Adaptive numerical model for solar radiation

G. Montero, J.M. Escobar, E. Rodríguez, R. Montenegro

Dirección General de Investigación
Ministerio de Educación y Ciencia of the Spanish Government grant number CGL2007-65680-C03-01CLI

8th. World Congress on Computational Mechanics (WCCM8)
5th European Congress on Computational Methods in
Applied Sciences and Engineeering (ECCOMAS 2008)
J une 30 J uly 5, 2008. Venice, Italy

Contents

1. Introduction
2. Construction of the terrain surface mesh
3. Detection of shadows
4. Solar radiation modelling
-Solar radiation equations for clear sky
Beam radiation
Diffuse radiation
Reflected radiation
-Solar radiation under overcast sky
5. Numerical experiments
6. Conclusions

Introduction

INGENIERIA COMPUTACIONAL

- Solar power is one of the most appreciate renewable energies in the world
-Three groups of factors determine the interaction of solar radiation with the earth's atmosphere and surface
a. The Earth's geometry, revolution and rotation
(declination, latitude, solar hour angle)
b. Terrain (elevation, albedo, surface inclination/ orientation, shadows)
c. Atmospheric attenuation (scattering, absorption) by
c.1. Gases (air molecules, ozone, CO_{2} and O_{2})
c.2. Solid and liquid particles (aerosols, including non-condensed water)
c. 3. Clouds (condensed water)
-We focus the study on the accurate definition of the terrain surface and the produced shadows by using an adaptive mesh of triangles

Introduction

Construction of the terrain surface mesh

- Build a sequence of nested meshes from a regular triangulation of the rectangular region, such that the level \mathbf{j} is obtained by a global refinement of the previous level $\mathbf{j}-1$ with the 4-T Rivara's algorithm
-The number of levels m of the sequence is determined by the degree of discretization of the terrain,
- Define a new sequence until level $\mathbf{m \prime} \leq m$ applying a derefinement algorithm.
-Two derefinement parameters ε_{h} and ε_{a} are introduced and they determine the accuracy of the approximation to terrain surface and albedo, respectively.

Shadow detection

The solar beam direction is

$$
v_{\text {sol }}=\left(\cos h_{0} \sin A_{0}, \cos h_{0} \cos A_{0}, \sin h_{0}\right)
$$

where h_{0} is the solar altitude and A_{0}, the solar azimuth
Construct a reference system x^{\prime}, y^{\prime} and z^{\prime}, with z^{\prime} in the direction of the beam radiation, and the mesh is projected on the plane $x^{\prime} y^{\prime}$

Shadow detection

SIAดI
The incidence solar angle $\delta_{\exp }$ is then computed for each triangle Check for each triangle Δ of the mesh, if there exists another Δ^{\prime} which intersects Δ and is in front of it, i.e., the z^{\prime} coordinates of the vertices of Δ^{\prime} are greater than those of Δ.

The analysis of the intersection between triangles involves a high cost.

We have considered four warning points whose area coordinates, referenced to the master element with vertices $(0,0)$,
$(1,0)$ and $(0,1)$ are $(1 / 3,1 / 6,1 / 2)$,
($1 / 6,1 / 3,1 / 2$), ($2 / 3,1 / 6,1 / 6$) and
(1/6, 2/3, 1/6) (the geometrical centres of the 4-T Rivara's subtriangles)

Lighting factor of each triangle

$$
L f=1-i / 4
$$

where $\mathrm{i}=0, . ., 4$, is the number of warning points inside other triangles that are in front of Δ.

Shadows detection

Sinn

14:00 hours

18:00 hours

Solar radiation modelling

General aspects

-This solar radiation model is based on the work of Šúri and Hofierka about a GISbased model.

- Use of adaptive meshes for surface discretization and a new method for detecting the shadows over each triangle of the surface.
-We first calculate the solar radiation under the assumption of clear sky for all the triangles of the mesh, taking into account the lighting factor of each triangle.
- Next these solar radiation values are corrected for a real sky by using the available data of the measurement stations in each time step along an episode.
-Finally, the total solar radiation is obtained integrating all the instantaneous values in each triangle.

Solar radiation modelling

Solar radiation equations for clear sky

Solar radiation types

Solar radiation modelling

Solar radiation equations for clear sky

Beam radiation

Extraterrestrial irradiance G_{0} normal to the solar beam,
Beam irradiance

$$
\epsilon=1+0.03344 \cos \left(j^{\prime}-0.048869\right) \longleftarrow \text { Correction factor }
$$

Beam irradiance normal to the solar beam $\mathrm{B}_{0 \mathrm{c}}$

$$
\left.B_{0 c}=G_{0} \exp \left\{-0.8662 T_{L K}\right) m \delta_{R}(m)\right\}
$$

Beam irradiance on a horizontal surface

$$
B_{h c}=B_{0 c} L_{f} \sinh _{0}
$$

Beam irradiance on an inclined surface

$$
B_{i c}=B_{0 c} L_{f} \sin \delta_{e x p}
$$

$\delta_{\text {exp }}$ the incidence solar angle

Linke atmospheric turbidity factor relative optical air mass
L_{f} is the lighting factor

Solar radiation modelling

Solar radiation equations for clear sky

Diffuse radiation

Diffuse radiation on horizontal surfaces

Diffuse radiation on inclined surfaces

$$
D_{h c}=G_{0} T_{n}\left(T_{L K}\right)\left(F_{d}\left(h_{0}\right)\right.
$$

Function depending on the solar altitude

Shadowed surfaces $\quad D_{i c}=D_{h c} F\left(\gamma_{N}\right)$

Solar radiation modelling

Solar radiation equations for clear sky

Reflected radiation

$$
R_{i}=\rho_{g} G_{h c} r_{g}\left(\gamma_{N}\right)
$$

Mean ground albedo
where

$$
\begin{aligned}
r_{g}\left(\gamma_{N}\right) & =\left(1-\cos \gamma_{N}\right) / 2 \\
G_{h c} & =B_{h c}+D_{h c}
\end{aligned}
$$

Solar radiation modelling

Solar radiation under overcast sky

The values of global irradiation on a horizontal surface for overcast conditions G_{h} are calculated as a correction of those of clear sky $G_{h c}$ with the clear sky index k_{c}

$$
G_{h}=G_{h c} k_{c}
$$

If some measures of global radiation G_{hs} are available at different measurement stations, the value of the clear sky index at those points may be computed as

$$
k_{c}=G_{h s} / G_{h c}
$$

Then k_{c} may be interpolated in the whole studied zone.

$$
k_{c}=\varepsilon \frac{\sum_{n=1}^{N} \frac{k_{c n}}{d_{n}^{2}}}{\sum_{n=1}^{N} \frac{1}{d_{n}^{2}}}+(1-\varepsilon) \frac{\sum_{n=1}^{N} \frac{k_{c n}}{\left|\Delta h_{n}\right|}}{\sum_{n=1}^{N} \frac{1}{\left|\Delta h_{n}\right|}}
$$

Numerical experiments

The studied case corresponds to Gran Canaria, one of the Canary Islands in the Atlantic Ocean at $\mathbf{2 8 . 0 6}$ latitude and -15.25 longitude.
The UTM coordinates (metres) that define the corners of the considered rectangular domain including the island are (417025, 3061825) and (466475, 3117475), respectively.

The selected episode includes the period from September 1st, 2006, until May 31th, 2007

The average overcast global radiation, considering the 273 days with observational data, was 16.8264 M per day.

We present the graphical results of December as example.

Numerical experiments

Geolocation of different sites on Gran Canaria Island. Beside latitude, longitude and height (m) of each station place, the corresponding description of village is provided.

Island	site	latitude	longitude height	
Pozo Izquierdo	C0	27.8175	N	15.4244 W
47				
Las Palmas de G. C.	C1	28.1108	N 15.4169 W	17
La Aldea de San Nicolás C2	27.9901 N 15.7907 W	197		
San Fernando de M.	C4	27.7716 N 15.5841 W	265	
Santa Brígida	C5	28.0337 N 15.4991 W	525	
Mogán (village)	C6	27.8839 N 15.7216 W	300	
Sardina de Gáldar	C7	28.1681 N 15.6865 W	40	
Airport	AP 27.9325 N 15.3897 W	26		
Maspalomas	MP 27.7500 N 15.5667 W	25		

Contour map of Gran Canaria

Numerical experiments

Albedo map of Gran Canaria

Numerical experiments

5866 nodes 11683 triangles

Triangular mesh adapted to topography and al bedo

S .

Numerical experiments

$82-83 \%$ of the mean global irradiation

Beam radiation map ($/ \mathrm{m}^{2}$) relative to December 2006

SIAกI
 INGENIERIA COMPUTACIONAL

Numerical experiments
$16-17 \%$ of the mean global irradiation

Diffuse radiation map (J / m²) relative to December 2006

Sinn
$0-0.4 \%$ of the mean global irradiation

Numerical experiments

Reflected radiation map (J/m²) relative to December 2006

Sinn

Numerical experiments

Clear sky global radiation map (J/m²) relative to December 2006

UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA

$$
\because
$$

SIAกI
 INGENIERIA COMPUTACIONAL

Numerical experiments

Overcast global radiation map ($\mathrm{J} / \mathrm{m}^{2}$) relative to December 2006

Numerical experiments

Monthly average and maximum beam, diffuse, reflected clear sky radiations. Also clear sky and overcast global radiations are included. All of them are represented in $M J / \mathrm{m}^{2}$.

	Clear Sky		Overcast	
Beam Rad.	Diffuse Rad.	Reflected Rad.	Global Rad.	Global Rad.

| Month | Average Maximum | | Average Maximum | Average Maximum | | | Average Maximum Average Maximum | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| September 2006 | 604.1041 | 734.0300 | 117.2395 | 129.2300 | 3.1205 | 34.2600 | 724.4642 | 868.6000 | 590.7256 | 708.3900 |
| October 2006 | 507.6550 | 716.9100 | 104.8144 | 129.0700 | 2.6355 | 29.7280 | 615.1049 | 857.3800 | 483.0203 | 677.5100 |
| November 2006 | 410.5984 | 704.5500 | 85.4087 | 117.2100 | 2.0843 | 24.1820 | 498.0912 | 837.1900 | 315.2477 | 532.9100 |
| December 2006 | 377.7144 | 743.4400 | 77.0134 | 113.1500 | 1.8867 | 22.2700 | 456.6142 | 873.3800 | 311.3074 | 585.1300 |
| January 2007 | 366.0413 | 674.4400 | 102.0599 | 140.2800 | 1.9623 | 22.8340 | 470.0637 | 830.2800 | 375.3416 | 667.9600 |
| February 2007 | 485.5672 | 726.0700 | 68.5267 | 91.0100 | 2.3469 | 26.8930 | 556.4406 | 821.3100 | 466.2057 | 687.5900 |
| March 2007 | 630.6456 | 802.7900 | 98.5273 | 113.9600 | 3.1365 | 34.7060 | 732.3094 | 921.9900 | 610.2227 | 770.7800 |
| April 2007 | 690.9564 | 792.9400 | 110.7538 | 118.8600 | 3.4867 | 38.0660 | 805.1966 | 910.9100 | 702.7002 | 789.5100 |
| May 2007 | 739.0125 | 830.1900 | 130.4915 | 137.2000 | 3.8009 | 41.4980 | 873.3049 | 964.6200 | 738.8295 | 816.2500 |

Conclusions and future research

-The adaptive triangulation related to the topography and albedo is essential in order to olbtain accurate results of shadow distribution and solar radiation.

- Adaptive meshes lead to a minimum computational cost, since the number of used triangles is optimum.
-The accuracy of the model results depends on the number of points where we know realistic data.
- One aspect to be improved is the interpolation procedure used for processing such data.
- Some unknown parameters of the model may be estimated using genetic algorithms for minimizing the error between the measures and the results of the model in the observational points.
- Optimal selection of the warning points for detecting the shadows.
- Accurate determination of the shadow boundary with ref/deref. procedure and mesh adaption by moving nodes to such contour line.
- Define any standard error indicator for each triangle in order to ref/deref. the mesh attending to the daily numerical solution of the overcast global radiation.
-The calculation may be fully parallelised.

Edificio Central del Parque Tecnológico
35017 Las Palmas de Gran Canaria
e-mail: info@siani.es - www.siani.es

