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Abstract—In this paper, we present significant ad-
vances of the novel meccano technique to contruct
adaptive tetrahedral meshes of 3-D complex solids.
Specifically, we will consider a solid whose boundary
is a surface of genus 0, i.e. a surface that is home-
omorphic to the surface of a sphere. In this partic-
ular case, the automatic procedure is defined by a
surface triangulation of the solid, a simple meccano
composed by one cube and a tolerance that fixes the
desired approximation of the solid surface. The main
idea is based on a 3-D local refinement algorithm,
an automatic mapping from the cube faces to the
solid surface and a simultaneous mesh untangling and
smoothing procedure. Although the initial surface
triangulation can be a poor quality mesh, the mec-
cano technique constructs high quality surface and
volume adaptive meshes. A crucial consequence of
the new mesh generation technique is the resulting
discrete parametrization of a complex volume (solid)
to a simple cube (meccano). Several examples show
the efficiency of the proposed technique. Future possi-
bilities of the meccano method for meshing a complex
solid, whose boundary is a surface of genus greater
than zero, are commented.
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1 Introduction

Many authors have devoted great effort to solving the
automatic mesh generation problem in different ways
[3, 14, 15, 28], but the 3-D problem is still open [1]. Along
the past, the main objective has been to achieve high
quality adaptive meshes of complex solids with minimal
user intervention and low computational cost. At present,
it is well known that most mesh generators are based on
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Delaunay triangulation and advancing front technique,
but problems, related to mesh quality or mesh confor-
mity with the solid boundary, can still appear for com-
plex geometries. In addition, an appropriate definition of
element sizes is demanded for obtaining good quality ele-
ments and mesh adaption. Particularly, local adaptive re-
finement strategies have been employed to mainly adapt
the mesh to singularities of numerical solution. These
adaptive methods usually involve remeshing or nested re-
finement.

We introduced the new meccano technique in [23, 2, 24]
for constructing adaptive tetrahedral meshes of solids.
We has given this name to the method because the pro-
cess starts with the construction of a coarse approxima-
tion of the solid, i.e. a meccano composed by connected
polyhedral pieces. So, the method can be applied with
different types of pieces (cuboids, pyramids, prisms, ect.).
A simple particular case is when meccano is composed by
connected cubes, i.e. a polycube.

The new automatic mesh generation strategy uses no De-
launay triangulation, nor advancing front technique, and
it simplifies the geometrical discretization problem for 3-
D complex domains, whose surfaces can be mapped to the
meccano faces. The main idea of the new mesh generator
is to combine a local refinement/derefinement algorithm
for 3-D nested triangulations [19], a parameterization of
surface triangulations [7] and a simultaneous untangling
and smoothing procedure [4]. At present, the meccano
technique has been implemented by using the local refine-
ment/derefinement of Kossaczky [19], but the idea could
be implemented with other types of local refinement al-
gorithms [16]. The resulting adaptive meshes have good
quality for finite element applications.

Our approach is based on the combination of several for-
mer procedures (refinement, mapping, untangling and
smoothing) which are not in themselves new, but the
overall integration is an original contribution. Authors
have used them in different ways. Triangulations for
convex domains can be constructed from a coarse mesh
by using refinement/projection [25]. Adaptive nested
meshes have been constructed with refinement and dere-
finement algorithms for evolution problems [6]. Triangu-
lation maps from physical and paramentric spaces have
been analyzed for many author. Significant advances



in surface parameterization have been done by several
authors [7, 9, 10, 27, 21, 29], but the volume parame-
terization is still open. Floater et al [11] give a simple
counterexample to show that convex combination map-
pings over tetrahedral meshes are not necessarily one-to-
one. Large domain deformations can lead to severe mesh
distortions, especially in 3-D. Mesh optimization is thus
key for keeping mesh shape regularity and for avoiding
a costly remeshing [17, 18]. In traditional mesh opti-
mization, mesh moving is guided by the minimization of
certain overall functions, but it is usually done in a lo-
cal fashion. In general, this procedure involves two steps
[13, 12]: the first is for mesh untangling and the second
one for mesh smoothing. Each step leads to a different
objective function. In this paper, we use the improve-
ment proposed by [4], where a simultaneous untangling
and smoothing guided by the same objective function is
introduced.

Some advantages of our technique are that: surface trian-
gulation is automatically constructed, the final 3-D tri-
angulation is conforming with the object boundary, in-
ner surfaces are automatically preserved (for example,
interface between several materials), node distribution is
adapted in accordance with the object geometry, and par-
allel computations can easily be developed for meshing
the meccano pieces. However, our procedure demands an
automatic construction of the meccano and an admissible
mapping between the meccano boundary and the object
surface must be defined.

In this paper we present new ideas and applications of
our method. Specifically, we consider a complex genus-
zero solid defined by a triangulation of its surface. In this
case, it is sufficient to fix a meccano composed by only one
cube and a tolerance that fixes the desired approximation
of the solid surface. In order to define an admisible map-
ping between the cube faces and patches of the initial
surface triangulation of the solid, we introduce a new au-
tomatic method to decompose the surface triangulation
into six patches that preserves the same topological con-
nections than the cube faces. Then, a discrete mapping
from each surface patch to the corresponding cube face is
contructed by using the parameterization of surface tri-
angulations proposed by M. Floater in [7, 8, 9, 10]. The
shape-preserving parametrizations, which are planar tri-
angulations on the cube faces, are the solutions of linear
systems based on convex combinations. In our case, the
solution to several compatibility problems on the cube
edges will be discussed.

In the next future, some more effort should be made in an
automatic construction of the meccano when the genus
of the solid surface is greater than zero. Currently, sev-
eral authors are working on this aspect in the context of
polycube-maps, see for example [27, 21, 29]. They are
analyzing how to construct a polycube for a generic solid
and, simultaneously, how to define a conformal mapping

between the polycube boundary and the solid surface.
Although harmonic maps have been extensively studied
in the literature of surface parameterization, only a few
works are related to volume parametrization, for example
a meshless procedure is presented in see [20].

In the following section we present a brief description
of the main stages of the method for a generic meccano
composed of polyhedral pieces. In section 3 we introduce
applications of the algorithm in the case that the mec-
cano is formed by a simple cube. Finally, conclusions
and future research are presented in section 4.

2 General Algorithm of the Meccano

Technique

The main steps of the general meccano tetrahedral mesh
generation algorithm are summarized in this section. A
more detailed description of this process can be ana-
lyzed in [23, 2, 24]. The input data of the algorithm
are the definition of the object boundaries (for example
by a given boundary triangulation) and a given precision
(corresponding to its approximation). The following al-
gorithm describes the whole mesh generation approach.

Meccano tetrahedral mesh generation algorithm

1. Construct a meccano approximation of 3-D solid
formed by polyhedral pieces.

2. Define an admissible mapping between the mec-
cano and the object boundary.

3. Construct a coarse tetrahedral mesh of the mec-
cano.

4. Generate a local refined tetrahedral mesh of the
meccano, such that the mapping (according step
2) of the meccano boundary triangulation ap-
proximates the solid boundary for a given preci-
sion.

5. Move the boundary nodes of the meccano to the
object surface according to the mapping defined
in 2.

6. Relocate the inner nodes of the meccano.

7. Optimize the tetrahedral mesh applying the si-
multaneous untangling and smoothing proce-
dure.

The first step of the procedure is to construct a mec-
cano approximation by connecting different polyhedral
pieces. Once the meccano approximation is fixed, we
have to define an admissible one-to-one mapping between
the boundary faces of the meccano and the boundary of
the object. In step 3, the meccano is decomposed into
a coarse and valid tetrahedral mesh by an appropriate
subdivision of its initial polyhedral pieces. We continue
with a local refinement strategy to obtain an adapted
mesh which can approximate the boundaries of the do-
main within a given precision. Then, we construct a mesh



of the domain by mapping the boundary nodes from the
meccano plane faces to the true boundary surface and by
relocating the inner nodes at a reasonable position. Af-
ter these two steps the resulting mesh is tangled, but it
has an admissible topology. Finally, a simultaneous un-
tangling and smoothing procedure is applied and a valid
adaptive tetrahedral mesh of the object is obtained.

We note that the general idea of the meccano technique
could be understood as the connection of different poly-
hedral pieces. So, the use of cuboid pieces, or a polycube
meccano, are particular cases.

3 Application of the Meccano Technique

to a Complex Genus-Zero Solid

In this section, we present the application of the meccano
algorithm in the case that the solid surface is genus-zero,
and the meccano is formed by one cube. We assume a tri-
angulation of the solid surface as data. The main result of
this section is the automatic parametrization between the
surface triangulation of the solid and the cube boundary.
For this purpouse, we divide the surface triangulation
into six patches, with the same topological connection
that cube faces, such that each patch is mapped to a
cube face.

The parametrization of a surface triangulation patch
to a cube face has been done with GoTools core and
parametrization modules from SINTEF ICT, available in
the website http://www.sintef.no/math software. This
code implements Floater’s parametrization in C++.
Specifically, in the following application we have used
mean value method for the parametrization of the in-
ner nodes of the patch triangulation, and the boundary
nodes are fixed with chord length parametrization [7, 9].

We have implemented the meccano method by using the
local refinement of ALBERTA. This code is an adap-
tive multilevel finite element toolbox [26] developing in
C. This software can be used for solving several types
of 1-D, 2-D or 3-D problems. ALBERTA uses the Kos-
saczky refinement algorithm [19] and requires an initial
mesh topology [25]. The recursive refinement algorithm
could not terminate for general meshes. The meccano
technique constructs meshes that verify the imposed re-
strictions of ALBERTA in relation to topology and struc-
ture. The minimum quality of refined meshes is function
of the initial mesh quality.

The performance of our novel tetrahedral mesh generator
is shown in the following applications. The first corre-
sponds to a Bust, the second to the Stanford Bunny and
the third to a Bone. We have obtained a surface trian-
gulation of these objects from internet. For all examples,
the meccano is just a cube.

Example 1: Bust

The original surface triangulation of the Bust has been
obtained from the website http://shapes.aimatshape.net,
i.e. AIM@SHAPE Shape Repository. It has 64000 trian-
gles and 32002 nodes. The bounding box of the solid is
defined by the points (x, y, z)min = (−120,−30.5,−44)
and (x, y, z)max = (106, 50, 46).

We consider a cube, with an edge length equal to 20,
as meccano. Its center is placed inside the solid at the
point (5,−3, 4). We obtain an initial subdivision of Bust
surface in seven maximal connected subtriangulations. In
order to get a compatible decomposition of the surface
triangulation, we use the proposed iterative procedure to
reduce the current seven vertices of the graph GS to six.

We map each surface patch Σi

S
to the cube face Σi

C
by

using the Floater parametrization [7]. Once the global
parametrization of the Bust surface triangulation is built,
the definition of the one-to-one mapping between the
cube and Bust boundaries is straightforward.

Fixing a tolerance ε2 = 0.1, the meccano method gener-
ates a tetrahedral mesh of the cube with 147352 tetra-
hedra and 34524 nodes, see Figure 1(b). This mesh has
32254 triangles and 16129 nodes on its boundary and it
has been reached after 42 Kossaczky refinements from
the initial subdivision of the cube into six tetrahedra.
The mapping of the cube external nodes to the Bust sur-
face produces a 3-D tangled mesh with 8947 inverted el-
ements, see Figure 1(c). The relocation of inner nodes
by using volume parametrizations reduces the number of
inverted tetrahedra to 285. We apply the mesh optimiza-
tion procedure [4] and the mesh is untangled in 2 itera-
tions. The mesh quality is improved to a minimum value
of 0.07 and an average q

κ
= 0.73 after 10 smoothing it-

erations. We note that the meccano technique generates
a high quality tetrahedra mesh (see Figure 1(a)): only 1
tetrahedra has a quality less than 0.1, 13 less than 0.2
and 405 lees than 0.3. We display in Figure 1 two cross
sections of the cube and Bust meshes before and after
the mesh optimization. The location of the cube can be
observed in Figure 1(c).

The CPU time for constructing the final mesh of the Bust
is 93.27 seconds on a Dell precision 690, 2 Dual Core Xeon
processor and 8 Gb RAM memory. More precisely, the
CPU time of each step of the meccano algorithm is: 1.83
seconds for the subdivision of the initial surface trian-
gulation into six patches, 3.03 seconds for the Floater
parametrization, 44.50 seconds for the Kossaczky recur-
sive bisections, 2.31 seconds for the external node map-
ping and inner node relocation, and 41.60 seconds for the
mesh optimization.

Example 2: Bunny

The original surface triangulation of the Stan-
ford Bunny has been obtained from the website
http://graphics.stanford.edu/data/3Dscanrep/ , i.e. the



(a) (b) (c) (d)

Figure 1: Cross sections of the cube (a) and the Bust tetrahedral mesh before (b) and after (c) the application of
the mesh optimization procedure. (d) Resulting tetrahedral mesh of the Bust obtained by the meccano method.

(a) (b) (c) (d)

Figure 2: Cross sections of the cube (a) and the Bunny tetrahedral mesh before (b) and after (c) the application of
the mesh optimization procedure. (d) Resulting tetrahedral mesh of the Bunny obtained by the meccano method.

(a) (b) (c) (d)

Figure 3: Cross sections of the cube (a) and the Bone tetrahedral mesh before (b) and after (c) the application of
the mesh optimization procedure. (d) Resulting tetrahedral mesh of the Bone obtained by the meccano method.



Stanford Computer Graphics Laboratory. It has 12654
triangles and 7502 nodes. The bounding box of the solid
is defined by the points (x, y, z)min = (−10, 3.5,−6) and
(x, y, z)max = (6, 2, 6).

We consider a unit cube as meccano. Its center is placed
inside the solid at the point (−4.5, 10.5, 0.5). We ob-
tain an initial subdivision of the Bunny surface in eight
maximal connected subtriangulations using Voronoi di-
agram. We reduce the surface partition to six patches
and we construct the Floater parametrization from each
surface patch Σi

S
to the corresponding cube face Σi

C
. Fix-

ing a tolerance ε2 = 0.0005, the meccano method gener-
ates a tetrahedral mesh with 54496 tetrahedra and 13015
nodes. This mesh has 11530 triangles and 6329 nodes on
its boundary and it has been reached after 44 Kossaczky
refinements from the initial subdivision of the cube into
six tetrahedra. The mapping of the cube external nodes
to the Bunny surface produces a 3-D tangled mesh with
2384 inverted elements, see Figure 2(b). The relocation
of inner nodes by using volume parametrizations reduces
the number of inverted tetrahedra to 42. We apply 8 iter-
ations of the tetrahedral mesh optimization and only one
inverted tetrahedra can not be untangled. To solve this
problem, we allow the movement of the external nodes
of this inverted tetrahedron and we apply 8 new opti-
mization iterations. The mesh is then untangled and,
finally, we apply 8 smoothing iterations fixing the bound-
ary nodes. The mesh quality is improved to a minimum
value of 0.08 and an average q

κ
= 0.68. We note that

the meccano technique generates a high quality tetrahe-
dra mesh: only 1 tetrahedra has a quality less than 0.1,
41 less than 0.2 and 391 less than 0.3. We display in Fig-
ure 2 two cross sections of the cube and Bunny meshes
before and after the mesh optimization. The location of
the cube can be observed in Figure 2(b).

The CPU time for constructing the final mesh of the
Bunny is 40.28 seconds on a Dell precision 690, 2 Dual
Core Xeon processor and 8 Gb RAM memory. More pre-
cisely, the CPU time of each step of the meccano algo-
rithm is: 0.24 seconds for the subdivision of the initial
surface triangulation into six patches, 0.37 seconds for
the Floater parametrization, 8.62 seconds for the Kos-
saczky recursive bisections, 0.70 seconds for the external
node mapping and inner node relocation, and 30.35 sec-
onds for the mesh optimization.

Example 3: Bone

The performance of our novel tetrahedral mesh gener-
ator, for meshing complex genus-zero solid, is shown in
its application to a bone whose surface triangulation
has been obtained from the website http://www-
c.inria.fr/gamma/download/affichage.php?dir=-
ANATOMY&name=ballJoint, and it can be found
in the CYBERWARE Catalogue. This surface mesh
contains 274120 triangles and 137062 nodes. The

meccano technique constructs a tetrahedral mesh with
47824 tetrahedra and 11525 nodes. This mesh has 11530
triangles and 5767 nodes on its boundary and it has
been reached after 23 Kossaczky refinements from the
initial subdivition of the cube into six tetrahedra. A
tangled tetrahedra mesh with 1307 inverted elements
appears after the mapping of the meccano external
nodes to the initial triangulation of the bone surface. A
node relocation process reduces the number of inverted
tetrahedra to 16. Finally, our mesh optimization al-
gorithm produces a high quality tetrahedra mesh: the
minimum mesh quality is 0.15 and the average quality
is 0.64. Resulting meshes are shown in Figure 1. We
note that the cube of Figure 1 (a) is located inside the
bone. In Figure 1 (c) it can be observed its location
and the tangled tetrahedral mesh that is obtained after
the mapping of external nodes of the cube to the bone
surface.

4 Conclusions and Future Research

The meccano technique is a very efficient mesh genera-
tion method for creating adaptive tetrahedral meshes of a
solid whose boundary is a surface of genus 0. We remark
that the method requires minimum user intervention and
has a low computational cost. The procedure is fully au-
tomatic and it is only defined by a surface triangulation
of the solid, a cube and a tolerance that fixes the desired
approximation of the solid surface.

We have introduced an automatic partition of the given
solid surface triangulation for fixing an addmisible map-
ping between the cube faces and the solid surface patches,
such that each cube face is the parametric space of its
corresponding patch.

The mesh generation technique is based on sub-processes
(subdivision, mapping, optimization) which are not in
themselves new, but the overall integration using a simple
shape as starting point is an original contribution of the
method and it has some obvious performance advantages.
Another interesting property of the new mesh generation
strategy is that it automatically achieves a good mesh
adaption to the geometrical characteristics of the domain.
In addition, the quality of the resulting meshes is high.

The main ideas presented in this paper can be applied for
constructing tetrahedral or hexahedral meshes of complex
solids. In future works, the meccano technique can be
extended for meshing a complex solid whose boundary is
a surface of genus greater than zero. In this case, the
meccano can be a polycube or constructed by polyhedral
pieces with compatible connections. At present, the user
has to define the meccano associated to the solid, but we
are implemented a special CAD package for more general
input solid.
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