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Abstract

Quasi-minimal residual algorithms, these are QMR, TFQMR and QMRCGSTAB, are biorthog-
onalisation methods for solving nonsymmetric linear systems of equations which improve
the irregular behaviour of BiCG, CGS and BiCGSTAB algorithms, respectively. They are
based on the quasi-minimisation of the residual using the standard Givens rotations that
lead to iterations with short term recurrences. In this paper, these quasi-minimisation prob-
lems are solved using a different direct solver which provides new versions of QMR-type
methods, the modified QMR methods (MQMR). MQMR algorithms have different conver-
gence behaviour in finite arithmetic although are equivalent to the standard ones in exact
arithmetic. The new implementations may reduce the number of iterations in some cases.

In addition, we study the effect of reordering and preconditioning with Jacobi, ILU,
SSOR or sparse approximate inverse preconditioners on the performance of these algo-
rithms.

Some numerical experiments are solved in order to compare the results obtained by stan-
dard and modified algorithms.

Key words: Nonsymmetric linear systems, sparse matrices, Krylov subspace methods,
quasi-minimal residual methods, preconditioning, reordering.

1 Introduction

The application of discretization techniques to obtain approximate solutions of par-
tial differential equations generally leads to large and sparse linear systems of equa-
tions,

Ax = b (1)
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Direct solvers have the disadvantage of producing the fill-in effect which affects
the memory requirements and the computational cost. However, iterative methods
based on Krylov subspaces present some advantages with respect to direct ones and
other iterative solver.

For systems with symmetric positive definite matrix, the Conjugate Gradient algo-
rithm [20] is in general the best choice. Nevertheless, for nonsymmetric systems,
there exist different families of methods [23], each of themwith its own charac-
teristics of robustness and efficiency. Orthogonalisationmethods such as GMRES
[25] are constructed using a minimisation procedure in a Krylov subspace gener-
ated byA, what produces a smooth monotonic convergence but at the expense of
increasing cost and memory requirements per iteration. TheBiconjugate Gradient
method (BiCG) [9], reference of all biorthogonalisation methods, does not increase
the computational cost and memory requirements along the iterations. The pro-
cedure is defined by a Galerkin condition instead of a minimisation as GMRES.
This leads to an erratic convergence behaviour with strong oscillation of the resid-
ual norm. In addition, this algorithm includes a matrix-vector product withAT per
iteration and there exists a double possibility of break-down. Sonneveld [26] pro-
poses a transpose free algorithm, the conjugate gradient squared (CGS), a faster
converging alternative to BiCG when the latter converges, but with the same con-
vergence problems. In order to improve and smooth the convergence of the previous
biorthogonalisation methods, Van der Vorst [28] presents the BiCGSTAB which has
a better performance in most of the cases but does not eliminate the break-downs.

Freund and Nachtigal [12] propose another biorthogonalisation approach, the quasi-
minimal residual method (QMR), which solves the rest of the BiCG problems,
although it is not transpose free. Each iteration is characterised by a quasi min-
imisation of the residual norm, leading to a smoother convergence without strong
oscillations. The break-down in BiCG due to nonexistent iterates is avoided. On
the other hand, this method uses a look-ahead variant of the nonsymmetric Lanc-
zos algorithm [13,14] for generating the basis of the Krylovsubspace, which elim-
inates the other case of possible break-down of BiCG. However, in some appli-
cationsA is only accessible by approximations and not explicitly. Insuch cases,
AT is not readily available. The Transpose-Free QMR algorithm(TFQMR) [11] is
a quasi-minimal residual version of the CGS algorithm that smoothes its conver-
gence without involvingAT -vector products. Following the same procedure, Chan
et al [5] propose a QMR variant of the BiCGSTAB algorithm (QMRCGSTAB),
which simultaneously takes advantage of the quasi-minimisation of the residual
and the transpose free characteristic of BiCGSTAB. Nevertheless, the differences
between TFQMR and CGS is more appreciable than those betweenQMRCGSTAB
and BiCGSTAB due to the smoother behaviour of the latter compared to CGS.
The relation between both families of algorithms is well illustrated in [29], where
the quasi-minimal residual methods are derived by using residual smoothing tech-
niques in BiCG, CGS and BiCGSTAB algorithms, respectively.



The behaviour of these methods improves considerably when preconditioning is
used [1,24,4,27]. These techniques consist of transforming the original system (1)
into anotherAx = b, which provides the same solution, whereA has a lower con-
dition number. Implicit preconditioners construct approximations of matrixA that
are easily reversible or suitable to factorise, for example, Jacobi, SSOR and ILU.
More recently, the possibilities of parallel computing have led to explicit precon-
ditioners that directly approximate the inverse ofA. In [19,22] it is obtained such
approximate inverseM by minimising the Frobenius norm of matrixAM−I. Also
a factorized approximate inverse is proposed in [2].

The effect of reordering techniques on the convergence of preconditioned Krylov
methods has been studied by several authors. In [7,?] it is observed that reordering
has not a beneficial effect in the convergence behaviour of the Conjugate Gradient
method with incomplete factorisation preconditioning. However, these techniques
considerably improve the convergence of other Krylov subspace methods for solv-
ing nonsymmetric linear systems [8,3,10].

In section 2 we summarise the formulation of the standard QMRalgorithm and
introduce its modified version. Next, in sections 3 and 4, respectively, the modi-
fied TFQMR and QMRCGSTAB methods are developed. Section 5 is devoted to
some numerical experiments in order to compare the proposedalgorithms with
other Krylov subspace methods, including the standard QMR-type algorithms. Fi-
nally, in section 6 we present the concluding remarks of thispaper.

2 Modified QMR method

The approximate solution using the standard QMR method for the Krylov subspace
of orderk is,

xk = x0 + Vk u (2)

whereu minimises the norm,
∥∥∥γe1 − T k u

∥∥∥
2

(3)

which is a simplification of the residual norm,

‖ r‖2 =
∥∥∥Vk+1

(
γe1 − T k u

)∥∥∥
2

(4)

whereVk is the matrix which columns are the vectorsvi, i = 1, ..., k, obtained by
Lanczos biorthogonalisation procedure,γ = ‖r0‖2, and matrixT k is,

T k =




Tk

δk+1e
t
k



 (5)



with,

Tk =





α1 β2 .

δ2 α2 β3 .

δ3 α3 .

. . . . . . .

. αk−2 βk−1

. δk−1 αk−1 βk

. δk αk





(6)

αi, i = 1, ..., k; βj , j = 2, ..., k; δl, l = 2, ..., k + 1, are the parameters obtained
during Lanczos process (see, e.g., [24]).

In this paper, the quasi-minimisation problem is solved using a similar procedure
to that developed in [15] for the minimisation problem arising in GMRES. We
will directly solve the minimum square problem related to the quadratic functional
(3), instead of using the QR factorisation of matrixT k; see e.g. [16]. Consider
the orthogonal projection on the subspace of solutions of the quasi-minimisation
problem (3) multiplying byT

T
k we obtain,

T
T
k T k u=T

T
k γe1 (7)

where the structure of the(k + 1) × k matrixT k is,

T k =





dT
k

Uk

0





the first row ofT k is ak dimension vectordt
k, and the rest is an upper triangular

matrixUk,

dk =
(

α1 β2 0 . . . 0

)



Uk =





δ2 α2 β3 .

δ3 α3 β4

.

. . . . . . .

. δk−1 αk−1 βk

(0) . δk αk

. δk+1





where,

{dk}i = di =
{
T
}

1i
i = 1, ..., k (8)

{Uk}ij = uij =






{
T
}

i+1, j
1 ≤ i ≤ j ≤ k

0 in the rest
(9)

then, the decomposition of the productT
T
k T k in (7) becomes in a sum,

{
T

T
k T k

}

ij
= didj +

k∑

m=1

umiumj (10)

Taking into account the decomposition ofT
T
k T k, the equation (7), can be written

as, (
dkd

T
k + UT

k Uk

)
u = T

T
k γe1 (11)

and, fromT
T
k e1 = dk, we obtain,

(
dkd

T
k + UT

k Uk

)
u=γdk (12)

Using the associative and distributive properties of matrix product, the equation
above can be written as,

UT
k Uku=dk (γ − 〈dk, u〉) (13)

from,

λi = γ − 〈dk, u〉 (14)
u = λipk (15)

we obtain,
UT

k Ukpk=dk (16)



Which is a double triangular system, whereUT
k y Uk are triangular matrices and

only two substitution process are required for the solution.

Once we solve (16), we computeλi to obtainu from equation (15),

λi = γ − 〈dk, u〉 = γ − λi 〈dk, pk〉 (17)

thus,
λi =

γ

1 + 〈dk, pk〉
(18)

Note that1 + 〈dk, pk〉 6= 0, because,

〈dk, pk〉 =
〈
UT

k Ukpk, pk

〉
= ‖Ukpk‖2

2 ≥ 0 (19)

thereforeλi never degenerates.

The proposed method requires:

1. Givendk andUk defined in (8) and (9), solve in a double triangular system given
in (16) ,

UT
k p̄k = dk (20)

Ukpk = p̄k (21)

2. Computeλi in equation (18).

3. Obtainu solving equation (15)

The residual vector whose norm is given in (4) can be obtainedfrom,

ri = Vk+1r̂i (22)

wherer̂i is the(k + 1)-vector,

r̂i = γe1 − T k u (23)

and its entries can be computed as follow,

{r̂i}j =






λi if j = 1

−λip̄k if j = 2, ..., k + 1
(24)

Since, from partition ofT k, the first entry from(k+1)-vector(T k u) is 〈dk, u〉, and
the rest of the entries are given byk-vector(Uku). Then the first entry of̂ri is λi,
and the rest are,

−Uku = −λiUkpk = −λip̄k (25)



wherep̄k can be kept in the resolution of the first triangular system given in (20).

Note that the residuals are not equivalent (as in GMRES), because vectorsvi are not
orthonormal,‖ri‖2 6= ‖r̂i‖2. The MQMR algorithm obtained with direct solving of
the quasi-minimisation problem results as follows,

MQMR algorithm

Initial guessx0. r0 = b − Ax0

β1 = δ1 = 0

v0 = w0 = 0

γ = ‖r0‖

v1 = w1 =
1

γ
r0

Do while
√

k + 1 ‖ r̂k−1 ‖ / ‖ r0 ‖≥ ε (k = 1, 2, 3, ...),

αk = 〈Avk, wk〉

v̂k+1 = Avk − αkvk − βkvk−1

ŵk+1 = AT wk − αkwk − δkwk−1

δk+1 = |〈v̂k+1, ŵk+1〉|1/2

βk+1 = 〈v̂k+1, ŵk+1〉 /δk+1

vk+1 = v̂k+1/δk+1

wk+1 = ŵk+1/βk+1

SolveUT
k p̄=dk andUkp = p̄

where






{dk}m =
{
T
}

1m

{Uk}lm =
{
T
}

l+1m

l, m = 1, ..., k

λk =
γ

1 + 〈dk, p〉

uk = λk p



xk = x0 + Vkuk ; beingVk = [v1, v2, ..., vk]

rk = Vk+1r̂k ; beingVk+1 = [v1, v2, ..., vk+1],






{r̂k}1 = λk

{r̂k}l+1 = −λk {p̄}l

l = 1, ..., k

End

We must take into account that the convergence criterion depends on̂rk, which is
the residual computed from Modified QMR.

3 Modified TFQMR Method

The approximation obtained using TFQMR method in a Krylov subspace of di-
mensionk, is,

x0 + Ykuk (26)

whereYk = [y1, y2, ..., yk], yk = ti−1 if k = 2i − 1 is odd, andyk = qi if k = 2i

is even, anduk minimises the norm
∥∥∥
(
δ1e1 − T̄k u

)∥∥∥
2
, which represents a quasi-

minimum of the residual la norm (see Saad [24]),

‖ rk‖2 =
∥∥∥Wk+1∆

−1
k+1

(
δ1e1 − ∆k+1Bkuk

)∥∥∥
2

(27)

being,
T̄ k = ∆k+1Bk (28)

WhereWk+1 is the matrix whose columns are the vectors,

Wk+1 = [w1, w2, ..., wk+1] (29)

and∆k+1 is a diagonal matrix, such thatWk+1 is scaled up (δk = ‖ ri‖, if k = 2i+1

is odd, orδk =
√
‖ ri−1‖ ‖ ri‖, if k = 2i is even),

∆k+1 =





δ1 .

δ2 .

. . . . .

. δk

. δk+1





(30)



andBk is the(k + 1) × k matrix,

Bk =





α−1
0 .

−α−1
0 α−1

0 .

−α−1
0 α−1

1 .

. . . . . .

. α−1
(k−1)/2

. −α−1
(k−1)/2 α−1

(k−1)/2

. −α−1
(k−1)/2





(31)

The MTFQMR algorithm obtained with direct solving of the quasi-minimisation
problem is as follows.

MTFQMR algorithm

Initial guessx0. r0 = b − Ax0

r∗0 is arbitrary, such that〈r0, r
∗

0〉 6= 0

s0 = t0 = r0

v0 = As0

ρ0 = 〈r0, r
∗

0〉

δ1 = ‖ r0‖

Do while
√

i + 1 ‖ r̂i−1 ‖ / ‖ r0 ‖≥ ε (i = 1, 2, 3, ...)

σi−1 = 〈vi−1, r
∗

0〉

αi−1 = ρi−1/σi−1

qi = ti−1 − αi−1vi−1

ri = ri−1 − αi−1A (ti−1 + qi)

Fromk = 2i − 1, 2i do

If k is odd do

δk+1 =
√
‖ ri−1‖ ‖ ri‖; yk = ti−1



Else

δk+1 = ‖ ri‖; yk = qi

End

End

SolveUT
k p̄ = dk andUkp = p̄

where






{dk}m =
{
T̄
}

1m

{Uk}lm =
{
T̄
}

l+1m

l, m = 1, ..., k

λk =
δ1

1 + 〈dk, p〉

uk = λk p

xk = x0 + Ykuk ; with Yk = [y1, y2, ..., yk]






{r̂i}1 = λ2i

{r̂i}l+1 = −λ2i {p̄}l

l = 1, ..., 2i

ρi = 〈ri, r
∗

0〉

βi = ρi/ρi−1

ti = ri + βiqi

si = ti + βi(qi + βisi−1)

vi = Asi

End

Now the convergence criterion depends onr̂k, which represents the residual, com-
puted from Modified TFQMR.



4 Modified QMRCGSTAB Method

The QMRCGSTAB algorithm proposed by Chan et al [5], makes twoquasi-minimi-
sations per iterations. If we defineYk = [y1, y2, ..., yk], beingy2l−1 = gl for l =
1, ..., [(k + 1)/2] ([(k + 1)/2] the integer part of(k + 1)/2) andy2l = sl for l =
1, ..., [k/2]([k/2] the integer part ofk/2). The approximate solution of the system
Ax = b, starting from thek-th Krylov subspace, is built asx0+Ykuk, whereuk min-
imises the norm

∥∥∥
(
δ1e1 − T̄k u

)∥∥∥
2
, which is again a quasi-minimum of the residual

norm,
‖ rk‖2 =

∥∥∥Wk+1∆
−1
k+1

(
δ1e1 − ∆k+1Bk uk

)∥∥∥
2

(32)

being,
T̄ k = ∆k+1Bk (33)

Wk+1 is the matrix whose columns are the residual vectors,

Wk+1 = [w1, w2, ..., wk+1] (34)

with w2l−1 = sl for l = 1, ..., [(k + 1)/2] andw2l = rl for l = 1, ..., [k/2]; and
∆k+1 is a diagonal matrix, such thatWk+1 is scaled up (δi = ‖wi‖),

∆k+1 =





δ1 .

δ2 .

. . . . .

. δk

. δk+1





(35)

Bk is the(k + 1) × k matrix,

Bk =





σ−1
1 .

−σ−1
1 σ−1

2 .

−σ−1
2 σ−1

3 .

. . . . . .

. σ−1
k−1

. −σ−1
k−1 σ−1

k

. −σ−1
k





(36)

with σ2l = ωl for l = 1, ..., [(k + 1)/2], andσ2l−1 = αl for l = 1, ..., [(k + 1)/2].

The MQMRCGSTAB algorithm obtained with direct solving of the quasi-minimi-
sation problem is written below.



MQMRCGSTAB algorithm

Initial guessx0, r0 = b − Ax0

r∗0 is arbitrary, such that〈r0, r
∗

0〉 6= 0

ρ0 = α0 = ω0 = 1

g0 = v0 = 0

Do while
√

2i + 1 ‖ r̂i−1 ‖ / ‖ r0 ‖≥ ε (i = 1, 2, 3, ...)

ρi = 〈r∗0, ri−1〉

βi = (ρi/ρi−1)(αi−1/ωi−1)

gi = ri−1 + βi(gi−1 − ωi−1vi−1)

vi = Agi

αi =
ρi

〈vi, r∗0〉

si = ri−1 − αivi

δ2i−1 = ‖si‖ , y2i−1 = gi

ti = Asi

ωi =
〈ti, si〉
〈ti, ti〉

ri = si − ωiti

δ2i = ‖ri‖ , y2i = si

SolveU t
2ip̄ = d2i andU2ip = p̄

where






{d2i}m =
{
T
}

1m

{U2i}lm =
{
T
}

l+1m

l, m = 1, ..., 2i

λ2i =
δ1

1 + 〈d2i, p〉

u2i = λ2i p

xi = x0 + Y2iu2i; with Y2i = [y1, y2, ..., y2i]








{r̂i}1 = λ2i

{r̂i}l+1 = −λ2i {p̄}l

l = 1, ..., 2i

End

The stopping criterion depends onr̂k, the residual computed from MQMRCGSTAB.

5 Numerical experiments

We next compare the performance of the modified QMR-type methods with that of
the standard QMR-type, BiCGSTAB and VGMRES [15] methods. Inaddition, we
illustrate the effect of preconditioning and reordering inthe convergence of the pro-
posed algorithms. For our test runs, we always chosex0 = 0 as starting vector. The
stopping criterion used in the iterations was||rk||/||b|| < 10−10, with rk = b−Axk

being the true residual. In all experiments, we have chosen the best preconditioning
version (left, right or both sides) of each algorithm in eachexample. Thus, although
the MQMR-type algorithms are equivalent to the standard ones in exact arithmetic,
this was only appreciable when non preconditioned algorithms were applied. In
these cases, the convergence paths were similar at the beginning of the iterations,
but soon they became different.

All experiments were run on a XEON Precision 530 with FortranDouble Precision.

5.1 Example 1

This example has been taken from theHarwell-Boeing Sparse Matrix Collection.
It is one of the OILGEN collection matrices, calledorsreg1. It comes from an oil
reservoir problem on a21 × 21 × 5 grid, which yields a system of2205 equa-
tions with 14133 non zero entries in the matrix. The convergence behaviour of
non preconditioned BiCGSTAB, QMRCGSTAB and MQMRCGSTAB algorithms
is represented in figure 1(a). We can see the smoother convergence of QMR type
methods compared to that of BiCGSTAB. Although the standardversion of QMR-
CGSTAB is faster than the modified one, we have observed in ourexperiments that
this behaviour is inverted when any preconditioning is used(see table 1). For ex-
ample, figure 1(b) represents the convergence plots of thesealgorithms with Jacobi
preconditioner. Note again the smoother convergence of QMRtype methods, with
MQMRCGSTAB showing the best performance by a significant margin.



Table 1
Number of iterations of BiCGSTAB, QMRCGSTAB and MQMRCGSTABwith several
preconditioners

orsreg1 NP Jacobi ILU SSOR Diagopt

BiCGSTAB 1090 601 50 131 400

QMRCGSTAB 648 397 52 162 610

MQMRCGSTAB 826 306 50 156 300

5.2 Example 2

The second example, calledwatt1, has been selected from theHarwell-Boeing
Sparse Matrix Collectiontoo. It also arises from an oil reservoir engineering prob-
lem and the linear system has1856 equations with11360 non zero entries in the
matrix.

Figures 2(a) and 2(b) show the performance of standard and modified QMR type
methods, respectively, using an approximate inverse preconditioner with diagonal
pattern. In this case, although the modified versions of QMR and TFQMR reach
convergence before the standard ones, here the QMRCGSTAB isfaster than MQM-
RCGSTAB.

5.3 Example 3

The third numerical experiment (cuaref) is related to the convection-diffusion equa-
tion in a squareΩ = (0, 1) × (0, 1)

v1
∂u

∂x
+ v2

∂u

∂y
− K

(
∂2u

∂x2
+

∂2u

∂y2

)

= 0 in Ω

whereK = 1 and the velocity field is,

v1 = C (y − 1/2)
(
x − x2

)
, v2 = C (1/2 − x)

(
y − y2

)

beingC = 105. We impose Dirichlet boundary conditionu = 0 onx = 1 andu = 1
onx = 0, and Neumann condition∂u

∂y
= 0 on y = 0 andy = 1. An adaptive finite

element discretization leads to a nonsymmetric linear system of 7520 equations
with a matrix having52120 non zero entries.

In figure 3 we represent the convergence of some Krylov subspace methods with
SSOR preconditioning. Note that MQMRCGSTAB reaches convergence at a lower
number of iterations than BiCGSTAB, QMRCGSTAB and VGMRES. At first,
MQMRCGSTAB curve is close to VGMRES one, while at the end it has the same



behaviour than QMRCGSTAB. This phenomenon has been repeated in many oth-
ers experiments not included here.

In this problem the values ofK andC lead to an ill-conditioned system of equa-
tions. This fact may be understood by observing the spectrumof the original matrix
from cuaref in Figure 4. Indeed, the convergence of all the algorithms without pre-
conditioning was very slowly in this example.

5.4 Example 4

The last linear system arise from a two-dimensional convection-diffusion problem
(convdifhor) defined in a squareΩ, see figure 5,

v1
∂u

∂x
− K

(
∂2u

∂x2
+

∂2u

∂y2

)

= F in Ω

with a velocity field given by,

v1 = 104 (y − 1/2)
(
x − x2

)
(1/2 − x)

HereK = 10−5 in Ω2 andK = 102 elsewhere, andF = 103 in Ω3 andF = 1
elsewhere. The boundary conditions are the same as in example 3. Again, an adap-
tive finite element discretization yields a nonsymmetric system of3423 equations
where the matrix contains23579 non zero entries.

Figure 6 illustrates the effect of ordering on the convergence of Preconditioned
MTFQMR when we use ILU(0). In this example, Minimum Degree [18], Mini-
mum Neighbouring [21] and Reverse Cuthill-McKee [6,17] reordering algorithms
have been applied (see also [10] for the effect on sparse approximate inverse pre-
conditioners). The results show that a suitable reorderingtechnique may reduce
about 50% the number of iterations when we use an incomplete factorisation as
preconditioner.
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Fig. 1. Convergence of stabilised biorthogonalisation methods fororsreg1
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Fig. 2. Convergence of standard and modified QMR algorithms with diagonal approximate
inverse preconditioning forwatt1
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6 Conclusion

The modified versions of QMR methods may lead to faster convergence than the
standard ones. This effect is remarked if preconditioning is used. The studied nu-
merical experiments shows that the modified algorithms are closer to GMRES at
the beginning of the convergence process but at lower computational cost, and work
like the standard QMR methods at the last iterations. We haveverified that order-
ing techniques improve the rate of convergence and the computational cost of the
modified algorithms, specially with ILU and SSOR preconditioning.
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