. As Delaunay triangulation is constructed on a set of points
located on the boundary and inside the domain, it may be that the resulting mesh
does not contain all the main edges and faces defined in the boundary or interior
domain. This aspect constitutes an open problem and has been studied by several
authors, although the solutions offered are complex. The size of the mesh considered
will depend on the complexity of the problem and quality of the solution sought.
When the meshes are fine we are faced with two problems: on the one hand, the space
required to store the mesh; on the other, the time needed to process the information.

These problems are generally dealt with in everyday use. However large the data
stored, more swift the process, whilst for greater economy of information, the pro-
cessing will be more complex. One possible solution that satisfies these requirements
would entail an appropriate organization of the information, thus minimizing the stor-
age space and also the information processing.

The data structures traditionally used in mesh problems are based on the different
arrays that contain mesh information: nodes, edges, faces, tetrahedra, connectivity,

3



genealogy, etc. Generally, in languages such as FORTRAN it is important to oversize
these arrays to anticipate mesh changes. When refinements are necessary, the increase
in the number of elements must be estimated. When derefinements are carried out, the
space of the eliminated elements should be recovered by compacting the arrays.

All this memory work may lead to significant time wastage in programming, time
better spent on other tasks. Recovering space also takes time, depending on program-
ming efficiency.

Some problems are solved with the development of languages such as C. With C
memory may be used dynamically: when memory is needed, it is obtained from the
system, and it may be returned when it is not needed and thus used again. The recovery
and compacting of memory is left to the operating system, so the programming may
be concentrated on other aspects of the problem.

Structures are another advantage of C. They allow for a clearer organization of
information, thus facilitating the programming. In the structures, information for each
element is grouped, independently of the type of data being treated. This does not
save used memory space for storage, but does provide more clarity in the programs.

The pointers are another tool. In C objects can be referenced indirectly using di-
rection finders to the positions the memory takes up. We will see that this provides
considerable savings when passing information between modules and increases the
efficiency of information organization.

Considerable progress has been made with C++ that extends the concept of struc-
ture to that of class. A class contains all the operations which can be carried out with
it and also element information. In other words, a type of data based on the element is
established.

Furthermore, the program aimed at objects introduces the concept of inheritance.
A class may be seen as an heir to another, so that it will possess all the properties of its
predecessor, plus the new ones that are its own. This permits us to develop hierarchies
of classes, and continue creating increasingly complex modules from more simple
ones.

Another interesting concept is encapsulation. In each class we may define what
parts are accessible to the outside and which are restricted.

With these characteristics a class may be considered a black box which provides
interfaces with the remaining modules, whilst its inner workings are absolutely private.
The number of programming errors is reduced, as only class-authorized operations
may be carried out. Meanwhile code reuse increases.

2 Hierarchy of Classes

Based on the classes and C++, a hierarchy has been defined for modelling the differ-
ent elements that make up a mesh, and gather together the characteristics of a refine-
ment/derefinement process when solving adaptive problems. The general structure

4



Point Element

Node Edge Face

Vector

VecIter

Auxiliary Classes

Mesh

Problem

Solution Oriented Classes

MyLower

Tetrahedron

Divisible

MyUpper

Figure 1: Hierarchy of classes

may be seen in figure 1.

We begin by providing a detailed description of the auxiliary classes, used by the
rest of the modules for their internal tasks. Then we will consider the classes used for
modeling the mesh elements. Finally we will present the classes oriented at solving
problems.

a) Auxiliary classes. A so-called Vector class has been defined, which is an ar-
ray with certain peculiarities. The most striking is that it does not contain duplicate
elements and its elements are always pointers or references to objects. There are op-
erations programmed for addition and extraction of elements, addition of contents of
one array over another, and accesses to the array elements by index.

Dynamic memory is also carried out in this class, by borrowing and returning to the
system. The rest of the classes use this class to maintain references to other objects.

From Vector class we can also define the VecIter class. It inherits all the Vector
characteristics, and introduces operations that allow us to carry out revisions of the
array elements, as well as simpler recovery methods.

b) Point. In this class the basic properties are defined of a point in space and some
operations that may be carried out with it. It contains the coordinates (x,y,z) of the
point, and the operations for addition and subtraction of coordinates, multiplication
by a constant and the distance between two points.

c) Element. This will be the basic class for all the elements of the mesh. It is very
simple, only containing a single property called Reference, used in all the objects that
make up the mesh.

d) Divisible. This class is inherited from Element, and is the antecedent to all those
that model objects susceptible to be divided. It contains genealogical references of the
elements, just as a parent is the one and the sons are the elements into which the being
is divided. In the previously marked processed to mesh element division, this class
ensures elements are not marked twice erroneously, and provides information on the

5



current state of each one.

e) MyUpper. For each given element, this class maintains the object references that
compose it, for example, for a node it indicates the edges contained.

f) MyLower. Contrary to the previous example, the object references that make up
a given are stored.

g) Node. This class is inherited from Point, Element and MyUpper. It contains the
data necessary for modeling a mesh node. At any time, and through the data contained
in the parent classes it is possible to access the rest of the elements contained in a
certain node.

h) Edge. This class is inherited from MyLower, Divisible and MyUpper. As with
the nodes, references are stored as to which elements (faces) belong, in addition to
references to the nodes that form it. The reference of the possible node that divides the
edge is also stored in a refinement process. Another implemented procedure returns
the length of the edge.

i) Face. This has the same inheritance as the edge. References are stored to possible
interior edges which may result from a process of division of the face.

j) Tetrahedron. This class is inherited from MyLower and Divisible. It contains
references to the faces that form it. Furthermore some indicators are stored for tetra-
hedra and dependents of the problem under consideration, as well as whether they are
refined or not and the initial value of a solution in that element.

k) Classes oriented to solutions. Two classes have been defined, directly related to
solving problems through refinement and derefinement. One is the Mesh class, which
contains a list of references to node, edges, faces and tetrahedra, all related to each
other, that form the mesh. In this module a refinement algorithm has been used based
on the subdivision of the tetrahedra in eight sub-tetrahedra. To carry out this refine-
ment different processes have been programmed to carry out the conformity of the
mesh. Subsequently the algorithm will be described in detail. The other class is the
Problem class that contains the procedures of information exchange with other mod-
ules for problem solving. These procedures include reading and writing in index files
with distinct formats and generating mesh information in different data structures used
by other programs. In the Problem class there are lists of references to node, edges,
faces and tetrahedra. These lists are not merely for reference purposes, but objects
in their own right. From these lists an object is formed of the mesh class copying
references, so that the objects are only found once in memory, but may be referenced
from many elements. The data transferences which are carried out between modules
are references, that is, pointers, thus considerable time and memory consumption are
saved. Refinement and derefinement processes are controlled in this class, as well as
the transfer of information from problem resolution to the mesh in order to carry out
a new refinement.

6



3 Refinement Algorithm

We propose a refinement algorithm based on the 8-subtetrahedron subdivision devel-
oped in [13]. Consider an initial triangulation τ1 of the domain given by a set of n1

tetrahedra t11, t12, ..., t
1
n1

. Our goal is to build a sequence of m levels of nested meshes
T = {τ1 < τ2 < ... < τm}, such that the level τj+1 is obtained from a local refinement
of the previous level τj . The error indicator εj

i will be associated to the element tj

i ∈ τj .
Once the error indicator εj

i is computed, such element must be refined if εj

i ≥ θεj
max,

being θ ∈ [0, 1] the refinement parameter and εj
max, the maximal value of the error

indicators of the elements of τj . From a constructive point of view, initially we shall
obtain τ2 from the initial mesh τ1, attending to the following considerations:

a) 8-subtetrahedron subdivision. A tetrahedron t1i ∈ τ1 is called of type I if ε1
i ≥

γε1
max. Later, this set of tetrahedra will be subdivided into 8 subtetrahedra as Figure

2(a) shows; 6 new nodes are introduced in the middle point of its edges and each one
of its faces are subdivided into four subtriangles following the division proposed by
Bank [7]. Thus, four subtetrahedra are determinated from the four vertices of t1

i and
the new edges. The other four subtetrahedra are obtained by joining the two nearest
opposite vertices of the octohedron which result inside t1i . This simple strategy is
that proposed in [13] or in [11], in opposite to others based on afin transformations
to a reference tetrahedron, as that analysed in [12] which ensures the quality of the
resulting tetrahedra. However, similar results were obtained by Bornemann et al. [11]
with both strategies in their numerical experiments. On the other hand, for Lohner
and Baum [13], this choice produces the lowest number of distorted tetrahedra in the
refined mesh. Evidently, the best of the three existing options for the subdivision of the
inner octohedron may be determined by analysing the quality of its four subtetrahedra,
but this would augment the computational cost of the algorithm.

Once the type I tetrahedral subdivision is defined, we can find neighbouring tetra-
hedra which may have 6, 5, ..., 1 or 0 new nodes introduced in their edges that must be
taken into account in order to ensure the mesh conformity. In the following we analyse
each one of these cases. We must remark that in this process we only mark the edges
of the tetrahedra of τ1 in which a new node has been introduced. The corresponding
tetrahedron is classified depending on the number of marked edges. In other words,
until the conformity of τ2 is not ensured by marking edges, this new mesh will not be
defined.

b) Tetrahedra with 6 new nodes. Those tetrahedra that have marked their 6 edges
for conformity reason, are included in the set of type I tetrahedra.

c) Tetrahedra with 5 new nodes. Those tetrahedra with 5 marked edges are also
included in the set of type I tetrahedra. Previously, the edge without new node must
be marked.

d) Tetrahedra with 4 new nodes. In this case, we mark the two free edges and it is
considered as type I.

Proceeding as in (b), (c) and (d), we improve the mesh quality and simplify the al-
gorithm considerably due to the global refinement defined in (a) by the error indicator.

7



One may think that this procedure can augment the refined region, but we must take
into account that only 1 or 2 new nodes are introduced from a total of 6. Note that this
proportion is less or equal to that arising in the 2-D refinement with the 4-T Rivara
algorithm, in which the probability of finding a new node introduced in the longest
edge of a triangle is 1/3. This fact is accentuated in the proposed algorithm as its
generalization in 3-D.

e) Tetrahedra with 3 new nodes. In this case, we must distinguish two situations:

e.1) If the 3 marked edges are not located on the same face, then we mark the
others and the tetrahedron is introduced in the set of type I tetrahedra. Here, we can
make the previous consideration too, if we compare this step with other algorithms
based on the bisection by the longer edge.

In the following cases, we shall not mark any edge, i.e., any new node will not be
introduced in a tetrahedron for conformity. We shall subdivide them creating subte-
trahedra which will be called transient subtetrahedra.

e.2) If the 3 marked edges are located on the same face of the tetrahedron, then
4 transient subtetrahedra are created as Figure 2(b) shows. New edges are created by
connecting the 3 new nodes one another and these with the vertex opposite to the face
containing them. The tetrahedra of τ1 with these characteristics will be inserted in the
set of type II tetrahedra.

f) Tetrahedra with 2 new nodes. Also here, we shall distinguish two situations:

f.1) If the two marked edges are not located on the same face, then 4 transient
subtetrahedra will be constructed from the edges conecting both new nodes and these
with the vertices opposite to the two faces which contain each one of them. This
tetrahedra are called type III.a; see Figure 2(c).

f.2) If the two marked edges are located on the same face, then 3 transient sub-
tetrahedra are generated as Figure 2(d) shows. The face determinated by both marked
edges is divided into 3 subtriangles, connecting the new node located in the longest
edge with the vertex opposite and with the another new node, such that these three
subtriangles and the vertex opposite to the face which contains them define three new
subtetrahedra. We remark that from the two possible choices, the longest marked edge
is fixed as reference in order to take advantage in some cases of the properties of the
bisection by the longest edge. These tetrahedra are called type III.b.

g) Tetrahedra with 1 new node. Two transient subtetrahedra will be created as we
can see in Figure 1(e). The new node is connected to the other two which are not
located in the marked edge. This set of tetrahedra is called type IV.

h) Tetrahedra without new node. These tetrahedra of τ1 are not divided and they
will be inherit by the refined mesh τ2. We call them type V tetrahedra; see Figure 2(f).

This classification process of the tetrahedra of τ1 is carried out by marking their
edges simply. The mesh conformity is ensured in a local level analysing the neigh-
bourhood between the tetrahedra which contain a marked edge by an expansion pro-
cess that starts in the type I tetrahedra of paragraph (a). Thus, when the run along this
set of type I tetrahedra is over, the resulting mesh is conformal and locally refined.

8



(a) Type I (b) Type II

(c) Type III.a (d) Type III.b

(e) Type IV (f) Type V

Figure 2: Subdivision classification of a tetrahedron in function of the new nodes
(white circles).

9



Moreover, this is a low computational cost process, since the local expansion stops
when we find tetrahedra whose edges have not to be marked. Implementations details
will be discussed on next section.

Generally, when we want to refine the level τj in which there already exist transient
tetrahedra, we shall perform it in the same way as from τ1 to τ2, except for the follow-
ing variation: if an edge of any transient tetrahedron must be marked, due to the error
indicator or even to conformity reasons, then all the transient tetrahedra are eliminated
from their parent (deleting process), all the parent edges are marked and this tetrahe-
dron is introduced into the set of type I tetrahedra. We must remark that it will be only
necessary to define a variable which determines if a tetrahedron is transient or not.

4 Algorithm Implementation

Algorithm development will contain, basically, two sequential revisions of the mesh.
In the first, transient tetrahedra are studied and in the second marked non-transient
tetrahedra.

In the first step two types of tetrahedra will be selected:

• the transients marked for refinement

• the transients with a neighboring tetrahedron by any of its edges which are refin-
able and non-transient (if it were transient the previous point would be selected)

In both cases, the selected parent tetrahedron will be called Type I to proceed to its
division. The first point is based on the definition of the algorithm. In the second
case there is an anticipation of what the algorithm is going to produce. As there is a
marked, non-transient neighbor, it will be Type I, so all its edges should be marked,
and at least one of these marks should be on the tetrahedron under consideration,
which is transient, so it should be divided by conformity, which is not allowed, but
rather it will be the father of the divided. This is what is selected in the second case.

Once the tetrahedra are marked, an expansion to conform the mesh is generated.
A recursive process takes place, in which each step is studied, first, as to whether the
tetrahedron is Type I, or whether it should be converted to Type I. If this is the case,
for each edge which is still unmarked, a list of neighboring tetrahedra is created by
the edge, marked edge, and for each tetrahedron a similar process is carried out. The
following is a pseudo-code:

Main Process
for every tetrahedron marked to be refined do
Study (tetrahedron)

Study(Tetrahedron t)
Drop_Inner_Division(t)

10



if t have 6 marks return;
if t is marked to be refined then

Mark_All_Edges(t)
else if t have 4 or 5 marks

Mark_All_Edges(t)
else if t have 3 marks not in the same face then

Mark_All_Edges(t)

Mark_All_Edges(Tetrahedron t)
for every edge of t do

if edge is not marked then
Mark_Edge(edge)

Mark_Edge(Edge a)
for every tetrahedron of a do

Drop_Inner_Division(tetrahedron)
Make one mark in a
for every tetrahedra of a do

Study(tetrahedron)

Drop_Inner_Division(Tetrahedron t)
if t is divided into 8 tetrahedra or not divided then

return
Remove inner tetrahedra of t
for every face of t do

Drop_Face_Division(face)

Drop_Face_Division(Face f)
if f is divided into 4 faces or not divided then

return
For every tetrahedron of f do

Drop_Inner_Division(tetrahedron)
Remove division of f

As we can see, there are two stops criteria: the first is the Study process, when no
marks should be made in a tetrahedron because it is adjusted to one of the types spec-
ified in the algorithm. The second is carried out after studying all the edges of a tetra-
hedron in the Mark All Edges process. The expansion process involves eliminating
transients elements. Each time we study an element, and this is divided, its subdivi-
sion is eliminated, and the all the divisions of those neighboring the faces, since by
carrying out a new marking will lead to different internal partitions to those already
existing. The elimination process takes place with another revision of the tetrahedron
under study toward all its neighbors, stopping when we have non-divided tetrahedra,
or divided permanently in 8 sub-tetrahedra.

11



Once the expansion process is completed, we have a conforming mesh, and can
begin to partition marked elements. The mesh tetrahedra are revised, the division of
their edges and faces is carried out and new elements joined.

The second mesh revision will only study the tetrahedra that should be refined due
to the numerical solution of the problem. All these tetrahedra will be non-transient,
as marked transient ones have already been eliminated. This revision is similar to the
process of the transients ones: tetrahedra are studied and marked, then divided and
joined. The difference is that there it is no necessary to eliminate internal tetrahedral
division (as we are not working with the parent of any element).

The algorithm and partition processes are programmed in the Mesh class. The
objects created in the original mesh belong to the Problem class, while in each step
of the refinement process references to the original objects are used. When an object
is divided by Mesh class, its reference is eliminated, but not the object itself which
does not belong to this class. The objects created are internal to others, they belong
to the parent, and pass their references on to the Mesh class. As we can see, this class
works by inserting and erasing references to objects in its lists, but it never creates
or destroys any object, since that would be utilized in a subsequent step. When a
satisfactory solution is obtained, the mesh class will be responsible for eliminating all
the objects and returning memory to the system.

5 Numerical Experiments

The first experiement is related to a mesh which consists of 5072 tetrahedra and 1140
nodes. Here the refinement criteria is based on the distance from the gravity center of
the tetrahedron to a corner of the domain.

(a) τ1 (b) τ2 (c) τ3

Figure 3: First experiment of the refinement algorithm; (a) initial mesh, (b) and (c)
resulting meshes after 1 and 2 refinement steps, respectively.

12



(a) τ1

(b) τ2

(c) τ3

Figure 4: Second experiment; (a) initial mesh, (b) and (c) refined meshes.

13



In figure 3 we present the resulting meshes after two steps of the refinement al-
gorithm. The first one contains 5386 tetrahedral and 1201 nodes, while the second
refinement yields a mesh with 6270 tetrahedral and 1433 nodes.

Figure 4 represents another mesh refined using our algorithm. We have began with
a mesh of 5272 tetrahedra and 1229 nodes, obtained by the mesh generator developed
by the authors in [14]; see figure 4(a). It has been refined according to an error indica-
tor related to a wind field modelling using the finite element method. Two refinements
has been computed. The first refined mesh, which contains 5408 tetrahedra and 1256
nodes, is shown in figure 4(b). The last one corresponds to figure 4(c) with 6696 tetra-
hedra and 1520 nodes. In this figure, only the lower surface and two vertical walls
have been drawn in order to observe the local refinement around the mountain.

6 Conclusions

In this paper, some aspects of a 3-D mesh refinement algorithm have been presented.
The class hierarchy is a robust tool for implementing the structure of meshes. New
properties for elements were directly added when they were needed. Due to program-
ming requirements, we consider from simpler characteristics to more complex ones.
The implementation of the algorithm using the class hierarchy has reached the pro-
posal aims: low computational cost and minimal memory requirements.

On the other hand, the refinement algorithm has interesting properties about quality
and degeneration of meshes after many refinement steps. It has been properly applied
in 3D-meshes generated by the version of Delaunay trangulation proposed in [3].

Finally, in future works we will develope the derefinement algorithm associated to
the refinement one presented in this paper.

Acknowledgements

This work has been partially supported by the MCYT of Spanish Government and
FEDER, grant contract REN2001-0925-C03-02/CLI. The authors acknowledge Dr.
David Shea for editorial assistence.

References

[1] R. Lohner, P. Parikh, “Three-dimensional grid generation by advancing front
method”, Int. J. Num. Meth. Fluids, 8, 1135-1149, 1988.

[2] P.L. George, F. Hecht, E. Saltel, “Automatic mesh generation with specified
boundary”, Comp. Meth in Appl. Mech and Eng., 92, 269-288, 1991.

[3] J.M. Escobar, R. Montenegro, “Several aspects of three-dimensional delaunay
triangulation”, Advances in Engineering Software, 27(1/2), 27-39, 1996.

14



[4] L. Ferragut, R. Montenegro, A. Plaza, “Efficient refinement/derefinement algo-
rithm of nested meshes to solve evolution problems”, Comm. Num. Meth. Eng.,
10, 403-412, 1994.

[5] R. Montenegro, A. Plaza, L. Ferragut, I. Asensio, Application of a nonlinear evo-
lution model to fire propagation, Nonlinear Analysis, Th., Meth.& App., 30(5),
2873-2882, 1997.

[6] G. Winter, G. Montero, L. Ferragut y R. Montenegro “Adaptative strategies us-
ing standard and mixed finite elements for wind field adjustment”, Solar Energy,
54, 1, 49-56, 1992.

[7] R.E. Bank, A.H. Sherman, A. Weiser, “Refinement algorithms and data struc-
tures for regular local mesh refinement”, in Scientific Computing IMACS, Am-
sterdam, North-Holland, 3-17, 1983.

[8] D.N. Arnold, A. Mukherjee, L. Pouly, “Locally adapted tetrahedral meshes us-
ing bisection”, SIAM J. Sci. Comput., 22(2), 431-448, 2000.

[9] M.C. Rivara, C. Levin, “A 3-d refinement algorithm suitable for adaptive multi-
grid techniques”, J. Comm. Appl. Numer. Meth., 8, 281-290, 1992.

[10] A. Plaza, G.F. Carey, “Local refinement of simplicial grids based on the skele-
ton”, Appl. Numer. Math., 32, 195-218, 2000.

[11] F. Bornemann, B. Erdmann, R. Kornhuber, “Adaptive multilevel methods in
three space dimensions”, Int. J. Numer. Meth. Eng., 36, 3187-3203, 1993.

[12] A. Liu, B. Joe, “Quality local refinement of tetrahedral meshes based on 8-
subtetrahedron subdivision”, Mathematics of Comput., 65(215), 1183-1200,
1996.

[13] R. Lohner, J.D. Baum, “Adaptive h-refinement on 3D unstructured grids for
transient problems”, Int. J. Num. Meth. Fluids, 14, 1407-1419, 1992.

[14] R. Montenegro, G. Montero, J.M. Escobar, E. Rodriguez, J.M. Gonzalez-Yuste,
“Tetrahedral Mesh Generation for Environmental Problems over Complex Ter-
rains”, Lecture Notes in Computer Science, Springer Verlag, Berlin Heidelberg
New York,335-344, 2002.

15


