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Abstract

Quasi-minimal residual algorithms, these are QMR, TFQM&R@MRCGSTAB, are biorthog-
onalisation methods for solving honsymmetric linear syst@f equations which improve
the irregular behaviour of BiCG, CGS and BICGSTAB algorithmespectively. They are
based on the quasi-minimisation of the residual using taedstrd Givens rotations that
lead to iterations with short term recurrences. In this papese quasi-minimisation prob-
lems are solved using a different direct solver which presidew versions of QMR-type
methods, the modified QMR methods (MQMR). MQMR algorithmsehdifferent conver-
gence behaviour in finite arithmetic although are equivaierthe standard ones in exact
arithmetic. The new implementations may reduce the numbiggrations in some cases.

In addition, we study the effect of reordering and precaadihg with Jacobi, ILU,
SSOR or sparse approximate inverse preconditioners ondtiermance of these algo-
rithms.

Some numerical experiments are solved in order to companetults obtained by stan-
dard and modified algorithms.

Key words: Nonsymmetric linear systems, sparse matrices, Krylovsates methods,
guasi-minimal residual methods, preconditioning, redndg

1 Introduction

The application of discretization techniques to obtainrapimnate solutions of par-
tial differential equations generally leads to large aratse linear systems of equa-
tions,
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Direct solvers have the disadvantage of producing therfiffect which affects
the memory requirements and the computational cost. Hawgerative methods
based on Krylov subspaces present some advantages widttésgirect ones and
other iterative solver.

For systems with symmetric positive definite matrix, the f0gate Gradient algo-
rithm [20] is in general the best choice. Nevertheless, faraymmetric systems,
there exist different families of methods [23], each of theith its own charac-
teristics of robustness and efficiency. Orthogonalisati@thods such as GMRES
[25] are constructed using a minimisation procedure in dd<rgubspace gener-
ated by A, what produces a smooth monotonic convergence but at trensgmf
increasing cost and memory requirements per iteration Bitenjugate Gradient
method (BIiCG) [9], reference of all biorthogonalisationthals, does not increase
the computational cost and memory requirements along énatibns. The pro-
cedure is defined by a Galerkin condition instead of a miratios as GMRES.
This leads to an erratic convergence behaviour with str@aglation of the resid-
ual norm. In addition, this algorithm includes a matrix-te¥qroduct withA” per
iteration and there exists a double possibility of breaksloSonneveld [26] pro-
poses a transpose free algorithm, the conjugate gradieared (CGS), a faster
converging alternative to BiCG when the latter convergeswth the same con-
vergence problems. In order to improve and smooth the cganee of the previous
biorthogonalisation methods, Van der Vorst [28] presdresiCGSTAB which has
a better performance in most of the cases but does not elienina break-downs.

Freund and Nachtigal [12] propose another biorthogonadisapproach, the quasi-
minimal residual method (QMR), which solves the rest of thE® problems,
although it is not transpose free. Each iteration is charesed by a quasi min-
imisation of the residual norm, leading to a smoother caysece without strong
oscillations. The break-down in BiCG due to nonexistemnaiies is avoided. On
the other hand, this method uses a look-ahead variant ofahgymmetric Lanc-
zos algorithm [13,14] for generating the basis of the Kndabspace, which elim-
inates the other case of possible break-down of BiCG. Howévesome appli-
cationsA is only accessible by approximations and not explicitlystich cases,
AT is not readily available. The Transpose-Free QMR algorifhFQMR) [11] is

a quasi-minimal residual version of the CGS algorithm tmbathes its conver-
gence without involvingd” -vector products. Following the same procedure, Chan
et al [5] propose a QMR variant of the BICGSTAB algorithm (QRIKSTAB),
which simultaneously takes advantage of the quasi-mimiticis of the residual
and the transpose free characteristic of BICGSTAB. Neetzts, the differences
between TFQMR and CGS is more appreciable than those be QM CGSTAB
and BICGSTAB due to the smoother behaviour of the latter amegh to CGS.
The relation between both families of algorithms is wellslirated in [29], where
the quasi-minimal residual methods are derived by usinguessmoothing tech-
niques in BiCG, CGS and BiCGSTAB algorithms, respectively.



The behaviour of these methods improves considerably wheropditioning is
used [1,24,4,27]. These techniques consist of transfathia original system (1)
into anotherAz = b, which provides the same solution, wheténas a lower con-
dition number. Implicit preconditioners construct approations of matrixA that
are easily reversible or suitable to factorise, for exampdeobi, SSOR and ILU.
More recently, the possibilities of parallel computing éded to explicit precon-
ditioners that directly approximate the inverse4fin [19,22] it is obtained such
approximate inversé/ by minimising the Frobenius norm of matrik\ — I. Also
a factorized approximate inverse is proposed in [2].

The effect of reordering techniques on the convergenceeaxfgmditioned Krylov
methods has been studied by several authors. Ahifds observed that reordering
has not a beneficial effect in the convergence behavioureo€timjugate Gradient
method with incomplete factorisation preconditioning wéwer, these techniques
considerably improve the convergence of other Krylov sabspnethods for solv-
ing nonsymmetric linear systems [8,3,10].

In section 2 we summarise the formulation of the standard Qigferithm and
introduce its modified version. Next, in sections 3 and 4peesvely, the modi-
fied TFQMR and QMRCGSTAB methods are developed. Section &vustdd to
some numerical experiments in order to compare the propakguithms with
other Krylov subspace methods, including the standard Q¥fR-algorithms. Fi-
nally, in section 6 we present the concluding remarks offihjser.

2 Modified QMR method

The approximate solution using the standard QMR methodh®Krylov subspace
of orderk is,
x =xo+ Vi u (2)

whereu minimises the norm,
[rer = T, ©
which is a simplification of the residual norm,
I 7lly = [Viss (ver = Tiw), (4)

whereV}, is the matrix which columns are the vectets: = 1, ..., k, obtained by
Lanczos biorthogonalisation proceduses |||, and matrixI’;, is,

7| (5)

t
Ok+1€¢



with,

a1 P

dy 9 (s .
03 ag .

Te=1 . . .. . S (6)

-2 Pr

cOp—1 Qg 5k

ok oy,

a, i =1,k 55,7 =2,...,k 0,1 =2,...,k + 1, are the parameters obtained
during Lanczos process (see, e.g., [24]).

In this paper, the quasi-minimisation problem is solvechgs similar procedure
to that developed in [15] for the minimisation problem argsin GMRES. We

will directly solve the minimum square problem related te tfuadratic functional
(3), instead of using the QR factorisation of matiix; see e.g. [16]. Consider
the orthogonal projection on the subspace of solutions efgiilasi-minimisation

problem (3) multiplying byT’, we obtain,
TZ T u:Tnyel (7
where the structure of thé + 1) x k matrix T}, is,

Uk

the first row of T, is ak dimension vectorll, and the rest is an upper triangular
matrix Uy,

dk:(alfgo...o)
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where,
{dy;=di={T} ~— i=1,.k (8)
{T},,,, 1<i<i<k
{U}y = wiy = o (9)
0 in the rest
then, the decomposition of the proda_ﬁ T} in (7) becomes in a sum,

m=1

Taking into account the decompositionﬁf T}, the equation (7), can be written
as,
(dkdf + UgUk) U= Tz ver (11)

and, fromT;fel = dj, we obtain,

(drdf + UL Ux ) u=nydy (12)

Using the associative and distributive properties of mgbroduct, the equation
above can be written as,

UL Ugu=dy (v — {dy, u) (13)
from,
i =7 — (di,u) (14)
U = NPk (15)
we obtain,

UkT Ukpr=dy, (16)



Which is a double triangular systemvhereU! y U, are triangular matrices and
only two substitution process are required for the solution

Once we solve (16), we computk to obtainu from equation (15),

Ni =7y — (dg,u) =y — N (dk, Di) (17)
thus,
N=— (18)

Note thatl + (d, px) # 0, because,

(i, pr) = <U1€TUkPk,pk> = HUkpkH; >0 (19)
therefore)\; never degenerates.
The proposed method requires:

1. Givend,, andU, defined in (8) and (9), solve in a double triangular systeramiv
in (16),

Uy pr = dy, (20)

Ukpr = D (21)
2. Compute)\; in equation (18).
3. Obtainu solving equation (15)
The residual vector whose norm is given in (4) can be obtdiroed,

r; = Vs (22)
wherer; is the(k + 1)-vector,

7 =ve —Thu (23)

and its entries can be computed as follow,

. N if =1
{ri}j = . (24)

Since, from partition of ', the first entry from(k + 1)-vector(T;, u) is {d, u), and
the rest of the entries are given byvector (U,u). Then the first entry of; is \;,
and the rest are,

—Uru = = NUrpr = —A\iDg (25)



wherep, can be kept in the resolution of the first triangular systeveigin (20).
Note that the residuals are not equivalent (as in GMRESgumvectors; are not

orthonormal)|r; ||, # ||7:||,- The MQMR algorithm obtained with direct solving of
the quasi-minimisation problem results as follows,

MQMR algorithm

Initial guessry. 7o = b — Axg

Dowhile vEFT || 7o ||/ |70 l> e (k=1,2,3, ).
ar, = (Avg, wy)
Upy1 = Avg — vk — Brvk—1
Wyy1 = Aka — Wi — OpWh—1
Ot = [Tk, Wrgr)]
Brs1 = (Oks1, Wiy1) /Ot
V41 = 77k+1/5k+1
Wi i1 = Wt1/Brn

SolveU! p=d; andUp = p

dy) =T
where {i {_1m Im=1,..k
U ={T},...
N
N — —
CT 1+ (d, p)

Up = AP



x = xo + Viuy ; beingVy, = [vg, vg, ..., vg]
T = Vk+17/:k ; beinngH = [Ul,vg, e Uk+1],

{ {Fih =N
Pk} = — M AD)

I=1,..k

End

We must take into account that the convergence criterioemdporn,, which is
the residual computed from Modified QMR.

3 Modified TFQMR Method

The approximation obtained using TFQMR method in a Krylobspace of di-
mensionk, is,

xo + Yieug (26)
whereYy, = [y1,y2, .., U], yx = i1 if K = 20 — 1is odd, andy, = ¢; if k = 2i
is even, and:;, minimises the nornﬂ (5161 — Ty u)H , Which represents a quasi-
minimum of the residual la norm (see Saad [24]),

I7illy = | W85ty (Brex = Axia Brug) H2 (27)
being, _ B
Tr = Ap1By, (28)
WhereW,,, is the matrix whose columns are the vectors,
Wit = [wy, W, .oy Wit (29)

and Ay, is a diagonal matrix, such th#t; ., is scaled upd, = || ||, if £ = 2i+1

isodd, ord, = /|| i1l || 74|, if £ = 2iis even),

01

da .
Api=1|. . .. . (30)
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Ok-+1



andBj is the(k + 1) x k matrix,
ozgl

_ao—l aal

—aal afl .

Br=1. ) . .. ) (31)

—1
- Qg—1)/2
-1 -1
C T Yk-1)/2 HE-1))2

—0G1)2

The MTFQMR algorithm obtained with direct solving of the guaninimisation
problem is as follows.

MTFQMR algorithm
Initial guessry. 7o = b — Axg
rg is arbitrary, such thatr, ) # 0
So =1ty =To
vy = Asg
po = (r0,75)
o1 = || ol
Dowhile i+ 1|7 i || /||70]>e (i=1,2,3,..)
oi-1 = (Vi1,75)
Qi1 = Pi—1/02‘—1
G =ti-1 — Q101
Ty = i1 — i At + q)
Fromk = 2i — 1,2i do

If £is odddo

Opr =\l riall 1 7lls yn = tia



Else

Okt1 = ||7”z Uk = q;
End
End

SolveU!'p = d, andUp = p

di}. =T
where {dik, { T}lm Im=1,..k
{Uk}lm - {T}lJrlm
01
A= ——
Up = A D

z = T + Yiuy ; With Yy, = [y1, 2, -, Yk

I=1,..,2

{ {rity = M
{Piti = A2 D},

Pi = <7’i77’3>
Bi = pi/pi-1
ti=ri+ 5igi

s; =t + Bi(q; + Bisi—1)
V; = ASZ‘

End

Now the convergence criterion dependsnwhich represents the residual, com-
puted from Modified TFQMR.



4 Modified QMRCGSTAB Method

The QMRCGSTAB algorithm proposed by Chan et al [5], makesguasi-minimi-
sations per iterations. If we defing = [y1, 2, ..., yx], beingyy 1 = g, for i =
L., [(k+1)/2] ([(k+1)/2] the integer part ofk + 1)/2) andyy = s, for | =
1,...,[k/2]([k/2] the integer part of/2). The approximate solution of the system
Ax = b, starting from the:-th Krylov subspace, is built ag + Y}, u., whereu, min-
imises the norr‘rH (5161 — Ty u) H2 which is again a quasi-minimum of the residual
norm,

| rell, = HWk-',-lA/;.|1_1 (5161 — A1 By Uk)H2 (32)
being, _ B
Tr = Ay1By, (33)
W1 is the matrix whose columns are the residual vectors,
Wit = [wr, w2, ..., Wi 1) (34)

with wy 1 = s, forl = 1,...,[(k+1)/2] andwy = r, forl = 1,...,[k/2]; and
Ay, is a diagonal matrix, such thét}, , is scaled up; = || w;l|),

01
5y .
Apa=1|. . ... (35)
. O
Okt1
By isthe(k + 1) x k matrix,
01_1
—Ufl 0_;1
_051 0_;1
By =|. : S : (36)
‘71;11
“Ok—1 Ok
_O-k_l

with ooy = w; forl =1,...,[(k+1)/2],andoy 1 = oy fori = 1,...,[(k+ 1)/2].

The MQMRCGSTAB algorithm obtained with direct solving oetljuasi-minimi-
sation problem is written below.



MQMRCGSTAB algorithm

Initial guessrgy, rg = b — Axg

rg is arbitrary, such thatrg, §) # 0

po=ap=wp =1

go=1v9=0

Dowhile2i +1 || Fi_y || /|70 |[> e (i=1,2,3,..)
pi = (g, ri-1)
Bi = (pi/pi71)<az’fl/wifl)
Gi = Ti—1 + Bi(gi—1 — wi—1vi—1)

v; = Ag;

Pi

<Ui7 7"8)

oy =
Si = Ti—1 — Q404

091 = ||Sz|| y Y2i—1 = G

tl' = ASZ‘
w; = <t27 Si)
(ti, ti)

ri = 8 — wit;
09 = HTzH v Y2, = S

SolveU;p = dy; andUs;p = p

{d2z}m - {T}lm

where _ Im=1,..2
{2}y, = {T}lJrlm
o1
Ayj = ————
2 1 + <d2i7 p>
Ugi = Ao P

x; = T + Yosug; With Yo, = [y1, yo, ..., Y2



P = I=1,..2
{Piti = A2 D},

End

The stopping criterion depends 9y the residual computed from MQMRCGSTAB.

5 Numerical experiments

We next compare the performance of the modified QMR-type austivith that of
the standard QMR-type, BICGSTAB and VGMRES [15] methodsddition, we
illustrate the effect of preconditioning and reorderingfia convergence of the pro-
posed algorithms. For our test runs, we always chgse 0 as starting vector. The
stopping criterion used in the iterations was||/||b|| < 10719, with r,, = b— Az,
being the true residual. In all experiments, we have chdsehést preconditioning
version (left, right or both sides) of each algorithm in eaghmple. Thus, although
the MQMR-type algorithms are equivalent to the standardg amexact arithmetic,
this was only appreciable when non preconditioned algmistiwere applied. In
these cases, the convergence paths were similar at thenbegof the iterations,
but soon they became different.

All experiments were run on a XEON Precision 530 with Foreruble Precision.

5.1 Example 1

This example has been taken from tHarwell-Boeing Sparse Matrix Collection
It is one of the OILGEN collection matrices, calledsregl It comes from an oil
reservoir problem on a1 x 21 x 5 grid, which yields a system df205 equa-
tions with 14133 non zero entries in the matrix. The convergence behaviour of
non preconditioned BICGSTAB, QMRCGSTAB and MQMRCGSTAB@ithms
is represented in figure 1(a). We can see the smoother camez®df QMR type
methods compared to that of BICGSTAB. Although the stangardion of QMR-
CGSTAB is faster than the modified one, we have observed iexpariments that
this behaviour is inverted when any preconditioning is usee table 1). For ex-
ample, figure 1(b) represents the convergence plots of Higedthms with Jacobi
preconditioner. Note again the smoother convergence of @B methods, with
MQMRCGSTAB showing the best performance by a significantyimar



Table 1
Number of iterations of BICGSTAB, QMRCGSTAB and MQMRCGSTABth several
preconditioners

orsregl NP Jacobi ILU SSOR | Diagopt

BiCGSTAB 1090 601 50 131 400
QMRCGSTAB 648 397 52 162 610
MQMRCGSTAB 826 306 50 156 300

5.2 Example 2

The second example, calledattl, has been selected from théarwell-Boeing
Sparse Matrix Collectiomoo. It also arises from an oil reservoir engineering prob-
lem and the linear system h&856 equations withl 1360 non zero entries in the
matrix.

Figures 2(a) and 2(b) show the performance of standard anlifiecb QMR type
methods, respectively, using an approximate inverse préttoner with diagonal
pattern. In this case, although the modified versions of QM& BFQMR reach
convergence before the standard ones, here the QMRCGSTaA&es than MQM-
RCGSTAB.

5.3 Example 3

The third numerical experimertifaref) is related to the convection-diffusion equa-
tion in a squaré) = (0,1) x (0,1)

ou ou Pu  *u .
o2 L dy (8902 + 8y2> 0 n

whereK = 1 and the velocity field is,
vy =C(y—1/2) (x—xQ), ve=C(1/2 —x) (y—yQ)

beingC = 10°. We impose Dirichlet boundary conditian= 0 onz = 1 andu = 1
onz = 0, and Neumann conditio% = 0ony = 0andy = 1. An adaptive finite
element discretization leads to a nonsymmetric linearesystf 7520 equations
with a matrix having2120 non zero entries.

In figure 3 we represent the convergence of some Krylov sulespeethods with
SSOR preconditioning. Note that MQMRCGSTAB reaches cayessee at a lower
number of iterations than BICGSTAB, QMRCGSTAB and VGMRES. fikst,

MQMRCGSTAB curve is close to VGMRES one, while at the end & tiee same



behaviour than QMRCGSTAB. This phenomenon has been repeateany oth-
ers experiments not included here.

In this problem the values ok andC' lead to an ill-conditioned system of equa-
tions. This fact may be understood by observing the speabifitthe original matrix
from cuaref in Figure 4. Indeed, the convergence of all tgerthms without pre-
conditioning was very slowly in this example.

5.4 Example 4

The last linear system arise from a two-dimensional conwedaliffusion problem
(convdifho) defined in a squar®, see figure 5,

ou 0*u  *u
ox

Ul——K @+a—y2>:F in Q)

with a velocity field given by,
v =10"(y - 1/2) (v — 2%) (1/2 - x)

Here K = 107°in ), and K = 10? elsewhere, and’ = 103 in Qs andF = 1
elsewhere. The boundary conditions are the same as in ee&nfain, an adap-
tive finite element discretization yields a nonsymmetristeyn of3423 equations
where the matrix contair&3579 non zero entries.

Figure 6 illustrates the effect of ordering on the conveogeaf Preconditioned
MTFQMR when we use ILU(0). In this example, Minimum Degre&][IMini-
mum Neighbouring [21] and Reverse Cuthill-McKee [6,17]rdying algorithms
have been applied (see also [10] for the effect on sparsexippeite inverse pre-
conditioners). The results show that a suitable reordeabnique may reduce
about 50% the number of iterations when we use an incompdeterisation as
preconditioner.
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Fig. 1. Convergence of stabilised biorthogonalisationhoés fororsregl
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(b) Modified QMR-type algorithms

Fig. 2. Convergence of standard and modified QMR algorithiitis diagonal approximate
inverse preconditioning fowattl
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Fig. 3. Performance of several Krylov subspace methods 88®R preconditioning for
cuaref (7520 equations)
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are plotted.
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Fig. 6. Effect of ordering on the convergence of MTFQMR withJ(0) preconditioning
convdifhor(3423 equations)

6 Conclusion

The modified versions of QMR methods may lead to faster cgerere than the
standard ones. This effect is remarked if preconditiongngsed. The studied nu-
merical experiments shows that the modified algorithms krgec to GMRES at

the beginning of the convergence process but at lower catipoal cost, and work
like the standard QMR methods at the last iterations. We kiaviéed that order-

ing techniques improve the rate of convergence and the ctatioal cost of the

modified algorithms, specially with ILU and SSOR precoratitng.
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