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This paper introduces a new automatic strategy for adaptive tetrahedral mesh
generation. A local refinement/derefinement algorithm for nested triangula-
tions and a simultaneous untangling and smoothing procedure are the main
involved techniques. The mesh generator is applied to 3-D complex domains
whose boundaries are projectable on external faces of a coarse object meccano
composed of cuboid pieces. The domain surfaces must be given by a mapping
between meccano surfaces and object boundary. This mapping can be defined
by analytical or discrete functions. At present we have fixed mappings with or-
thogonal, cylindrical and radial projections, but any other one-to-one projec-
tion may be considered. The mesh generator starts from a coarse tetrahedral
mesh which is automatically obtained by the subdivision of each hexahedra, of
a meccano hexahedral mesh, into six tetrahedra. The main idea is to construct
a sequence of nested meshes by refining only those tetrahedra which have a
face on the meccano boundary. The virtual projection of meccano external
faces defines a valid triangulation on the domain boundary. Then a 3-D local
refinement/derefinement is carried out such that the approximation of domain
surfaces verifies a given precision. Once this objective is reached, those nodes
placed on the meccano boundary are really projected on their corresponding
true boundary, and inner nodes are relocated using a suitable mapping. As the
mesh topology is kept during node movement, poor quality or even inverted
elements could appear in the resulting mesh. For this reason, we finally apply
a mesh optimization procedure. The efficiency of the proposed technique is
shown with several applications to complex objects.
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1 Introduction

In finite element simulation in engineering problems, it is crucial to automat-
ically adapt the three-dimensional discretization to geometry and to solution.
Many authors have devoted great efforts in the past to solve this problem in
different ways [3, 11, 13, 30], but automatic 3-D mesh generation is still an
open problem. Generally, as the complexity of the problem increases (domain
geometry and model), the methods for approximating the solution are more
complicated. At present, it is well known that most mesh generator are based
on Delaunay triangulation and advancing front technique.

In the last few years, we have developed a tetrahedral mesh generator
that approximates the orography of complex terrains with a given precision
[21, 22]. To do so, we only use digital terrain information. The generated
mesh have been applied for numerical simulation of environmental phenom-
ena, such as wind field adjustment [26], fire propagation or atmospheric pol-
lution [25]. The following procedures were mainly involved in this former
automatic mesh generator: a Delaunay triangulation method [5, 12], a 2-D
refinement/derefinement algorithm [8], based on the 4-T Rivara’s algorithm
[27], and a simultaneous untangling and smoothing algorithm [6]. Many ideas
were introduced in this mesh generator and they have been taken into account
for developing the new mesh generator proposed in this paper.

On the other hand, local adaptive refinement strategies are employed to
adapt the mesh to singularities of numerical solution. These adaptive meth-
ods usually involve remeshing or nested refinement [14, 17, 18, 28]. Another
interesting idea is to adapt simultaneously the model and the discretization in
different regions of the domain. A perspective about adaptive modeling and
meshing is studied in [4]. The main objective of all these adaptive techniques
is to achieve a good approximation of the real solution with a minimal user
intervention and a low computational cost. For this purpose, the mesh element
quality is also an essential aspect for the efficiency and numerical behaviour
of finite element method. The element quality measure should be understood
depending on the isotropic or anisotropic character of the numerical solution.

In this paper we present new ideas and applications of an innovative tetra-
hedral mesh generator which was introduced in [24]. This automatic mesh
generation strategy uses no Delaunay triangulation, nor advancing front tech-
nique, and it simplifies the geometrical discretization problem in particular
cases. The main idea of the new mesh generator is to combine a local re-
finement/derefinement algorithm for 3-D nested triangulations [17] and a si-
multaneous untangling and smoothing procedure [6]. 3-D complex domains,
which surfaces can be mapped from a meccano face to object boundary, are
discretized by the mesh generator. Resulting adaptive meshes have an appro-
priate quality for finite element applications.

At present, this idea has been implemented in ALBERTA code [1, 29]. This
software can be used for solving several types of 1-D, 2-D or 3-D problems
with adaptive finite elements. The local refinement and derefinement can be
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done by evaluating an error indicator for each element of the mesh and it is
based on element bisection. To be more specific, the newest vertex bisection
method is implemented for 2-D triangulations [20]. Actually, ALBERTA has
implemented an efficient data structure and adaption for 3-D domains which
can be decomposed into hexahedral elements as regular as possible. Each hex-
ahedron is subdivided into six tetrahedra by constructing a main diagonal and
its projections on its faces, see Figure 1 (a). The local bisection of the result-
ing tetrahedra is recursively carried out by using ideas of the longest edge [27]
and the newest vertex bisection methods. Details about the local refinement
technique implemented in ALBERTA for two and three dimensions can be an-
alyzed in [17, 20]. This strategy works very efficiently for initial meshes with
a particular topology and high-quality elements (obtained by subdivision of
regular quadrilateral or hexahedral elements). In these cases, the degenera-
tion of the resulting 2-D or 3-D triangulations after successive refinements is
avoided. The restriction on the initial element shapes and mesh connectivities
makes necessary to develop a particular mesh generator for ALBERTA. In
this paper we summarize the main ideas introduced for this purpose. Obvi-
ously, all these techniques could be applied for generating meshes with other
types of codes. Besides, these ideas could be combined with other type of local
refinement/derefinement algorithms for tetrahedral meshes [14, 18, 28].

In the following section we present a description of the main stages of
the new mesh generation procedure. In section 3 we show test problems and
practical applications which illustrate the efficiency of this strategy. Finally,
conclusions and future research are presented in section 4.

2 Description of the Mesh Generator

In this section, we present the main ideas which have been introduced in
the mesh generation procedure. In section 2.1 and 2.2, we start with the
definition of the domain and its subdivision in an initial 3-D triangulation
that verifies the restrictions imposed in ALBERTA. In section 2.3, we continue
with the presentation of different strategies to obtain an adapted mesh which
can approximate the boundaries of the domain within a given precision. We
construct a mesh of the domain by projecting the boundary nodes from a
meccano plane face to the true boundary surface and by relocating the inner
nodes. These two steps are summarized in section 2.4 and 2.5, respectively.
Finally, in section 2.6 we present a procedure to optimize the resulting mesh.

2.1 Object Meccano

In order to understand the idea of the proposed mesh generator, it is con-
venient to first consider a domain whose boundary can be projected on the
faces of a cube. A second simple case is to consider a cuboid instead of a
cube. We can generalize the previous cases with a meccano constructed by
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(a) (b) (c) (d)

Fig. 1. Refinement of a cube by using Kossaczky’s algorithm: (a) cube subdivision
into six tetrahedra, (b) bisection of all tetrahedra by inserting a new node in the cube
main diagonal, (c) new nodes in diagonals of cube faces and (d) global refinement
with new nodes in cube edges

cuboid pieces. In this last case, we suppose that an automatic decomposition
of the meccano into cubes (or hexahedra) can be carried out. At present, we
have implemented these cases in ALBERTA and we have defined the meccano
input data as connected cuboids, such that the boundary of the object is ob-
tained by a one-to-one projection (or mapping) from the boundary faces of
the meccano.

2.2 Coarse Tetrahedral Mesh of the Meccano

Once the meccano decomposition into cubes is done, we build an initial coarse
tetrahedral mesh by splitting all cubes into six tetrahedra [17]. For this pur-
pose, it is necessary to define a main diagonal on each cube and the projections
on its faces, see Figure 1(a). In order to get a conforming tetrahedral mesh,
all cubes are subdivided in the same way maintaining compatibility between
the diagonal of their faces. The resulting initial mesh τ1 can be introduced
in ALBERTA since it verifies the imposed restrictions about topology and
structure. The user can introduce in the code the necessary number of recur-
sive global bisections [17] for fixing a uniform element size in the whole initial
mesh. In Figures 1 (b), (c) and (d) are presented three consecutive global bi-
sections in a cube. The resulting mesh of Figure 1(d) contains 8 similar cubes
to the one represented in Figure 1(a).

If we consider a meccano composed of hexahedra pieces instead of cuboids,
a similar technique can be applied. In this case, the recursive local refinement
[17] may produce poor quality elements depending on the initial mesh quality.
The minimum quality of refined meshes is function of the initial mesh quality.
A study about this aspect can be seen in [19, 31]. In this paper, as a first
approach, we have used a decomposition of the object meccano into cuboids.
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2.3 Local Refined Mesh of the Meccano

The next step of the mesh generator includes a recursive adaptive local refine-
ment strategy of those tetrahedra with a face placed on a boundary face of
the initial coarse mesh. The refinement process is done in such a way that the
true surfaces are approximated with a linear piece-wise interpolation within a
given precision. That is, we look for an adaptive triangulation on the meccano
boundary faces, such that the resulting triangulation after node projection
(or mapping) on the object true boundary is a good approximation of this
boundary. The user has to introduce as input data a parameter ε that defines
the maximum separation allowed between the linear piece-wise interpolation
and the true surface. We remark that the true surface may be given by an an-
alytical or a discrete function, such that each point of meccano boundary faces
corresponds only to one point on the true surface. We propose two different
strategies for reaching our objective.

The first one consists on a simple method. We construct a sequence of
tetrahedral nested meshes by recursive bisection of all tetrahedra which con-
tain a face located on the meccano boundary faces; see Figure 1. The number
of bisections is determined by the user as a function of the desired resolution
of the true surface. So, we have a uniform distribution of nodes on these mec-
cano faces. Once all these nodes are virtually projected on the true surface,
a generalization of the derefinement criterion developed in [8], with a given
derefinement parameter ε, defines different adaptive triangulations for each
meccano face. We remark that the generalized derefinement criterion fixes
which nodes, placed on meccano faces, can not be eliminated in the derefine-
ment process in order to obtain a good approach of the true surface.

To illustrate the new derefinement criterion, we have represented the pro-
jection of a meccano external node P on its true position P ′ placed on the
object surface Σ, see Figure 2(a). We consider that node P is located in the
middle point of its surrounding edge ac. The insertion of node P produces
the bisection of the father triangle abc and, consequently, the bisection of the
father tetrahedron (T ) which contains the face abc. This tetrahedron is sub-
divided in two sons (T1 and T2) which are defined by the partition of face abc
into the two faces abP and bcP , respectively. If we project nodes a, b and c
on surface Σ, we get a planar approximation given by the triangle a′b′c′, but
if we consider the insertion of node P , we obtain an improved approximation
given by the triangles a′b′P ′ and b′c′P ′. Therefore, we have introduced the
following generalized derefinement condition:

Node P could be eliminated if the volume of virtual tetrahedron
a′b′c′P ′ is less than ε (although perhaps node P can not be finally
removed due to conformity reasons). On the other hand, nodes be-
longing to the coarse initial mesh are not removed from the sequence
of nested meshes.



6 J.M. Cascón, R. Montenegro, J.M. Escobar, E. Rodŕıguez and G. Montero
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Fig. 2. Node mapping from a cube to real domain: (a) transformation of an external
node P and (b) of an inner node P

As the derefinement criterion in ALBERTA is associated to elements, we
mark for derefining all tetrahedra containing a node which can be eliminated
(i.e., if node P can be eliminated, we mark tetrahedra T1 and T2 for dere-
fining). In particular, we make a loop on tetrahedra during the derefinement
process from the penultimate level of the sequence to the coarse initial mesh.
We only analyze tetrahedra with two sons, such that if the node introduced
in their father ’s bisection verifies the derefinement condition, then we mark
their two sons for derefining.

The second strategy only works with the local refinement algorithm. In
this case, the refinement criterion for tetrahedron T should be:

Node P must be inserted if the volume of virtual tetrahedron a′b′c′Q′,
being Q′ the projection on Σ of any point Q belonging to face abc, is
greater or equal than ε. Then, tetrahedron T should be subdivided in
T1 and T2.

The first strategy is simpler, but it could lead to problems with memory
requirements if the number of tetrahedra is very high before applying the
derefinement algorithm. Suppose for example that we have the information
of a surface defined on a meccano face by a discrete function on a very fine
grid. In order to capture the surface geometry without losing information,
we need to construct a global refined mesh as fine as the grid associated
to the discrete function. Nevertheless, the user could control the number of
recursive bisections and the maximum lost volume for the resulting object
discretization.

On the other hand, the problem of the second strategy is to determine
if a face placed on meccano boundary must be subdivided attending to the
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approximation of the true surface. This analysis must be done every time that
a face is subdivided into its two son faces. Suppose for example that the true
surface is given by a discrete function. Then, the subdivision criterion should
stop for a particular face when all the surface discretization points, defined
on this face, have been analyzed and all of them verify the approximation
criterion. So, this second strategy has the inconvenient that each surface dis-
cretization point should be studied many times and, therefore, it generally
implies a higher computational cost than the first strategy.

2.4 External Node Mapping on Object Boundary

Although ALBERTA has already implemented a node projection on a given
boundary surface during the bisection process, it has two important restric-
tions: nodes belonging to the initial mesh are not projected and inverted
elements could appear in case of projecting new nodes on complex surfaces
(i.e. non-convex object). In the latter case, the code does not work properly,
since it is only prepared to manage valid meshes.

For this reason, a new strategy must be developed in the mesh generator.
The projection (or mapping) is really done once we have defined the local
refined mesh by using one of the two methods proposed in the previous sec-
tion. Then, the nodes placed on the meccano faces are projected (or mapped)
on their corresponding true surfaces, maintaining the position of the inner
nodes of the meccano triangulation. We have remarked that any one-to-one
projection can be defined: orthogonal, spherical, cylindrical, etc. For example,
spherical projection from point O has been used in Figure 2.

After this process, we obtain a valid triangulation of the domain boundary,
but it could appear a tangled tetrahedral mesh. Inner nodes of the meccano
could be located now even outside the domain. Thus, an optimization of the
mesh is necessary. Although the final optimized mesh does not depend on the
initial position of the inner nodes, it is better for the optimization algorithm
to start from a mesh with a quality as good as possible. Therefore, we propose
to relocate in a reasonable position the inner nodes of the meccano before the
mesh optimization.

2.5 Relocation of Inner Nodes

There would be several strategies for defining an appropriate position for each
inner node of the domain. An acceptable procedure is to modify their rela-
tive position as a function of the distance between boundary surfaces before
and after their projections. This relocation is done attending to proportional
criteria along the corresponding projection line. For example, relocation of
inner node P in its new position P ′, such that OP ′ = OP × Oa′ / Oa, is
represented in Figure 2(b). Although this node movement does not solve the
tangle mesh problem, it normally makes it decrease. That is, the number of
resulting inverted elements is less and the mean quality of valid elements is
greater.
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2.6 Object Mesh Optimization: Untangling and Smoothing

An efficient procedure is necessary to optimize the current mesh. This process
must be able to smooth and untangle the mesh and it is crucial in the proposed
mesh generator.

The most usual techniques to improve the quality of a valid mesh, that
is, one that does not have inverted elements, are based upon local smoothing.
In short, these techniques consist of finding the new positions that the mesh
nodes must hold, in such a way that they optimize an objective function. Such
a function is based on a certain measurement of the quality of the local sub-
mesh, N (v), formed by the set of tetrahedra connected to the free node v. As
it is a local optimization process, we can not guarantee that the final mesh is
globally optimum. Nevertheless, after repeating this process several times for
all the nodes of the current mesh, quite satisfactory results can be achieved.
Usually, objective functions are appropriate to improve the quality of a valid
mesh, but they do not work properly when there are inverted elements. This
is because they present singularities (barriers) when any tetrahedron of N (v)
changes the sign of its Jacobian determinant. To avoid this problem we can
proceed as Freitag et al in [9, 10], where an optimization method consisting
of two stages is proposed. In the first one, the possible inverted elements are
untangled by an algorithm that maximises their negative Jacobian determi-
nants [9]; in the second, the resulting mesh from the first stage is smoothed
using another objective function based on a quality metric of the tetrahedra
of N (v) [10]. After the untangling procedure, the mesh has a very poor qual-
ity because the technique has no motivation to create good-quality elements.
As remarked in [10], it is not possible to apply a gradient-based algorithm
to optimize the objective function because it is not continuous all over R

3,
making it necessary to use other non-standard approaches.

We have proposed an alternative to this procedure [6], so the untangling
and smoothing are carried out in the same stage. For this purpose, we use
a suitable modification of the objective function such that it is regular all
over R

3. When a feasible region (subset of R
3 where v could be placed, be-

ing N (v) a valid submesh) exists, the minima of the original and modified
objective functions are very close and, when this region does not exist, the
minimum of the modified objective function is located in such a way that
it tends to untangle N (v). The latter occurs, for example, when the fixed
boundary of N (v) is tangled. With this approach, we can use any standard
and efficient unconstrained optimization method to find the minimum of the
modified objective function, see for example [2].

In this work we have applied, for simultaneous smoothing and untangling
of the mesh by moving their inner nodes, the proposed modification [6] to
one objective function derived from an algebraic mesh quality metric studied
in [16], but it would also be possible to apply it to other objective functions
which have barriers like those presented in [15].
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Besides, a smoothing of the boundary surface triangulation could be ap-
plied before the movement of inner nodes of the domain by using the new
procedure presented in [7] and [23]. This surface triangulation smoothing tech-
nique is also based on a vertex repositioning defined by the minimization of
a suitable objective function. The original problem on the surface is trans-
formed into a two-dimensional one on the parametric space. In our case, the
parametric space is a plane, chosen in terms of the local mesh, in such a way
that this mesh can be optimally projected performing a valid mesh, that is,
without inverted elements.

3 Test Examples

The performance of our new mesh generator is shown in the following appli-

cations. The first example corresponding to the discretizacion of a 16th IMR
conmemoration glass and the second one is an Earth-Atmosphere system.

3.1 16th IMR conmemoration glass

We consider the discretization of a glass filled with a liquid, we include a legend
and a face profile on the external face of the glass (see Figure 3(d)). The input
data consists on a meccano of five cuboids for the glass and one cuboid for
the liquid, see Figure 3(a). This meccano is included in a parallelepiped which
dimensions are 5× 5× 8. The mesh generation strategy automatically defines
the boundary between the two materials and gets a good mesh adaption to
the geometrical domain characteristics. A one-to-one projection between the
meccano and the object is defined by a cylindrical projection for the vertical
faces and an orthogonal one for the horizontal faces. We modify the original

projection in order to include the legend 16th IMR and the 3-D face profile of
Igea on the external wall of the glass. The profile of Igea has been obtained
from its 3D surface triangulation provided at http://www.cyberware.com/.

The meccano is splitted into a 3-D triangulation of 1146 tetrahedra and
320 nodes. We apply 6 recursive bisections on all tetrahedra which have a face
placed on the meccano boundary or on the material interface. Additionally, we
bisect 12 times all tetrahedra which have a face on the side of meccano where
the legend and the face profile are included. This mesh contains 1189989 nodes
and 5426256 tetrahedra. The derefinement parameter is fixed to ε = 5 10−6.
The resulting adapted mesh contains 24258 nodes and 112388 tetrahedra and
it is shown in Figure 3(b). Note that the refinement/derefinement algorithm
captures the letters and the face profile. The projection of this meccano sur-
face triangulation on the true surface produces a 3-D tangled mesh with 48775
inverted elements, see Figure 4. Relocation of inner nodes reduces the number
of inverted elements to 2648. After ten iterations of the optimization proce-
dure, the mesh generator converts the tangled mesh into the one presented in
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(a) (b)

(c) (d)

Fig. 3. Main stages of the mesh generator for the 16
th

IMR glass: (a) meccano, (b)
mesh adaption after applying the refinement/derefinement procedure, (c) resulting
optimized mesh, (d) texture map of the resulting mesh

Figure 3(c). The mesh quality is improved to a minimum value of 0.02 and
an average q

κ
= 0.55. The quality curves for the initial tangled mesh and the

final optimized triangulation are shown in Figure 5. There are a few elements
(less than one hundred) with a poor quality (less than 0.1). This is due to
rough profile of the letters, and could be avoided with a smoother definition.

The CPU time for constructing the initial mesh is approximately 1 minute
and for its optimization is less than 3 minutes on a laptop with Intel proces-
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Fig. 4. Tangled mesh with 48775 inverted elements after the projection on glass
surface and before relocation of inner nodes. The optimization process is able to
convert this mesh in a valid one

sor 1.6 GHz, 1 Gb RAM memory on Linux Fedore Core 4 system. In order
to show the efficiency of our method running on a workstation, we report
in Table 1 data (number of nodes, tetrahedra, partial CPU times) of several
meshes corresponding to the same example with different values of derefine-
ment parameter. Note that the mesh optimization dominates the procedure.

The crucial step of the mesh generation process is the optimization algo-
rithm. As a measurement of its capability notice that the procedure is able to
convert the tangled mesh of Figure 4, without any relocation, into the mesh
represented in Figure 3(c). However, it requires some more iterations of the
optimization algorithm, and the corresponding increasing of CPU time. In
Figure 6, we can appreciate the effect of the optimization process into the
glass.
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Fig. 5. Quality curves for the initial tangled mesh, an intermidiate one, and the

optimized triangulation after ten iterations for the 16
th
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Fig. 6. Cross sections of 16
th

IMR glass: (a) After relocation of inner nodes, (b)
after application of the optimization process

Finally, we remark that the mesh is made up of two different material:
glass and liquid. The mesh generator automatically conserves the material
interface and generates a conforming mesh between both materials.

3.2 Earth-Atmosphere

We have applied our technique to construct a 3-D triangulation of the Earth
and its atmosphere. To define the topography we have used GTOPO30
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CPU time (seconds)

ǫ Nodes Tetrahedra Meccano Mesh Projection/Relocation Untangling Smoothing

5 10−6 24.258 112.388 54.3 0.3 35.4 39.5

10−6 51.756 235.360 57.8 0.7 119.8 64.2

10−7 94.488 419.632 61.3 1.3 393.3 84.3

10−8 166.964 732.104 64.1 2.2 592.9 201.8

Table 1. Data corresponding to meshes of 16th-IMR glass example for several values
of derefinement parameter. These experiments have been done on a Dell Precison
960, with two Intel Xeon doble kernel processor, 3.2 GHz, 64 bits and 8 Gb RAM,
on a Red Hat Enterprise Linux WS v.4 system and using the compiler gcc v.3.4.6

(http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html). GTOPO30 is
a global digital elevation model (DEM) with a horizontal grid spacing of 30
arc seconds (approximately 1 kilometer).

In this case, the meccano is made up of six cuboids for the atmosphere
and one cuboid for the Earth. The union of all of them is a cube of dimension
8000 × 8000 × 8000 kilometers. We use a radial projection to generate the
topography of the surface of the Earth from GTOPO30, and to project the
external faces of the meccano on a sphere of ratio 8000 kilometers.
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Fig. 7. Quality curves for the initial mesh, intermediate one and the optimized
triangulation after ten iterations for the Earth-Atmosphere

The meccano is splitted into a 3-D triangulation of 3072 tetrahedra and
729 nodes. We apply 15 recursive bisections on all tetrahedra which have a
face placed on the meccano boundary or on the interface between the cuboids
representing the Earth and the atmosphere. This mesh contains 1119939 nodes
and 5053392 tetrahedra. In order to obtain a final mesh with a good repre-
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(a)

(b)

Fig. 8. Two views of the final mesh of the Earth and atmosphere

sentation of land areas but with an acceptable number of nodes, we used in
this example different values of the derefinement parameter ε. The value of ε
on land areas is fixed to 2.5 102 and on ocean areas to 5 105. The resulting
mesh has 64901 nodes and 353142 tetrahedra; see Figure 8.
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(a)

(b)

Fig. 9. Cross section of the Earth and atmosphere before (a) and after (b) the
application of the mesh optimization process. The refined region in the interface
corresponds to land areas

The relocation of inner nodes is enough to obtain a untangled mesh, how-
ever its quality is very poor. After ten iterations, the optimization procedure
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improves the value of the minimum quality from 0.01 to 0.17 and its average
from q

κ
= 0.38 to q

κ
= 0.73; see Figure 7. The efficiency of this mesh opti-

mization can be appreciated in Figure 9 where we represent two cross sections
before (a) and after (b) its application.

The CPU time for constructing the mesh is approximately 10 minutes on
a laptop, with Intel processor 1.6 GHz, 1 Gb RAM memory on Linux Fedore
Core 4 system. In Table 2 we show data (number of nodes, tetrahedra, partial
CPU times) of several meshes corresponding to different values of derefinement
parameter.

ǫ CPU time (seconds)

Land Sea Nodes Tetrahedra Meccano Mesh Projection/Relocation Untangling Smoothing

250 5 104 64.901 353.142 57.3 1.3 0.0 281.0

50 105 105.013 563.092 63.1 2.1 0.0 427.7

5 104 165.704 863.818 63.6 3.1 0.0 637.0

0.5 103 319.851 1.601.800 67.7 5.8 0.0 1196.3

Table 2. Data corresponding to meshes of Earth-Atmosphere example for several
values of derefinement parameter. These experiments have been done at the same
workstation specified in caption of Table 1

4 Conclusions and Future Research

The proposed mesh generator is an efficient method for creating tetrahedral
meshes on domains with boundary faces projectable on a meccano boundary.
At present, the user has to define the meccano associated to the object and
projections between meccano and object surfaces. Once these aspects are fixed,
the mesh generation procedure is fully automatic and has a low computational
cost. In future works, we will develop a special CAD package for minimizing
the user intervention. Specifically, object surface patches should be defined by
using meccano surfaces as parametric spaces.

The main ideas presented in this paper for automatic mesh genera-
tion, which have been implemented in ALBERTA, could be used for dif-
ferent codes which work with other tetrahedral or hexahedral local refine-
ment/derefinement algorithms. Taking into account these ideas, complex do-
mains could be meshed by decomposing its outline into a set of connected
cubes or hexahedra. In future works, new types of pieces and connections
could be considered for constructing the meccano.

Although this procedure is at present limited in applicability for high com-
plex geometries, it results in a very efficient approach for the problems that
fall within the mentioned class. The mesh generation technique is based on
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sub-processes (subdivision, projection, optimization) which are not in them-
selves new, but the overall integration using a simple shape as starting point
is an original contribution of this paper and it has some obvious performance
advantages. Besides, we have introduced a generalized derefinement condition
for a simple approximation of surfaces. On the other hand, the new mesh
generation strategy automatically fixes the boundary between materials and
gets a good mesh adaption to the geometrical domain characteristics.
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