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Abstract. Many strategies for constructing different structures of sparse approximate inverse
preconditioners for large linear systems have been proposed in the literature. In a more general
framework, this paper analyzes the theoretical effectiveness of the optimal preconditioner (in the
Frobenius norm) of a linear system over an arbitrary subspace of M, (R). For this purpose, the
spectral analysis of the Frobenius orthogonal projections of the identity matrix onto the linear sub-
spaces of My, (R) is performed. This analysis leads to a simple, general criterion: The effectiveness
of the optimal approximate inverse preconditioners (parametrized by any vectorial structure) im-
proves at the same time as the smallest singular value (or the smallest eigenvalue’s modulus) of the
corresponding preconditioned matrices increases to 1.
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1. Introduction. When a physical phenomenon is modelled by a partial differ-
ential equation (PDE), the discretization of this PDE by any adequate method (finite
differences, finite elements, finite volumes, meshless, etc.), generally leads to a large
system of linear equations

(1.1) Az =b, AeR™" gz beR™!

in which the matrix A is nonsingular and sparse, i.e., has relatively few nonvanishing
elements.

The solution of these linear systems is usually performed by iterative methods
based on Krylov subspaces (see, e.g., [1, 20, 27, 32]). To improve the convergence of
these Krylov methods, system (1.1) can be preconditioned with an adequate precon-
ditioning matrix NV, transforming it into any of the equivalent problems

(1.2) NAz = Nb,

(1.3) ANy =b, x = Ny,

that is, the left and right preconditioned systems, respectively. In this paper we
address only the case of right-hand side preconditioners (1.3), but analogous results
can be obtained for the left-hand side preconditioners (1.2).

Often, the preconditioning of system (1.1) is performed in order to get a pre-
conditioned matrix AN as close as possible to the identity in some sense, and the
preconditioner N is called an approximate inverse of A. In some cases, the precondi-
tioners are parametrized by prescribed sparsity patterns, but we consider here a more
general case of linear parametrization where preconditioners belong to an arbitrary
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subspace S of M, (R) [29]. The closeness of AN to I may be measured by using a
suitable matrix norm like, for instance, the Frobenius norm |-|| . In this way, the
problem of obtaining the best preconditioner N (with respect to the Frobenius norm)
of system (1.1) in the subspace S of M, (R) is reduced to the minimization problem

(1.4) min [AM —I||p = [|AN —I||p

and the preconditioned matrix AN can be obtained by orthogonal projection of the
identity onto the subspace AS. Here, and from now on, orthogonality is with respect
to the Frobenius inner product (-,-), and we shall refer to the solution N to prob-
lem (1.4) as the “optimal” preconditioner of system (1.1) over the subspace S. So,
throughout this paper, the term “optimal” means that the approximate inverse N is
the matrix that minimizes the Frobenius norm on AN — I over a certain subspace S
of M,, (R), but the preconditioner N is not necessarily optimal in any other sense of
the word.

The search for approximate inverse preconditioners and, in general, the study of
preconditioning strategies for large linear systems is at present one of the most rele-
vant research areas in Numerical Linear Algebra. In [5] we find a very complete survey
about this question, and some of the most recent works in this area can be found,
for instance, in [2, 3, 7, 8, 9, 14, 22, 23, 26, 30, 34] and in the references contained
therein. Some of the first methods for constructing sparse approximate inverses that
are best approximations in the Frobenius norm, can be found in [4, 31] (see [1, p.
335], [5], [6] for a more detailed historical review about this question). Other poste-
rior approaches in this sense are described, for instance, in [10, 13, 19, 21] and in the
references therein. Recently, explicit expressions for both, preconditioner N defined
by (1.4) and |AN — I|| , valid for any subspace S of M,, (R), and applications of these
formulas to the computation of sparse approximate inverses have been presented in
[29]. Moreover, in that work the general parametrization from arbitrary subspaces is
illustrated with a natural generalization of the normal equations related to the system
(1.1). The effect of ordering on the optimal sparse approximate inverse precondition-
ers has been studied from both, theoretical and experimental points of view, in [17].
Among other Frobenius norm minimization preconditioners not extracted from sparse
matrix subspaces, we must mention here the preconditioners for structured matrices
obtained by orthogonal projections onto unitary matrix algebras (like, for instance,
circulant preconditioners for Toeplitz matrices); see, e.g., [12, 15, 33] and the refer-
ences therein.

With a more general and simple formulation, problem (1.4) can be written as

(1.5) min [P —Il|p = 1Q — 1|y,

where T is an arbitrary subspace of M,, (R). Note that, in our context, problems (1.4)
and (1.5) are indeed equivalent, since A is nonsingular, and for T'= AS problem (1.5)
becomes into problem (1.4) with solution @) = AN, so that the results we obtain for
(1.5) will be, in particular, valid for (1.4).

The results about preconditioning contained in this work are limited to precondi-
tioners of the approximate inverse type obtained from Frobenius norm minimization
(over an arbitrary subspace of M, (R)). In this context, the main goal of this paper
is to establish a simple, unified criterion that allows us to estimate the theoretical
effectiveness of the optimal preconditioners N, for all possible subspaces S of M,, (R).
For this purpose, the remainder of the paper has been organized as follows. In §2,
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we establish some spectral properties of the solution @ to problem (1.5), i.e., the
orthogonal projection of the identity onto an arbitrary subspace T of M,, (R). In §3,
we apply these general results to the effectiveness analysis of the approximate inverse
preconditioners N defined by problem (1.4). Finally, in §4 we present our conclusions.

2. Orthogonal projections of the identity. The following two lemmas char-
acterize the best approximation to the identity matrix from an arbitrary subspace T
of M, (R).

LEMMA 2.1. Let T be a vector subspace of M,, (R). Then the solution to problem
(1.5) satisfies

(2.1) tr (QP") =tr (P), VP €T,
(2.2) Q=TI =n—1tr(Q).
Moreover,

(2.3) 1QIF = tr (Q).

Proof. Using the orthogonal projection theorem, we have
(2.4) (Q—1,P)p =0, VP T,

which is equivalent to (2.1). Next, from equation (2.4) we get

1Q—1I3=(Q—-1.Q)p+{I-QI)p=n—1r(Q),

and finally, (2.3) is (2.1) for P = Q. ad
Remark 1. From equations (2.2) and (2.3) we get the following bounds for the
trace of the orthogonal projections of the identity

(2.5) 0<tr(Q)<n.

Different explicit expressions can be given for @), but for the purpose of this paper
the following simple expression is enough.

LEMMA 2.2. Let T be a vector subspace of M, (R) of dimension d and let {Pi}gzl
be an orthogonal basis of T. Then the solution to problem (1.5) is

S

2.6
2 = HP HF

d

1) Q- 1 =n - IL

.
1P|

Proof. Representing @ by its expansion with respect to the orthonormal basis
d

{L} of T', we obtain
1Pillp f,—q

P d
©= Z< |P||F>F||P||F :nPHF

=1
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and from equations (2.2) and (2.6) we get (2.7). O

Now we develop the spectral analysis of the orthogonal projection . In the
following, we shall denote by {\;}!_; and {o;},_, the sets of eigenvalues and singular
values, respectively, of ) arranged, as usual, in nonincreasing order. So, denoting by
r the rank of @, that is, the number of its nonzero singular values, and by m the
number of its nonzero eigenvalues, we have

Ml 2> Pl > Pt = o= [An] =0,

(2.8)
012...20,>0,41=...=0,=0

and the well-known inequality [25, p. 181]
(2.9) 0<m<r<n, Q=0,x,if 0=m=r, Q nonsingular iff m =r =n.

LEMMA 2.3. Let T be a vector subspace of My, (R) and Q the solution to problem
(1.5) with rank (Q) =r (1 <r <mn). Then

(2.10) S =3 A
=1 =1

Proof. Using equation (2.3) and taking into account that

QI =t (QQT) =07 5 () =Y X=> X\,
i=1 i=1 =1

the proof is straightforward. 0
LEMMA 2.4. Let T be a vector subspace of My, (R) and Q the solution to problem
(1.5) with rank (Q) =r (1 <r <n). Then

i=1 =1 =1 i=1 i=1 i=1

Proof. First, note that the above chain of inequalities makes sense because
is a real matrix, and then Y. A? = tr (Q?), >i_; N\ = tr(Q) are real numbers.
The central equality is equation (2.10). While this equality is a consequence of the
orthogonal projection condition of @, the four inequalities in (2.11) are valid for any
square real matrix. Indeed, first and third inequalities hold because of the triangle
inequality for modulus. Second and fourth inequalities hold because of the additive
Weyl’s inequalities [25, p. 176], [35]

k k
Zp\ilpSZUf (p>0, k=1,...,n)
i=1 =1

forp=2,1land k=r. ]

From last lemma we immediately obtain the following spectral property of the
orthogonal projections of the identity.

THEOREM 2.5. The smallest nonzero singular value and the smallest nonzero
eigenvalue’s modulus of the orthogonal projection of the identity onto any subspace of
M, (R) are never greater than 1.
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Proof. From (2.11) we get

ia?ﬁiai = o0, <1
i=1 i=1

and
I T m m
DSIINPSITINL e DIP<DY TIN = Pl <1 0
i=1 i=1 i=1 i=1
Nothing can be asserted about the rest of nonzero singular values and eigenvalue’s
modulus of @, which can be greater or equal, or less than the unity, as the following
counter-example shows.
Ezample 1. Let us fix k € R and consider the following subspace of M5 (R)

(4 1)}

The solution @ to problem (1.5) for subspace Ty can be obtained by using formula
(2.6) as follows

tT(k 0)
Op = 01 E 0\  k+1 k 0
"0k oNP L0 1) TR\ o1
IG5 2,
and then we get
k=-2: Ml=o1=2<1; |h|=0=1<1,
k=1: |>\1‘:O'1:1; |>\2|:O'2:1§1,
k=2: |)\1\201:g>1; |)\2|202:§§1.

Next lemma provides us with lower and upper bounds on ||Q — I|| z, involving o,
and A,.

LEMMA 2.6. Let T be a vector subspace of M,, (R) and Q the solution to problem
(1.5) with rank (Q) =r (1 <r <n). Let m be the number of nonzero eigenvalues of
Q and suppose that m > 1. Then

(2.12) n—r+1-0,)?<|Q-I|F<n—r+r(1-0a?),
(213)  n—m+ (=P’ <IQ -1 <n—mtm (1= Anl)

Proof. The left-hand inequalities are valid for any square real matrix (the orthog-
onal projection condition of @ is not required here). Indeed, from equation (2.11) we
have

1Q 112 = QI —2tr (@) +n =307 =22 N 40> 30?23 o 4
=1 =1 =1 =1

(2.14) :n—r—&-Z(l—ai)?Zn—r—i—(l—UT)Q.
i=1
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Next, from the Schur’s inequality [1, p. 631] for matrix @ — I, we get

Q=117 =) =1 =n—m+> 1-N[>=n—m+ (01— |\

i=1 i=1

To prove the right-hand inequalities (a consequence of the orthogonal projection con-
dition of @), we use equations (2.2), (2.3) and (2.11)

T T m
QI =n—tr(@=n—[Qp=n=-Y of<n—3 \f=n-3 |\
i=1 i=1 i=1
and then we get, on one hand,

T
IIQ—Illizn—r+r—Zafgn—r+r(1_g§)
i=1

and, on the other hand,
||Q—IH%Sn—m+m—2|/\i|2Sn—m+m(1—|)\m\2>. O
=1

3. Applications to the approximate inverse preconditioning. In the con-
text of the preconditioning (1.3) of system (1.1), it is obvious that the preconditioner
N must be nonsingular in order to obtain a nonsingular preconditioned matrix AN
(recall that we have assumed that the coefficient matrix A is nonsingular). So, in
order to apply the results of §2 to the special case @ = AN, from now on {)\;},—_, and
{o;}}_, will denote the sets of eigenvalues and singular values, respectively, of matrix
AN and, according to (2.9), equation (2.8) is now rewritten as

|)\1|ZZ|/\H|>0, o1 >...>20,>0.

3.1. The matrix residual norm. Assuming that matrix AN is nonsingular,
Theorem 2.5 assures in this special case that o,, |A,| € ]0,1]. The following theorem
establishes the tight relation between the matrix residual norm [[AN — I|| and the
closeness of o, (JA,|) to the unity.

THEOREM 3.1. Let A € M, (R) be nonsingular and S a vector subspace of M, (R)
such that the solution N to problem (1.4) is nonsingular. Then

(31 A=)’ < AN =15 <n (1= ) <n(1-02).

Proof. Using equations (2.12) and (2.13) for @ = AN, m = r = n, and the
well-known inequality o, < |A,| [25, p. 191], the proof is straightforward. |

Remark 2. Theorem 3.1 states that [|[AN — I|| decreases to 0 at the same time
as the smallest singular value (or the smallest eigenvalue’s modulus) of the precondi-
tioned matrix AN increases to 1. In other words, we get a good approximate inverse
N of A when o, (|\,]) is sufficiently close to 1. Of course, the optimal theoretical
situation corresponds to the case

on=1N=A"" (e, A7 €S) o\, =1
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3.2. Theoretical effectiveness of the optimal preconditioners. Usually,
in the works about preconditioning, the theoretical effectiveness analysis of the new
proposed preconditioners is performed. Essential properties for the convergence of
most iterative methods are the clustering at 1 of eigenvalues and singular values,
the condition number and the departure from normality of the preconditioned linear
system (see, e.g., [18, 21]). In this subsection we analyze the effectiveness of the
preconditioners N defined by problem (1.4) showing that we can reduce the analysis
of the four above parameters to the distance from o, (JA,|) to the unity. Indeed, we
shall prove that if any of these two values is close to 1, then the preconditioner N has
a good behavior with respect to all these four points.

Let us illustrate in an intuitive way the basic idea that explains this fact. Obvi-
ously, for a square matrix, the closeness to 1 of its smallest singular value does not
imply, in general, the clustering at 1 of the whole set of its singular values: ¢, can
be close to 1 while the rest of the singular values can be very far from 1. However,
this can not happen for the full-rank orthogonal projections @ of the identity (as the
nonsingular preconditioned matrices AN). Indeed, using equation equations (2.3) and
(2.5) for @ = AN, we get

n
(3.2) > o7 =||[AN|; =tr(AN)<n (01 >...2 0, >0, 0, < 1)

i=1

and then the closeness to 1 of o,, implies here the clustering at 1 of singular values.
In the extreme case, if o, = 1, then all the singular values necessarily equal to 1.
Moreover, it is well known that the spectral condition number coincides with the
ratio % of the largest to the smallest singular value [24, p. 442], and hence, from
(3.2) we also get the following intuitive conclusion: The more o, is close to 1, the
more o is close to o, and therefore, the more the spectral condition number is close
to 1.

Now we rigorously expose these intuitive ideas in the next theorem (a consequence
of Theorem 3.1), which summarizes the behavior of the above mentioned four param-
eters in relation with o,, and \,. For estimating the AN’s departure from normality
we use a scale-invariant measure of nonnormality (i.e., invariant under multiplication
of the matrix by a constant) as the Henrici number [11]

HAN (AN)T — (AN)T ANH
He(AN) = E

Jany],

and to obtain alternative estimations using other measures of nonnormality, one can
use the inequalities that compare different measures with the numerator of He (AN)
(see, e.g., [16]).

THEOREM 3.2. Let A € M, (R) be nonsingular and S a vector subspace of My, (R)
such that the solution N to problem (1.4) is nonsingular. Then

1TL
(3.3) I P e D S et
nz’:l
1n
3.4 N -0 <1 -|MPFP<1-02
(3.4) nE(cﬂ_l\_ Tns

=1



8 LUIS GONZALEZ

[N

- (-1o2]* _ |[n= (=D

On - [An|?

(3.5) ko (AN) < for some g > 1,

. ey < OO g —ob)t

Proof. To prove (3.3) (clustering of eigenvalues) it is sufficient to use the Schur’s
inequality [1, p. 631] for matrix AN — I and equation (3.1)

S = 1P < AN = 115 < (1= ) <n(1-02).

i=1
To prove (3.4) (clustering of singular values) we use equation (2.14) for Q = AN,
r =n and equation (3.1)

n

S (-0 < AN =15 < (1= af) <0 (1-02).

i=1

To prove the first inequality of (3.5) (condition number) we just use equation (3.2)
n n
dol<n=oi<n-> o?<n—(n-1)op
i=1 i=2

and hence

SIS

o (AN) = 2 < In (= V)

On On

For the second inequality, note that we can suppose that |A,| # 1 since, otherwise,
from equation (3.1) we have that AN is the identity matrix and then the three quan-
tities in (3.5) obviously equal to 1. Hence, using Theorem 2.5 we have

0<o,<|A\|<1 = Fg>1st: |\ <o,

which concludes the proof of (3.5).
To prove (3.6) (measure of nonnormality), using the inequality (see, e.g., [16, 28])

[

| AN (AN = (AN)T AN|| < |2 | AN - (ZIA> ,
=1

the Schur’s inequality [1, p. 631] for matrix (AN)? and equation (3.2), we have

- \ " 273 n 273
2 2
AN - (£ ) w - (S k)
He (AN) < =L < |2 Nl
| cany?| > Il
F i=1
[, 2\ 2 3 4 1 .
it G B R (N | N XY (e
< |2 . = 5 < B |
n|Anl |Anl Tn
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Remark 3. Theorem 3.2 has shown that, when o, (or |\,|) increases to 1, all four
classical parameters for the convergence of iterative methods improve their behavior.
More precisely, the left-hand side of equations (3.3), (3.4) and the Henrici number
He (AN) decrease to 0 while the spectral condition number x5 (AN) decreases to 1.

Remark 4. Of course, the purpose of the last two theorems is to provide theoretical
results (o, and |\,| are not known and in practice they will almost always be very
small) which reduce the effectiveness analysis of the preconditioners N to an unique
critical quantity (o, or |A,|).

4. Conclusions. The spectral analysis of the Frobenius orthogonal projections
of the identity has determined the following results for the optimal preconditioners
N of a linear system, Az = b, defined by equation (1.4): The smallest singular
value o, and the smallest eigenvalue’s modulus |\, | of the preconditioned matrix AN
are never greater than 1 (Theorem 2.5) and they increase to 1 at the same time as
the matrix residual norm [[AN — I|| decreases to zero (Theorem 3.1). Moreover,
when o, (|[An]) is close to 1, the preconditioner N improves on the four classical
parameters for the convergence of iterative methods: clustering of eigenvalues and
singular values, condition number and departure from normality of the preconditioned
linear system (Theorem 3.2). In this way, the closeness to 1 of o, (|]\,|) has been
identified as a simple, general criterion for determining the theoretical effectiveness
of the Frobenius nom-based approximate inverse preconditioners N parametrized by
any vectorial structure (not restricted to sparsity patterns).

Acknowledgments. The author would like to thank the anonymous referees for
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the quality of the first version of this paper.
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