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Resumen.This paper presents a new procedure to improve the quality of triangular meshes
defined on surfaces. The improvement is got by an iterative process in which each node of
the mesh is moved to a new position that minimizes certain objective function. This objective
function is derived from quality measures of the local mesh (the set of triangles connected to the
adjustable or free node). If we allow the free node move on the surface without imposing any
restrictions, only guided by the improvement of the quality, it can occur that the optimization
procedure constructs a high-quality local mesh, but with this node in an unacceptable position.
To avoid this problem the optimization is done in the parametric mesh, where the presence of
barriers in the objective function keeps the free node inside of the feasible region. In this way, the
original problem on the surface is transformed into a two-dimensional one on the parametric
space. In our case, the parametric space is a plane in which the surface mesh can be projected
performing a valid mesh, that is, without inverted elements.
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1. INTRODUCTION

Although there are many works about the optimization techniques for 2-D or 3-D meshes,
the number of papers that deal with the problem of surface mesh optimization is limited. The
quality of the surface mesh heavily affect to the numerical behavior of 3-D finite element sim-
ulation as it is in this mesh where the boundary conditions are imposed. Moreover, the possible
improvement of a 3-D mesh is conditioned by the quality of its surface mesh, so it is very im-
portant to develop a technique that allows us to optimize this last. In this work we present a
procedure to smooth meshes defined on surfaces. The smoothing technique is based on a vertex
repositioning directed by the minimization of an appropriated objective function. The construc-
tion of the objective function is done in the framework of theoralgfebraic quality measures
developed inl2]. For 2D or 3D meshes the quality improvement is obtained by an iterative pro-
cess in which each node of the mesh is moved to a new position that minimizes the objective
function [1]]. This function is derived from a quality measure of tbeal meshthat is, the set
of triangles connected to tHeee node

We have chosen, as a starting point, a 2D objective function that presents a barrier in the
boundary of thefeasible region(set of points where the free node could be placed to get a
valid local mesh, that is, withouverted elemenjsThis barrier has an important role because
it avoids the optimization algorithm to create a tangled mesh when it starts with a valid one.
Nevertheless, objective functions constructed by algebraic quality measures are only directly
applicable to 2D or 3D meshes, but not to surface meshes. To overcome this problem, the local
mesh, M (p), sited on a surface, is orthogonally projected on a plarfe (if this exists) in
such a way that it performs a valid local mestiq). Herep is the free node oix andg is its
projection onP. The optimization ofM (p) is got by the appropriated optimization 6f(q).

To do this we searctuealtriangles inN(¢) that become equilateral it/ (p). In general, when

the local meshV/(p) is on a curved surface, each triangle is placed on a different plane and it
is not possible to define a feasible region. Indeed, it is not clear the concept of valid mesh in
this case. This lack of meaning motivates that we assiifig) asacceptablaespect toP if

N(q) is valid. Note that the feasible region is always perfectly defined {g). To construct

the objective function inV(q), it is first necessary to define the objective functiodirip) and,
afterwards, to establish the connection between them. A crucial aspect for this construction is
to keep the barrier of the 2D objective function. This is done with a suitable approximation in
the process that transforms the original problentdanto an entirely two-dimensional one. We
develops this approximation in section 2.2.

The optimization ofN(¢) becomes an iterative process of two-dimensional problems. The
optimal solutions of each two-dimensional problem form a sequémé@ of points belonging
to P. We have checked in may numerical test tl{]ﬁf} Is always a convergent sequence. We
will show an example of this convergence in section 3.1. It is important to underline that this
iterative process only takes into account the position of the free node in a discrete set of points,
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the points onX corresponding tc{xk} and, therefore, it is not necessary that the surface was
smooth. Indeed, the surface determined by the linear interpolation of the initial mesh can be used
as a reference to define the geometry of the domain. If the node movement only responds to an
improvement of the quality of the mesh, it can happen that the optimized mesh loses details of
the original surface, specially when this has sharp edges or vertices. To avoid this problem, every
time the free node is moved, the optimization process check the distance between the center of
the triangles ofV/(p) and the original surface. If this distance is greater than certain threshold,
the movement of the node is aborted and its previous position is stored. Several examples and
applications presented in section 3 show how this technique is capable of improving the quality
of surface meshes.

2. CONSTRUCTION OF THE OBJECTIVE FUNCTION

As it is shown in ], [3], and 4] we can derive optimization functions from tladgebraic
quality measuresf the triangles belonging to the local mesh. Suppose that we have a triangular
mesh defined in a two-dimensional space. L&k an element in the physical space whose
vertices are given by, = (xk,yk)T € R?, k = 0,1,2 andtp be the reference triangle with
verticesu, = (0,0)7, u; = (1,0)7, andu, = (0,1)”. If we choosex, as the translation vector,
the affine map that takesg; to ¢ is x =Au + xy, whereA is the Jacobian matrix of the affine
map referenced to node), given by A = (x; — x¢, X2 — Xg). Let nowt; be anideal triangle
(not necessarily equilateral) and éf; be its Jacobian matrix; then, we define the weighted
Jacobian matrix a§ = AW, '. This weighted matrix is independent of the node chosen as
reference; it is said to beode invarianf2]. We can use matrix norms, determinant or trace of
S to construct algebraic quality measures dfor example, the Frobenius norm 8f defined
by |S| = +/tr (STY), is specially indicated because it is easily computable. Thus, it is shown

2

in [2] that g, = % is an algebraic quality measure ©of wheres = det (S). The maximum
value ofg, is the unity and it is reached wheth = 1O, wherey is a nonnegative scalar and

© € SO (2), whereSO (2) is the set of alR x 2 orthogonal matrices with determinanh(the
rotations group). Then, the Jacobian matrix satisfles- ©W;, which means that optimal
value ofg, is reached whenl is a scale change and a rotation of the Jacobian matrix associated
to the ideal triangle;. In other words, the triangle that maximizgsis similar to¢;. We can
derive an objective function from this quality measure. Thusxlet (z, y)" be the position

of the free node, and lef,, be the weighted Jacobian matrix of theth triangle of the local

mesh. The objective function associatechteh triangle isn,, = M and the corresponding

3
204,

objective function for the local mesh is thenorm of (1, 72, . .., ma), that is,

n

K, (%) = [Zn;z (x)] (1)

where M is the number of triangles in the local mesh. In this context the feasible region is
defined as the set of points where the free node must be located to get the local mesh to be
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valid. More concretely, the feasible region is the interior of the polygonal&etefined as
M
H = () H,, whereH,, are the half-planes defined by> 0, x € R?. We say that a triangle is

invertnédlif o < 0. The objective functiond]) presents a barrier in the boundary of the feasible
region that avoids the optimization algorithm to create a tangled mesh when it starts with a valid
one.

Previous considerations and definitions are only directly applicable for 2-D (or 3-D) meshes,
but some of them must be properly adapted when the meshes are located on an arbitrary surface.
For example, the concept of valid mesh is not clear in this situation because we should establish
beforehand what an inverted element is. We will deal with these questions in next subsection.

2.1. Relation between the surface mesh and the parametric mesh

Suppose that for each local mesh(p) placed on the surfacg, that is, with all its nodes
on %, it is possible to find a plan® such that the orthogonal projection &f(p) on P was
a valid meshN (q). Moreover, suppose that we define the axes in such a way:thaplane
coincide with P. If in the feasible region ofV(q) it is possible to define the surface by
the parametrizatios(x,y) = (x,y, f(z,y)), where f is a continuous function, then, we can
optimize M (p) by an appropriate optimization o¥(¢). We will nameN (¢) as theparametric
mesh The basic idea consists on finding the positjon the feasible region oV (¢) that makes
M (p) be an optimum local mesh. To do this we seaid#al elements inV(q) that become
equilateral inM (p). LetT € M (p) be a triangular element i whose vertices are given by
& = (Tk, Ygs zk)T € R? k = 0,1,2 andti be the reference triangle iR (see Fig[). If we
choos€, as the translation vector, the affine map that take® 7 is¢ = A,u + ¢, whereA,
is its Jacobian matrix, given by

1 — Tg T2 — Xo
A=\ vi—w%w  v2—w (2)
21 — R0 22 — 20

Now, let consider that € N(q) is the orthogonal projection af on P, then, its vertices are
xp = (xy, yk)T c R?% k = 0,1, 2. Takingx, as translation vector, the affine map that takes
totisx = Apu + xq, andAp is its Jacobian matrix

O Y To — X

AP — ( 1 0 2 0 ) (3)
Y1 — Yo Y2 — Yo

Therefore, the matrix of the affine map that takés 7 is

T = A AR (4)

Let V; be the subspace spanned by the column vectors, @nd letr be the plane defined by
V. and the point,. We have to find thedealtrianglet; C P such that it was mapped lyinto
an equilateral oneyz C 7.

On the other hand, the Jacobian matrix of the affine map restrictéd that takes the



N J.M. Escobar R. Montenegro, G. Montero, E. Rodriguez and J. M. Gonzalez-Yuste ©

reference trianglez C V, to 7 is

1 1/2
Wy = ( T ) )
The factorization ofd,; as a product of an orthogonal matrtixand an upper triangulat with
[R],, > 0, yields A, = QR. Taken into account that the columns of the 2 matrix () define

an orthonormal basis that spars we can sed as the2 x 2 Jacobian matrix of the affine map
that takesy to 7 (see Figll). Then,

QWg = A, R™'W;g (6)

is the Jacobian matrix af; given in the canonical basis &. The weighted Jacobian matrix
inV,.is

S =RW,! (7
The Jacobian matriX}l/;, associated to thileal triangle in P is calculated by imposing the
condition

TW; = A, R'Wg (8)
Substituting?’, given by @), we obtain
W, = ApR'Wg 9)
so theideal-weightedlacobian matrix, defined ah and given byS; = ApW, !, results
S; = ApW,'RAS! (10)

and, taken into accourf], yields
Sr= ApWg'SWeARt = ApWi's (ApWih) ™' = 5SSyt (11)

whereS; = ApW ' is theequilateral-weightedacobian matrix. Finally, fronfI{l), we obtain
the next similarity transformation of

S =S;'5:5k (12)

2.2. Optimization of the parametric mesh

We could useS, given in [7), to construct the objective function and solve the optimization
problem. Nevertheless this procedure has important disadvantages. In general, when the local
meshM/(p) is on a curved surface, each triangle is sited on a different plane, and it is impossible
to define a feasible region in the same way as it was done at the beginning of this section. Indeed,
all the positions of the free node that make (S) # 0 for all the triangles ofV/(p) are valid
but, maybe, they are neicceptable Thus, it can happen that the optimized meshp), was
valid but its corresponding parametric medh.q), was not. We will consider this situation as
unacceptableAs example, in Fi@(a) is shown a mesh with three triangles, that we suppose
sited on a curved surface, for example, a sphere. The optimal position for the free node (in
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Figura 1.Local surface mesh and its associated parametric mesh.

white) is shown in FigX(b). There are not inverted triangles because the nodes are placed in
different z-coordinates. Note that, although this new position is optimal in the relative to the
shape of the triangles, it is not acceptable for many purposes as, for example, to construct a 3-D
mesh from it.
Moreover, the direct optimization af/(p) would require the imposition of the constraint
¢ € X, which would complicates its resolution.
For all these reasons, we will approach the problem in a different way. We will use an ap-
proximate version of the similarity transformation given[IiZy that avoids these conflicts.
Consider that, for example, we choasgas free node , that i = x, then, the free node
on the surface i§ = (v,y, f(z,9))" = &. Note thatS; = ApW;' depends orx through
ApandS; = Aprl depends o, due tolW; = ApR~'Wy, andR is function of¢. Thus,
we haveSg (x) andS; (§). The approximate problem consists on keeping inalterable the ideal
element,I¥;, in each step of the optimization process. To do this wéifix(£) to its initial
value,IWP = W;(£°), whereg? is the initial position of¢. Thus,S? (x) = Ap (x) (W?)~! and,
the associated similarity transformation$fyields

S° (x) = Sg' (x) S (x) Sg (x) (13)
Now, the construction of the objective function is carried out in a standard way, but 8%ing
instead ofS. Following the same procedure pointed out at the beginning of this section we
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obtain the objective function for a given trianglec P

S°)?
p= 2 14)

wheres? = det(S°).

Note that the optimization of the local mesh is a two-dimensional problem without con-
straints, defined otV (q), and, therefore, it can be solved with a low computational cost. Fur-
thermore, if we writeV? as A% (R%)~'Wg, whereA% = Ap (x0) andR® = R (&), it is easy
to show thatS° can be simplified as

S%(x) = R® (A%) " Sg (x) (15)

In fact, this is the expression used to construct the objective function.

Let now analyze the behavior of the objective function when the free node crosses the
boundary of the feasible region. If we write- = det (Ap), a% = det (4%), p° = det (R?),
wp = det (W) and take into accourfB), we can span® as(a%,°) " apwg. Note thatn?,, p°
andwg are constants, sphas a singularity wheap = 0, that is, wherx is on the boundary of
the feasible region. This singularity determines a barrier in the objective function that prevents
the optimization algorithm to take the free node outside this region. This barrier does not appear
if we use the exact weighted Jacobian maffjgiven in [7), due todet (R) = Ry; Ras > 0.

Now, we are going to see how the mdf = T (£°) transforms theideal triangle on
P into an equilateral one ol. Thus, consider the function given ii4) and suppose that
its minimum value is reached &, then, the weighted Jacobian matrix yield#, (20) =

RO(A%) ' Sp (X°) = 1O, wherepy > 0 and© € SO (2). We deduce thaSp (X°) =
Ap (R°) W5t = pA% (R°) ™! © and, then, the optimal value of the Jacobian matrigig(x°) =
A% (RO)’1 OWpg. Note thatu©W g represents a scale change and a rotation of the equilateral
triangle and, then, it is also the Jacobian matik;, of other equilateral triangle. By applying
T0 = A% (A%)7" to Ap (X°), where A2 = A, (¢°), results,T0Ap (X°) = A2 (R%) ™" W}, .
Now, taken into accounB and writing@Q° = @ (£°), we obtain
T°Ap (X°) = Q"W (16)

whereQ W7, is the Jacobian matrix of an equilateral trianglec M (p) given in the canonical
basis ofR3.

In short, the triangleé c P defined byAp in the optimal point&k ¢ P is transformed by™
into on equilateral triangle belonging fd (p).

Due toT and( are evaluated in the pre-optimized poigft, the previous property does not
mean thatd p (20) is the Jacobian matrix of the "optimal” ideal triangle, This triangle must

satisfiesT’ <§0> Ap (X°) =Q (E()) W, but in generaf’ # £°. To get a better approximation

to ¢; the points? is replaced bEO in the factorizationI5) and, then, the new objective function
is constructed and optimized taking = xX° as starting point. This local process is repeat-
ed obtaining a sequen({ec’f} of optimal points. Of course, if we have a local mesh instead

7
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of a unique triangle, the objective function will b&’, | . We have experimentally verified in
numerous tests thdtx* } converges when the functiof{z, y) that defines is continuous.

(@) (b)

Figura 2.Mesh sited on a curved surface (a), andribeacceptabl®ptimized mesh (b)

3. EXAMPLES

Two test problems are considered in this section. In the first example we show the behavior of
the algorithm in a local mesh formed by six triangles. In the second one we analyze the effects
of the smoothing in two meshes, one regular and other refined, constructed on a surface with
abrupt gradients.

3.1. Testproblem1

To understand the way in which the optimization algorithm works we choose a simple mesh
with six triangles placed on the surface given by the funcfion y) = 2 (2> + (y — 1)*). The
projection of this mesh on the plane= 0 forms another mesh with all the triangles equilateral.
The positions of the fixed nodes on= 0 arex; = (0, —1)7, x, = (%, =), x3 = (£, )7,

xi = (0,1)7, x5 = (=4, )7, andxs = (=%, —1)T, and the initial node position for the

free node i<y = (0,0)”. The frontal view of the initial surface mesh is shown in Bfn), and

its projection onz = 0 in[3(c). The corresponding meshes after three steps of the optimization
algorithm are shown i8(b) and3(d). In these figures it can be seen how the algorithm locates
the free node in a position on the plane= 0 that makes the triangles of the surface mesh as
equilateral as possible. We have used the exact representation of the surface to calceiate the
coordinate, but similar results are obtained using the approximate surface defined by the linear
interpolation of the initial mesh.

In order to check the convergence of the local process we choose the former application first

with an exact representation of the surface, and then by using the linear interpolation4n Fig.
—k+1 =k
is shown the the relative errdng (’K%—;K ) in terms of the number of iterations for both

cases, wher& " be the optimal value of the objective function in th¢h iteration.



N J.M. Escobar R. Montenegro, G. Montero, E. Rodriguez and J. M. Gonzalez-Yuste ©

(@) (b)

(€) (d)

Figura 3.Frontal view of the initial surface mesh (a) and its projection on the plane (c). Frontal view of the
optimized surface mesh (b) and its projection (d)

We have observed a similar behavior in all the examples treated until now. Sometimes, the
number of iterations required to reach a reasonable relative eerdi0(?) is clearly greater
(=~ 30) than the needed in this example but, anyway, the algorithm always converges.

3.2. Test problem 2

In this example we consider a more complex surface, defined on the unit square by a function
f (z,y), with two maxima, two minima and one saddle point. Two meshes have been construct-
ed on this surface, one regular and the other refined. In this application the same parametric
planeP can be used for optimizing all the local meshes.

In Fig.5(a) and5(c) are shown the surface mesh and the parametric mesh, respectively. The
optimized versions are shown [B{b) and5(c). On the other hand, in Fi@@(a) is shown the
surface mesh with refinement in region with hight gradients. Its corresponding parametric mesh

9



N J.M. Escobar R. Montenegro, G. Montero, E. Rodriguez and J. M. Gonzalez-Yuste ©

-2 SN
-41 . a

-6! a

-8! . a
-10} .

- 12! . Exact

Log Rel at. Error

-14¢ a Interpolated i

2 4 6 8 10
Iterations

Figura 4.Convergence of the local process. Logarithm of the relative error in terms of the number of iterations.

is shown in Figle(c). The optimized meshes are shown in [E¢h) and [Bd).

In order to prevent a loss of the details of the original surface, every time the free node is
moved, the optimization algorithm evaluates the distance between the trianglgs pand the
surface. This distance is given by the difference of heights between the center of the triangle
of the present mesh and its corresponding point on the surface. If this distance is greater than
certain threshold, the movement of the node is aborted and its previous position is stored. The
threshold is established by analyzing the maximum distance between the initial mesh and the
surface. An alternative to this control is to use the method of the reference Jacobian developed
in [5).

In this example the improvement in the average quality of the mesh is not very significant
because the initial mesh is good. The main effect of the optimization is produced on the triangles
with worst quality.

4. CONCLUSIONS

We have developed a method to optimize meshes defined on surfaces. Its main characteristic
is that the original problem is transformed into a fully two-dimensional one on the parametric
space. This allows the optimization algorithm to deal with surfaces that only need to be contin-
uous. Moreover, the barrier exhibited by the objective function in the parametric space prevents
the algorithm to construct unacceptable meshes. This would not be assured working on the real
mesh.

This procedure can be used to optimize the boundary of a 3-D mesh. Note that the node
movement on the surface can produce a 3-D tangled mesh and, in this case, we have to use a
untangling and smoothing proceduf. [

10
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