
Abstract

A complex stochastic Boolean system (CSBS) depends on an arbitrary number n
of random Boolean variables. The behavior of a CSBS is determined by the order-

ing between the occurrence probabilities Pr {u} of the 2n associated binary strings

u ∈ {0, 1}n
. In this context, a binary n-tuple is called top (bottom, respectively) if

its occurrence probability is always among the 2n−1 largest (smallest, respectively)

ones. In this paper we generalize these n-tuples by defining and studying the k-top

and k-bottom binary n-tuples, i.e., those whose occurrence probabilities are always

among the k largest (smallest, respectively) ones (1 ≤ k ≤ 2n). These results can

be applied to the reliability analysis of many different technical systems, arising from

diverse fields of Engineering.

Keywords: complex stochastic Boolean systems, reliability engineering, complemen-

tary binary n-tuples, intrinsic order, intrinsic order graph, top binary n-tuples, bottom

binary n-tuples, generalized top binary n-tuples, generalized bottom binary n-tuples.

1 Introduction

In this paper, we analyze the behavior of those complex systems depending on an

arbitrary number n of random Boolean variables. That is, the n basic variables of the

system are assumed to be stochastic and they only take two possible values: either 0

or 1. We call such a system a complex stochastic Boolean system (CSBS). Each one

of the 2n possible elementary states associated to a CSBS is given by a binary n-tuple

u = (u1, . . . , un) ∈ {0, 1}n
of 0s and 1s, and it has its own occurrence probability

Pr {(u1, . . . , un)}.

In probability theory and statistics, a Bernoulli variable is a discrete random vari-

able which takes value 1 with (success) probability p and value 0 with (failure) prob-
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ability 1 − p, and p is called the parameter of the Bernoulli distribution (0 < p < 1).
Hence, a CSBS on n variables x1, . . . , xn can be modeled by the n-dimensional

Bernoulli distribution with parameters p1, . . . , pn defined by

Pr {xi = 1} = pi, Pr {xi = 0} = 1 − pi,

Throughout this paper we assume that the n Bernoulli variables xi are statistically

independent, so that the occurrence probability of a given binary string u of length n
can be easily computed as

Pr {u} =
n

∏

i=1

pui

i (1 − pi)
1−ui for all u ∈ {0, 1}n , (1)

that is, Pr {u} is the product of factors pi if ui = 1, 1 − pi if ui = 0 [1].

Example 1. Let n = 4, u = (0, 1, 0, 1) and p1 = 0.1, p2 = 0.2, p3 = 0.3, p4 = 0.4.

Using Equation (1) we have

Pr {(0, 1, 0, 1)} = (1 − p1) p2 (1 − p3) p4 = 0.0504.

The behavior of a CSBS is determined by the ordering between the current values

of the 2n associated binary n-tuple probabilities Pr {u}. Computing all these 2n prob-

abilities –using Equation (1)– and ordering them in decreasing or increasing order of

their values is only possible in practice when the number n of basic variables is small.

For large values of n, it is necessary to use alternative procedures to compare the bi-

nary string probabilities. For this purpose, in in [2, 3] we have established a simple

positional criterion that allows one to compare two given elementary state probabili-

ties, Pr {u} , Pr {v}, without computing them, simply looking at the positions of the

0s and 1s in the n-tuples u, v. We have called it the intrinsic order criterion, because

it is independent of the basic probabilities pi and it is exclusively determined by the

positions of the 0s and 1s in the binary strings.

The only two required assumptions for applying the intrinsic order criterion to

a given CSBS are the following: the n marginal Bernoulli variables of the system

x1, . . . , xn must be mutually independent and the n corresponding Bernoulli parame-

ters p1, . . . , pn must satisfy the condition

0 < p1 ≤ p2 ≤ . . . ≤ pn ≤ 1/2, pi = Pr {xi = 1} (1 ≤ i ≤ n) . (2)

Although the hypothesis (2) is essential for our theoretical results (indeed it is the basic

assumption of our model), fortunately it is not restrictive for practical applications (as

we shall explain in the next Section). Among the many different topics concerning

the behavior of CSBSs that can be derived from the intrinsic order criterion, we focus

or attention on the top, bottom and jumping binary n-tuples, defined in [4]. A binary

n-tuple is called top (bottom, respectively) if its occurrence probability is “always”

among the 2n−1 largest (smallest, respectively) ones. Here and from now on, the

term “always” means for any basic probabilities p1, . . . , pn satisfying Equation (2). A

binary n-tuple is called jumping if it is neither top, nor bottom.
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In this context, the aim of this paper is to generalize the top and bottom binary

n-tuples by studying the k-top and k-bottom, respectively, binary n-tuples, defined as

those binary n-tuples whose occurrence probabilities are always among the k largest

or among the k smallest, respectively, ones (1 ≤ k ≤ 2n). This new approach has

both theoretical and practical interest for the study of CSBSs and, in particular, for

the reliability analysis of many different technical systems arising from diverse ar-

eas of Engineering. More precisely, the failure probability of many technical systems

described by stochastic Boolean functions can be estimated by selecting system ele-

mentary states with large occurrence probabilities [3, 5]. This can be performed by

using the intrinsic order model [3].

For this purpose, this paper has been organized as follows. In Section 2, we present

some background on the intrinsic order relation, the intrinsic order graph and on the

top, bottom and jumping binary n-tuples, enabling non-specialists to follow the paper

without difficulty. Section 3 is devoted to the study of the k-top and k-bottom binary

n-tuples. Finally, in Section 4 we present our conclusions.

2 Background in Intrinsic Order

2.1 Intrinsic Order on {0, 1}n

Fist, we must set the following notations. Throughout this paper, the decimal number-

ing of a binary string u is denoted by the symbol u(10. We use this symbol, instead of

the more usual notation u10, to avoid confusions with the 10-th component u10 of the

binary string u. In the following, we use indistinctly the binary representation or the

decimal representation to denote the elements of {0, 1}n
, and we represent the con-

version between these two numbers systems by the symbol “≡”. Also, the Hamming

weight of a binary n-tuple u (i.e., the number of 1-bits in u) will be denoted, as usual

by wH (u), i.e.,

(u1, . . . , un) ≡ u(10 =
n

∑

i=1

2n−iui, wH (u) =
n

∑

i=1

ui,

e.g., for n = 5 we have

(1, 0, 1, 1, 1) ≡ 20 + 21 + 22 + 24 = 23, wH (1, 0, 1, 1, 1) = 4.

According to Equation (1), the ordering between two given binary string proba-

bilities Pr (u) and Pr (v) depends, in general, on the parameters pi of the Bernoulli

distribution, as the following simple example shows.

Example 2. Let n = 3, u = (0, 1, 1) and v = (1, 0, 0). Using Equation (1) we have

p1 = 0.1, p2 = 0.2, p3 = 0.3 : Pr {(0, 1, 1)} = 0.054 < Pr {(1, 0, 0)} = 0.056,

p1 = 0.2, p2 = 0.3, p3 = 0.4 : Pr {(0, 1, 1)} = 0.096 > Pr {(1, 0, 0)} = 0.084.
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As mentioned in Section 1, to overcome the exponential complexity inherent to

the task of computing and sorting the 2n binary string probabilities (associated to a

CSBS with n Boolean variables), we have introduced the following intrinsic order

criterion [2, 3], denoted from now on by the acronym IOC.

Theorem 1 (The intrinsic order theorem) Let n ≥ 1. Let x1, . . . , xn be n mutually

independent Bernoulli variables whose parameters pi = Pr {xi = 1} satisfy

0 < p1 ≤ p2 ≤ . . . ≤ pn ≤ 0.5. (3)

Then the probability of the n-tuple v = (v1, . . . , vn) ∈ {0, 1}n
is intrinsically less than

or equal to the probability of the n-tuple u = (u1, . . . , un) ∈ {0, 1}n (that is, for all

set {pi}
n

i=1 satisfying (3)) if and only if the matrix

Mu
v :=

(

u1 . . . un

v1 . . . vn

)

either has no
(

1
0

)

columns, or for each
(

1
0

)

column in Mu
v there exists (at least) one

corresponding preceding
(

0
1

)

column (IOC).

Remark 1. In the following, we assume that the parameters pi always satisfy condition

(3). Note that this hypothesis is not restrictive for practical applications because, if for

some i : pi > 1
2
, then we only need to consider the variable xi = 1− xi, instead of xi.

Next, we order the n Bernoulli variables by increasing order of their probabilities.

Remark 2. The
(

0
1

)

column preceding to each
(

1
0

)

column is not required to be neces-

sarily placed at the immediately previous position, but just at previous position.

Remark 3. The term corresponding, used in Theorem 1, has the following meaning:

For each two
(

1
0

)

columns in matrix Mu
v , there must exist (at least) two different

(

0
1

)

columns preceding to each other. In other words: For each
(

1
0

)

column in matrix

Mu
v , the number of preceding

(

0
1

)

columns must be strictly greater than the number of

preceding
(

1
0

)

columns.

The matrix condition IOC, stated by Theorem 1, is called the intrinsic order cri-

terion, because it is independent of the basic probabilities pi and it only depends on

the relative positions of the 0s and 1s in the binary n-tuples u, v. Theorem 1 naturally

leads to the following partial order relation on the set {0, 1}n
[2, 3]. The so-called

intrinsic order will be denoted by “�”, and we shall write u � v (u � v) to indicate

that u is intrinsically greater (less) than or equal to v.

Definition 1 For all u, v ∈ {0, 1}n

v � u iff Pr {v} ≤ Pr {u} for all set {pi}
n

i=1 s.t. (3) iff Mu
v satisfies IOC.

From now on, the partially ordered set (poset, for short) ({0, 1}n ,�) will be de-

noted by In.
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Example 3. Let n = 3. Neither 3 ≡ (0, 1, 1) � 4 ≡ (1, 0, 0), nor 4 ≡ (1, 0, 0) � 3 ≡
(0, 1, 1) because the matrices

(

1 0 0
0 1 1

)

and

(

0 1 1
1 0 0

)

do not satisfy IOC (Remark 3). Therefore, (0, 1, 1) and (1, 0, 0) are incomparable by

intrinsic order, i.e., the ordering between Pr { (0, 1, 1)} and Pr { (1, 0, 0)} depends on

the basic probabilities pi, as Example 2 has shown.

Example 4. Let n = 5. Then 24 ≡ (1, 1, 0, 0, 0) � 5 ≡ (0, 0, 1, 0, 1) because

(

0 0 1 0 1
1 1 0 0 0

)

satisfies IOC (Remark 2). Therefore,

Pr {(1, 1, 0, 0, 0)} ≤ Pr {(0, 0, 1, 0, 1)} , for all 0 < p1 ≤ . . . ≤ p5 ≤ 0.5.

Example 5. For all n ≥ 1, the binary n-tuples

(

0,
n

.̂ . ., 0
)

≡ 0 and
(

1,
n

.̂ . ., 1
)

≡ 2n − 1

are the maximum and minimum elements, respectively, in the poset In. Indeed, both

matrices
(

0 . . . 0
u1 . . . un

)

and

(

u1 . . . un

1 . . . 1

)

satisfy the intrinsic order criterion, since they have no
(

1
0

)

columns. Hence, using

Definition 1, we get

(

1,
n

.̂ . ., 1
)

� (u1, . . . , un) �
(

0,
n

.̂ . ., 0
)

, for all (u1, . . . , un) ∈ {0, 1}n .

To finish this subsection, we must recall the two following necessary (but not suf-

ficient) conditions for intrinsic order (see [2] for the proof).

Corollary 1 The intrinsic order respect both, the the decimal numbering and the

Hamming weight. More precisely, for all u, v ∈ {0, 1}n

u � v ⇒ u(10 ≤ v(10 and wH (u) ≤ wH (v) .

2.2 The Intrinsic Order Graph

Now, we present the graphical representation of the poset In. The usual representation

of a poset is its Hasse diagram (see, e.g., [6] for more details about posets and Hasse

diagrams). This is a directed graph (digraph, for short) whose vertices are the binary

n-tuples of 0s and 1s, and whose edges connect each pair (u, v) of binary n-tuples

5



whenever u covers v (denoted by u . v), that is, whenever u is intrinsically greater

than v with no other elements between them, i.e.

u . v iff u � v and there is no w ∈ {0, 1}n
s.t. u � w � v.

Moreover, according to the usual convention for Hasse diagrams, if u covers v then

u is drawn above v. The Hasse diagram of the poset In will be also called the intrinsic

order graph for n variables. For small values of n, the Hasse diagram of In can be

constructed by direct application of the intrinsic order criterion. For large values of n
in [7] we have developed an algorithm for iteratively building up the digraph of In, for

all n ≥ 2, from the digraph of I1. In Figure 1 the intrinsic order graph for n = 1, 2, 3, 4
is shown. A graph consisting of only isolated nodes with no edges is called an empty

or edgeless graph. In Figure 2 the edgeless intrinsic order graph for n = 5, 6 is shown.

0

↑
1

0

↑
1

↑
2

↑
3

0

↑
1

↑
2

↑ ↖
3 4

↖ ↑
5

↑
6

↑
7

0

↑
1

↑
2

↑ ↖
3 4

↖ ↑ ↖
5 8

↑ ↖ ↑
6 9

↑ ↖ ↑
7 10

↖ ↑ ↖
11 12

↖ ↑
13

↑
14

↑
15

Figure 1: The intrinsic order graph for n = 1, 2, 3, 4.
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Figure 2: The edgeless intrinsic order graph for n = 5, 6.
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2.3 Top, Bottom and Jumping binary n-tuples

The Hasse diagram of the poset I3, i.e., the third one from the left in Figure 1, can be

directly constructed by application of IOC. All pairs of binary 3-tuples are comparable

by intrinsic order, with the only exception of 3 ≡ (0, 1, 1) and 4 ≡ (1, 0, 0). Indeed,

Example 3 has shown that these two elements of I3 are incomparable by intrinsic

order, while Example 2 has provided us with numerical values of basic probabilities

p1, p2, p3 confirming this fact. Hence, assuming the hypothesis (3), if we sort the eight

binary 3-tuples in decreasing order of their occurrence probabilities (downward from

the largest to the smallest one), only two cases are possible. These two cases are

depicted in Figure 3.

0 ≡ (0, 0, 0) (0, 0, 0) ≡ 0
1 ≡ (0, 0, 1) (0, 0, 1) ≡ 1
2 ≡ (0, 1, 0) (0, 1, 0) ≡ 2
3 ≡ (0, 1, 1) (1, 0, 0) ≡ 4
· · · · · · · · · · · · · · · · · ·

4 ≡ (1, 0, 0) (0, 1, 1) ≡ 3
5 ≡ (1, 0, 1) (1, 0, 1) ≡ 5
6 ≡ (1, 1, 0) (1, 1, 0) ≡ 6
7 ≡ (1, 1, 1) (1, 1, 1) ≡ 7

Figure 3: Top, bottom and jumping binary 3-tuples.

The left column corresponds to the case Pr {(0, 1, 1)} ≥ Pr {(1, 0, 0)}, while the

right column corresponds to the case Pr {(0, 1, 1)} ≤ Pr {(1, 0, 0)}. Anyway, Figure

3 shows that for these two possible cases we have: (i) The 3-tuples 0, 1 and 2 are

among the four first ones: they always are at the top-half of the list! (ii) The 3-tuples

5, 6 and 7 are among the four last ones: they always are at the bottom-half of the

list! (iii) The 3-tuples 3 and 4 can be allocated at both positions depending on basic

probabilities pi: they jump up-down the middle line! This fact has suggested us the

following nice definition [4].

Definition 2 Let n ≥ 1. Let the 2n binary n-tuples be ordered in decreasing order of

their occurrence probabilities. Then

(i) The binary n-tuple u is called top if it is always among the 2n−1 first n-tuples (for

any set of parameters {pi}
n

i=1 satisfying (3)).

(ii) The binary n-tuple u is called bottom if it is always among the 2n−1 last n-tuples

(for any set of parameters {pi}
n

i=1 satisfying (3)).

(iii) The binary n-tuple u is called jumping if it is neither top nor bottom.

In the following, we denote by T (n) ,B (n) and J (n) the sets of top, bottom and

jumping binary n-tuples, respectively. In this way, we have the following set partition

of the set of n-tuples of 0s and 1s, for all n ≥ 1.

{0, 1}n = T (n) ∪ J (n) ∪ B (n) . (4)
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Example 6. For n = 3 we have (see Figure 3)

T (3) = {0, 1, 2} , J (3) = {3, 4} , B (3) = {5, 6, 7} .

The next proposition provides us with simple characterizations of the top, bottom

and jumping n-tuples [4].

Theorem 2 Let u = (u1, . . . , un) ∈ {0, 1}n . Then

(i) u ∈ T (n) iff either u has no 1-bits, or for each 1-bit in u, there exists (at least)
one corresponding preceding 0-bit.

(ii) u ∈ B (n) iff either u has no 0-bits, or for each 0-bit in u, there exists (at least)
one corresponding preceding 1-bit.

(iii) u ∈ J (n) iff u contains at least one 1-bit without its corresponding preceding

0-bit and at least one 0-bit without its corresponding preceding 1-bit.

Remark 4. The term corresponding, used in Theorem 2, has the same meaning that

the one explained in Remark 3 for Theorem 1. In other words, Theorem 2 can be

reformulated as follows: The binary n-tuple u is top (bottom, respectively) iff either u
is the n-tuple (0, . . . , 0) ((1, . . . , 1), respectively), or for each 1-bit (0-bit, respectively)

in u, the number of preceding 0-bits (1-bits, respectively) is strictly greater than the

number of preceding 1-bits (0-bits, respectively).

To finish this Section, we describe a recursive algorithm for generating all the top

n-tuples from the only top 1-tuple 0. The algorithm generates all the top n-tuples by

adding one 0-bit at the end of all the Top n − 1-tuples, and by adding one 1-bit at the

end of the Top n − 1-tuples excepting those for which n − 1 is even and the number

of 0s equals the number of 1s [4]. This algorithm is illustrated by Figure 4, where the

n-th column contains all top n-tuples, for all n ≥ 1.

(0)

↗ (0, 0)

↗ (0, 0, 0)
↗ (0, 0, 0, 0)

↗ (0, 0, 0, 0, 0) . . .
↘ (0, 0, 0, 0, 1) . . .

↘ (0, 0, 0, 1)
↗ (0, 0, 0, 1, 0) . . .
↘ (0, 0, 0, 1, 1) . . .

↘ (0, 0, 1)
↗ (0, 0, 1, 0)

↗ (0, 0, 1, 0, 0) . . .
↘ (0, 0, 1, 0, 1) . . .

↘ (0, 0, 1, 1) −→ (0, 0, 1, 1, 0) . . .

↘ (0, 1) −→ (0, 1, 0)
↗ (0, 1, 0, 0)

↗ (0, 1, 0, 0, 0) . . .
↘ (0, 1, 0, 0, 1) . . .

↘ (0, 1, 0, 1) −→ (0, 1, 0, 1, 0) . . .

Figure 4: Generation of top n-tuples from T (1) = {(0)}.

In the next section, we generalize Definition 2 by introducing an integer parameter

k, such that 1 ≤ k ≤ 2n.
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3 k-Top, k-Bottom and k-Jumping binary n-tuples

Definition 3 Let n ≥ 1 and 1 ≤ k ≤ 2n. Let the 2n binary n-tuples be ordered in

decreasing order of their occurrence probabilities. Then

(i) The binary n-tuple u is called k-top if it is always among the k first n-tuples (for

any set of parameters {pi}
n

i=1 satisfying (3)).

(ii) The binary n-tuple u is called k-bottom if it is always among the k last n-tuples

(for any set of parameters {pi}
n

i=1 satisfying (3)).

(iii) The binary n-tuple u is called k-jumping if it is neither k-top nor k-bottom.

In the following, we denote by T k (n) ,Bk (n) and J k (n) the sets of k-top, k-

bottom and k-jumping binary n-tuples, respectively. In this way, we have the follow-

ing decomposition (not necessarily disjoint partition) of the set of n-tuples of 0s and

1s, which generalizes the set partition (4).

{0, 1}n = T k (n) ∪ J k (n) ∪ Bk (n) .

Obviously, for the special case k = 2n−1, Definition 3 becomes Definition 2. In other

words, the 2n−1-top, the 2n−1-bottom and the 2n−1-jumping binary n-tuples are the

top, bottom and jumping binary n-tuples, respectively, i.e.,

T 2n−1

(n) = T (n) , J 2n−1

(n) = J (n) , B2n−1

(n) = B (n) .

Example 7. For n = 3 and k = 6 we have (see Figure 3)

T 6 (3) = {0, 1, 2, 3, 4, 5} , J 6 (3) = ∅, B6 (6) = {2, 3, 4, 5, 6, 7} .

Figure 3 and Examples 6 & 7 suggest us a certain symmetry relation between the

k-top and k-bottom n-tuples and their 0s and 1s components. The following definition

and the following two lemmas formalize this fact.

Definition 4 The complementary n-tuple uc of a binary n-tuple u is obtained by

changing its 0s by 1s and its 1s by 0s, i.e.,

(u1, . . . , un)c = (1 − u1, . . . , 1 − un) , u + uc =
(

1,
n

.̂ . ., 1
)

≡ 2n − 1.

With this definition, we can state a basic symmetry property for the k-top and k-

bottom binary n-tuples. First, we need the following auxiliary lemma.

Lemma 1 For all u, v ∈ {0, 1}n

Pr {u} ≥ Pr {v} ⇔ Pr {uc} ≤ Pr {vc} .
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Proof. Using Equation (1), we get

Pr {u} ≥ Pr {v} ⇔
n

∏

i=1

pui

i (1 − pi)
1−ui ≥

n
∏

i=1

pvi

i (1 − pi)
1−vi ⇔

n
∏

i=1

p
(1−vi)−(1−ui)
i (1 − pi)

vi−ui ≥ 1 ⇔

n
∏

i=1

p1−ui

i (1 − pi)
1−(1−ui) ≤

n
∏

i=1

p1−vi

i (1 − pi)
1−(1−vi) ⇔ Pr {uc} ≤ Pr {vc} ,

since 1− ui and 1− vi are the i-th components of the complementary n-tuples uc and

vc, respectively. 2

Remark 5. Lemma 1 has the following interpretation. If we sort the 2n binary n-tuples

in decreasing order of their occurrence probabilities, then two any complementary n-

tuples are always placed at symmetric positions with respect to the middle line. Taking

into account that u + uc = 2n − 1, for all u ∈ {0, 1}n
, this is equivalent to saying

that the sum of any pair of n-tuples placed at symmetric positions with respect to the

middle line, is always 2n − 1. Figure 3 illustrates this fact for n = 3.

Lemma 2 Let n ≥ 1 and 1 ≤ k ≤ 2n. Let u ∈ {0, 1}n
. Then u is k-top iff uc is

k-bottom; u is k-bottom iff uc is k-top; u is k-jumping iff uc is k-jumping.

Proof. Using Lemma 1 the proof is straightforward. 2

The following two theorems state some elementary properties of the k-top and k-

bottom binary n-tuples.

Theorem 3 Let n ≥ 1 and 1 ≤ k ≤ 2n. Let u ∈ {0, 1}n
. Then

(i) T 1 (n) = {0} and T 2n

(n) = {0, 1}n
.

(ii) T 1 (n) ⊆ T 2 (n) ⊆ · · · ⊆ T 2n

(n).

(iii) For all k such that 1 ≤ k ≤ 2n−1, if u ∈ T k (n) then u1 = 0 and the number of

0-bits in u is greater than or equal to the number of 1-bits in u.

Proof. (i) Using Definition 3-(i) and taking into account that 0 is the maximum element

in the poset In (see Example 5) the proof is straightforward. (ii) These set inclusions

immediately follow from Definition 3-(i). (iii) Using (ii) we get that for all k such

that 1 ≤ k ≤ 2n−1: T k (n) ⊆ T 2n−1

(n) = T (n). Finally, using the positional

characterization for top n-tuples stated by Theorem 2-(i), the proof is concluded. 2

Theorem 4 Let n ≥ 1 and 1 ≤ k ≤ 2n. Let u ∈ {0, 1}n
. Then

(i) B1 (n) = {2n − 1} and B2n

(n) = {0, 1}n
.

(ii) B1 (n) ⊆ B2 (n) ⊆ · · · ⊆ B2n

(n).

(iii) For all k such that 1 ≤ k ≤ 2n−1, if u ∈ Bk (n) then u1 = 1 and the number of

1-bits in u is greater than or equal to the number of 0-bits in u.
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Proof. Using Lemma 2 and Theorem 3 the proof is straightforward. 2

Now, we give a necessary and sufficient condition for the k-top binary n-tuples.

First, note that the k-top condition, i.e., u is k-top if and only if its occurrence proba-

bility is always among the k largest ones (Definition 3-(i)), is equivalent to saying that

the number of binary n-tuples whose occurrence probabilities are always less than or

equal to Pr {u} is at least 2n − k. Hence, the proposed question is reduced to deter-

mine the number of binary strings v intrinsically less than or equal to u. From now

on, we denote the set of these binary n-tuples as follows

Cu = {v ∈ {0, 1}n | u � v} = {v ∈ {0, 1}n | Pr {u} ≥ Pr {v} , ∀ {pi}
n

i=1 s.t. (3)}

and we denote the cardinality of this set, as usual, by |Cu|.

The set Cu has been characterized from different algorithms that generate all the

binary strings intrinsically less than or equal to u. For instance, in [8] we can find such

an algorithm which uses the decimal representation of the binary strings for generating

all the elements of Cu as set union of certain half-closed intervals of integer numbers.

Alternatively, in the next theorem we use the positions of the 1-bits of the binary

strings, for determining the number |Cu| of elements of Cu. First, we set the following

notation.

Definition 5 Let n ≥ 1 and u = (u1, . . . , un) ∈ {0, 1}n
. Then the vector of positions

of 1s of u is the vector of positions of its 1-bits, displayed in increasing order from the

left-most position to the right-most position. For all binary n-tuple u with Hamming

weight m ≥ 1, we denote

u = [i1, . . . , im]n , 1 ≤ i1 < · · · < im ≤ n

if and only if

ui = 1, for all i ∈ {i1, . . . , im} ; ui = 0, otherwise.

Example 8. For n = 6 and u = (0, 1, 1, 0, 1, 1) we have

m = wH (u) = 4, u = [i1, i2, i3, i4]6 = [2, 3, 5, 6]6 .

Theorem 5 Let n ≥ 1 and u ∈ {0, 1}n
. Let wH (u) = m ≥ 1 and let u =

[i1, . . . , im]n be the vector of positions of 1s in u. Then the number of binary n-tuples

whose occurrence probabilities are less than or equal to Pr {u} (for all set {pi}
n

i=1 of

parameters satisfying (3)) is given by

|Cu| = 2n

i1
∑

j1=1

i2
∑

j2=j1+1

· · ·
im
∑

jm=jm−1+1

2−jm .
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Proof. First, using Corollary 1 we have that if u � v then the Hamming weight of v
must be greater than or equal to the Hamming weight of u. That is,

v ∈ Cu ⇒ wH (v) = t ≥ m = wH (u) .

The matrix description IOC (Theorem 1) of the intrinsic order (expressed in terms

of the binary representations of u, v) can be reformulated (in terms of the vectors of

positions of the 1-bits of u, v) as follows:

u = [i1, . . . , im]n � [j1, . . . , jt]n = v, (wH (v) = t ≥ m = wH (u))

if, and only if, v contains at least one 1-bit among the positions 1 and i1, at least two

1-bits among the positions 1 and i2,..., at least m− 1 1-bits among the positions 1 and

im−1, and at least m 1-bits among the positions 1 and im.

In particular, imposing the additional restriction that the Hamming weight of v
equals the Hamming weight of u (i.e., wH (v) takes the minimum possible value m),

then we get

u = [i1, . . . , im]n � [j1, . . . , jm]n = v, (wH (v) = m = wH (u))

if, and only if, v contains at least one 1-bit among the positions 1 and i1, at least two

1-bits among the positions 1 and i2,..., at least m− 1 1-bits among the positions 1 and

im−1, exactly m 1-bits among the positions 1 and im, and (if im < n) v has no 1-bits

among the positions im + 1 and n. In other words,

u = [i1, . . . , im]n � [j1, . . . , jm]n = v, (wH (v) = m = wH (u)) , iff

1 ≤ j1 ≤ i1, j1 + 1 ≤ j2 ≤ i2, . . . , jm−1 + 1 ≤ jm ≤ im. (5)

Note that Equation (5) provides us with a simple algorithm for generating all bi-

nary n-tuples v such that v is intrinsically less than or equal to u and it has the same

Hamming weight as u. Therefore, the number of those n-tuples is given by

|{v ∈ Cu | wH (v) = wH (u)}| =

i1
∑

j1=1

i2
∑

j2=j1+1

· · ·
im
∑

jm=jm−1+1

1. (6)

On one hand, note that all the n-tuples v generated by Equation (5) (i.e., those

belonging to the subset of Cu in Equation (6)), such that jm < n, obviously satisfy

vjm+1 = · · · = vn = 0. On the other hand, note that the substitution of 0s by 1s in any

n-tuple v such that u � v does not avoid the IOC condition, because this substitution

change the
(

0
0

)

and
(

1
0

)

columns of matrix Mu
v into

(

0
1

)

and
(

1
1

)

columns, respectively.

Hence, to obtain all the binary strings of the set Cu, it is enough to assign, in all

possible ways, both values, 0 or 1, to any of the n − jm null right-most components

vjm+1, · · · , vn of all the binary strings v generated by Equation (5). Since there are

exactly 2n−jm different ways of assigning these values, and since by this procedure we

generate all elements of Cu without repetitions, then the number of binary n-tuples v
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intrinsically less than or equal to u can be immediately obtained from Equation (6) as

follows

|Cu| =

i1
∑

j1=1

i2
∑

j2=j1+1

· · ·
im
∑

jm=jm−1+1

2n−jm = 2n

i1
∑

j1=1

i2
∑

j2=j1+1

· · ·
im
∑

jm=jm−1+1

2−jm ,

as was to be shown. 2

Now, we can present the characterization of the k-top binary n-tuples.

Theorem 6 Let n ≥ 1, 1 ≤ k ≤ 2n and u ∈ {0, 1}n
. Let wH (u) = m ≥ 1 and let

u = [i1, . . . , im]n be the vector of positions of 1s in u. Then

u ∈ T k (n) ⇔ 2n

i1
∑

j1=1

i2
∑

j2=j1+1

· · ·
im
∑

jm=jm−1+1

2−jm ≥ 2n − k.

Proof. The binary string u is k-top if, and only if, its occurrence probability Pr {u}
is always among the k largest ones (Definition 3-(i)) if, and only if, the number of

binary n-tuples v whose occurrence probabilities Pr {v} are always less than or equal

to Pr {u} is greater than or equal to 2n−k if, and only if, the number of binary strings

v intrinsically less than or equal to u is greater than or equal to 2n − k if, and only if,

the cardinality of the set Cu is greater than or equal to 2n − k. Thus, using Theorem

5, we get

u ∈ T k (n) ⇔ |Cu| = 2n

i1
∑

j1=1

i2
∑

j2=j1+1

· · ·
im
∑

jm=jm−1+1

2−jm ≥ 2n − k,

as was to be shown. 2

Each one of the two following examples illustrates Theorems 5 & 6.

Example 9. For n = 3, k = 6 and u = (1, 0, 0) ≡ 4, we get (in accordance with

Example 7 and Figure 3)

m = wH (u) = 1, u = [i1]3 = [1]3 ,

and using Theorem 5, we have

|Cu| = 2n

i1
∑

j1=1

i2
∑

j2=j1+1

· · ·
im
∑

jm=jm−1+1

2−jm = 23

1
∑

j1=1

2−j1 = 23 · 2−1 = 4,

indeed, we have

Cu = {4, 5, 6, 7} ,

and, finally, using Theorem 5, we get

u ∈ T 6 (3) ⇔ |Cu| = 4 ≥ 23 − 6 = 2.
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Example 10. For n = 5 and u = (0, 1, 0, 1, 1) ≡ 11, we get

m = wH (u) = 3, u = [i1, i2, i3]5 = [2, 4, 5]5 ,

and using Theorem 5, we have

|Cu| = 2n

i1
∑

j1=1

i2
∑

j2=j1+1

· · ·
im
∑

jm=jm−1+1

2−jm = 25

2
∑

j1=1

4
∑

j2=j1+1

5
∑

j3=j2+1

2−j3

= 25
(

2−3 + 3 · 2−4 + 5 · 25
)

= 22 + 3 · 21 + 5 · 20 = 15,

indeed, we have

Cu = {11, 13, 14, 15, 19, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31} ,

and, finally, using Theorem 5, we get

u ∈ T k (5) ⇔ |Cu| = 15 ≥ 25 − k ⇔ 17 ≤ k ≤ 32.

Remark 6. The assumption wH (u) ≥ 1 in Theorems 5 & 6 excludes the zero n-tuple

u =
(

0,
n

.̂ . ., 0
)

(the only n-tuple with weight 0). Anyway, for this special case, using

Example 5 or Theorem 3-(i), we get

C

�
0,

n
^...,0

�
= {0, 1}n ,

∣

∣

∣

∣

∣

C

�
0,

n
^...,0

�∣

∣

∣

∣

∣

= 2n and
(

0,
n

.̂ . ., 0
)

∈ T k (n) , ∀ 1 ≤ k ≤ 2n.

4 Conclusion

We have presented new approaches to the analysis of CSBSs, i.e., those systems de-

pending on an arbitrary number n of random Boolean variables. The intrinsic ordering

between pairs of binary n-tuples associated to a given CSBS enables one to compare

their occurrence probabilities without computing them, just looking at the relative

positions of their 0s and 1s. In this context, we have considered a no-disjoint decom-

position of the set {0, 1}n
of binary n-tuples into three kinds: the k-top, k-bottom and

k-jumping binary n-tuples. A binary n-tuple is called k-top (k-bottom, respectively)

if its occurrence probability is always among the k largest (smallest, respectively)

ones (1 ≤ k ≤ 2n). A binary n-tuple is called k-jumping if it is neither k-top nor

k-bottom. These thee kinds of binary strings generalize the top, bottom and jumping

binary n-tuples, for which k = 2n−1. We have presented some elementary proper-

ties of both the k-top and k-bottom binary strings. Next, we have characterized by a

simple inequality the k-top binary n-tuples. This inequality exclusively depends on

n, k and on the Hamming weight m and the positions of the m 1-bits in the binary

n-tuples. In this way, Theorem 6 has completely characterized the k-top binary n-

tuples. For characterizing the k-bottom binary n-tuples it is enough to use Lemma

2: u is k-bottom if, and only if, uc is k-top. For characterizing the k-jumping binary
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n-tuples it is enough to use Definition 3-(iii): u is k-jumping if it is neither k-top

nor k-bottom. These theoretical results may be applied to the reliability analysis of

CSBSs (in particular, technical systems) arising from many scientific or engineering

areas. For future works, we can establish new properties and necessary conditions of

the k-top and k-bottom binary strings and a strong connection between them and the

lexicographic order in {0, 1}n
.
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