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Abstract. In the finite element simulation of environmental processes
that occur in a three-dimensional domain defined over an irregular ter-
rain, a mesh generator capable of adapting itself to the topographic char-
acteristics is essential. The present study develops a code for generating
a tetrahedral mesh from an “optimal” node distribution in the domain.
The main ideas for the construction of the initial mesh combine the use of
a refinement/derefinement algorithm for two-dimensional domains and a
tetrahedral mesh generator algorithm based on Delaunay triangulation.
Moreover, we propose a procedure to optimise the resulting mesh. A
function to define the vertical distance between nodes distributed in the
domain is also analysed. Finally, these techniques are applied to the con-
struction of meshes adapted to the topography of the southern section
of La Palma (Canary Islands).

1 Introduction

The problem in question presents certain difficulties due to the irregularity of the
terrain surface. Here we construct a tetrahedral mesh that respects the orography
of the terrain with a given precision. To do so, we only have digital terrain
information. Furthermore, it is essential for the mesh to adapt to the geometrical
terrain characteristics. In other words, node density must be high enough to fix
the orography by using a linear piecewise interpolation. Our domain is limited
in its lower part by the terrain and in its upper part by a horizontal plane placed
at a height at which the magnitudes under study may be considered steady. The
lateral walls are formed by four vertical planes. The generated mesh could be
used for numerical simulation of natural processes, such as wind field adjustment
[9], fire propagation [8] and atmospheric pollution. These phenomena have the
main effect on the proximities of the terrain surface. Thus node density increases
in these areas accordingly.
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To construct the Delaunay triangulation, we must define a set of points within
the domain and on its boundary. These nodes will be precisely the vertices of the
tetrahedra that comprise the mesh. Point generation on our domain will be done
over several layers, real or fictitious, defined from the terrain up to the upper
boundary, i.e. the top of the domain. Specifically, we propose the construction of a
regular triangulation of this upper boundary. Now, the refinement/derefinement
algorithm [3,11] is applied over this regular mesh to define an adaptive node
distribution of the layer corresponding to the surface of the terrain. These process
foundations are summarised in Sect. 2. Once the node distribution is defined on
the terrain and the upper boundary, we begin to distribute the nodes located
between both layers. A vertical spacing function, studied in Sect. 3, is involved
in this process.

The node distribution in the domain will be the input to a three-dimensional
mesh generator based on Delaunay triangulation [2]. To avoid conforming prob-
lems between mesh and orography, the tetrahedral mesh will be designed with the
aid of an auxiliary parallelepiped. Section 4 is concerned with both the definition
of the set of points in the real domain and its transformation to the auxiliary
parallelepiped where the mesh is constructed. Next, the points are placed by
the appropriate inverse transformation in their real position, keeping the mesh
topology. This process may give rise to mesh tangling that will have to be solved
subsequently. We should, then, apply a mesh optimisation to improve the quality
of the elements in the resulting mesh. The details of the triangulation process
are developed in Sect. 5; those related to the mesh optimisation process are pre-
sented in Sect. 6. Numerical experiments are shown in Sect. 7, and, finally, we
offer some concluding remarks.

2 Adaptive Discretization of the Terrain Surface

The three-dimensional mesh generation process starts by fixing the nodes placed
on the terrain surface. Their distribution must be adapted to the orography to
minimise the number of required nodes. First, we construct a sequence of nested
meshes T' = {1 < 72 < ... < Ty} from a regular triangulation 71 of the rectangu-
lar area under consideration. The 7; level is obtained by previous level 7;_, using
the 4-T Rivara algorithm [12]. All triangles of the 7;_; level are divided in four
sub-triangles by introducing a new node in the centres of each edge and connect-
ing the node introduced on the longest side with the opposite vertex and with
the other two introduced nodes. Thus, new nodes, edges and elements named
proper of level j appear in the 7; level. The number of levels m of the sequence is
determined by the degree of discretization of the terrain digitalisation. In other
words, the diameter of the triangulation must be approximately the spatial step
of the digitalisation. In this way we ensure that the mesh is capable of obtaining
all the topographic information by an interpolation of the actual heights on the
mesh nodes. Finally, a new sequence T = {r < 15 < ... < 7/,}, m' <m,is
constructed by applying the derefinement algorithm; details may be seen in [3,
11]. In this step we present the derefinement parameter ¢ that fixes the precision



with which we intend to approximate the terrain topography. The difference in
absolute value between the resulting heights at any point of the mesh 7;,, and
its corresponding real height will be less than ¢.

This resulting two-dimensional mesh 7;,, may be modified when constructing
Delaunay triangulation in the three-dimensional domain, as its node position is
the only information we use. We are also interested in storing the level in which
every node is proper so as to proceed to the node generation inside the domain.
This will be used in the proposed vertical spacing strategies.

3 Vertical Spacing Function

As stated above, we are interested in generating a set of points with higher
density in the area close to the terrain. Thus, every node is to be placed in
accordance with the following function

zi=ai*+b. (1)

so that when the exponent @ > 1 increases, it provides a greater concentration
of points near the terrain surface. The z; height corresponds to the ith inserted
point, in such a way that for ¢ = 0 the height of the terrain is obtained, and for
i = n, the height of the last introduced point. This last height must coincide with
the altitude h of the upper plane that bounds the domain. In these conditions
the number of points defined over the vertical is n 4+ 1 and (1) becomes
h—=z . .
zi:n—az"‘+z0 ; 1=0,1,2,..,n . (2)
It is sometimes appropriate to define the height of a point in terms of the
previous one, thus avoiding the need for storing the value of zg

h—2i1
-(-1)

In (2) or (3), once the values of a and n are fixed, the points to insert are
completely defined. Nevertheless, to maintain acceptable minimum quality of
the generated mesh, the distance between the first inserted point (¢ = 1) and
the surface of the terrain could be fixed. This will reduce to one, either a or
n, the number of degrees of freedom. Consider the value of the distance d as a
determined one, such that d = z; — 2. Using (2),

Zi = Zi—1+ e a [ia—(i—l)a] ; 1=1,2,...,n. 3)

h—ZO

(4)
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If we fix @ and set free the value of n, from (4) we obtain

n= (h_dz“)l/a . (5)




Nevertheless, in practice, n will be approximated to the closest integer num-
ber. Conversely, if we fix the value of n and set a free, we get

h—
_ log *=*¢

a= logn_ (6)

In both cases, given one of the parameters, the other may be calculated by

expressions (5) or (6), respectively. In this way, the point distribution on the

vertical respects the distance d between z; and zg. Moreover, if the distance

between the last two introduced points is fixed, that is, D = 2z, — z,,—1, then the

a and n parameters are perfectly defined. Let us assume that « is defined by
(6). For i =n — 1, (2) could be expressed as

h—ZO
ne

An—1 =

(n—1)%+2 . (7
and thus, by using (6),

log (n—1) log %

= . 8
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From the characteristics which define the mesh, we may affirm a priori that
h—2z9 > D > d > 0. Thus, the value of n will be bounded such that, 2 < n <

h’dzo, and the value of o cannot be less than 1. Moreover, to introduce at least
one intermediate point between the terrain surface and the upper boundary of
h—zg—D
the domain, we must verify that d+D < h—zy. If we call k = lolig#, it can
d
be easily proved that 0 < k < 1. So, (8) yields
n=1+nk. 9)

If we name g(x) = 1+ 2*, it can be demonstrated that g(z) is contractive in
2, =21 with Lipschitz constant C' = 5t and it is also bounded by

h—Zo)k<h—Z0 (10)
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In view of the fixed point theorem, we can ensure that (9) has a unique solu-
tion which can be obtained numerically, for example, by the fixed point method,
as this converges for any initial approximation chosen in the interval [2, 2=2].
Nevertheless, the solution will not generally have integer values. Consequently,
if its value is approximated to the closest integer number, the imposed condition
with distance D will not exactly hold, but approximately.

4 Determination of the Set of Points

The point generation will be carried out in three stages. In the first, we define
a regular two-dimensional mesh 7y for the upper boundary of the domain with



the required density of points. Second, the mesh 7 will be globally refined and
subsequently derefined to obtain a two-dimensional mesh 7 , capable of fitting
itself to the topography of the terrain. This last mesh defines the appropriate
node distribution over the terrain surface. Next, we generate the set of points
distributed between the upper boundary and the terrain surface. In order to do
this, some points will be placed over the vertical of each node P of the terrain
mesh 7, ,, attending to the vertical spacing function and to level j (1 < j <m/')
where P is proper. The vertical spacing function will be determined by the
strategy used to define the following parameters: the topographic height zy of
P; the altitude h of the upper boundary; the maximum possible number of
points n + 1 in the vertical of P, including both P and the corresponding upper
boundary point, if there is one; the degree of the spacing function «; the distance
between the two first generated points d = 21 — 2p; and the distance between
the two last generated points D = z, — 2z,_1. Thus, the height of the ¢th point
generated over the vertical of P is given by (2) for 1 =1,2,...,n — 1.

Regardless of the defined vertical spacing function, we shall use level j where
P is proper to determine the definitive number of points generated over the
vertical of P excluding the terrain and the upper boundary. We shall discriminate
among the following cases:

1. If 5 = 1, that is, if node P is proper of the initial mesh 7y, nodes are
generated from (2) for i =1,2,...,n — 1.

2. If 2 < j <m' —1, we generate nodes for 1 = 1,2, ..., min(m' — j,n — 1).

3. If j = m/, that is, node P is proper of the finest level 7/ ,, then any new
node is generated.

This process has its justification, as mesh 7/, corresponds to the finest level
of the sequence of nested meshes T'' = {r < 75 < ... < 7/, }, obtained by
the refinement/derefinement algorithm. Thus the number of introduced points
decreases smoothly with altitude, and they are also efficiently distributed in
order to build the three-dimensional mesh in the domain.

We set out a particular strategy where values of @ and n are automatically
determined for every point P of 7],,, according to the size of the elements closest
to the terrain and to the upper boundary of the domain. First, the value of d
for each point P is established as the average of the side lengths of the triangles
that share P in the mesh 7],,. A unique value of D is then fixed according to the
desired distance between the last point that would be theoretically generated
over the different verticals and the upper boundary. This distance is directly
determined according to the size of the elements of the regular mesh 77. Once
d and D are obtained, for every point P of 7, ,, their corresponding value of n
is calculated by solving (9). Finally, the vertical spacing function is determined
when obtaining the value of a by (6). This strategy approximately respects both
the required distances between the terrain surface and the first layer and the
imposed distance between the last virtual layer and the upper boundary.



5 Three-dimensional Mesh Generation

Once the set of points has been defined, it will be necessary to build a three-
dimensional mesh able to connect the points in an appropriate way and which
conforms with the domain boundary, i.e., a mesh that respects every established
boundary.

Although Delaunay triangulation is suitable to generate finite element meshes
with a high regularity degree for a given set of points, this does not occur in the
problem of conformity with the boundary, as it generates a mesh of the convex
hull of the set of points. It may be thus impossible to recover the domain bound-
ary from the faces and edges generated by the triangulation. To avoid this, we
have two different sorts of techniques: conforming Delaunay triangulation [10]
and constrained Delaunay triangulation [5]. The first alternative is inadequate
for our purpose, as we wish the resulting mesh to contain certain predetermined
points. Moreover, given the terrain surface complexity, this strategy would imply
a high computational cost. The second alternative could provide another solu-
tion, but it requires quite complex algorithms to recover the domain boundary.

To build the three-dimensional Delaunay triangulation of the domain points,
we start by resetting them in an auxiliary parallelepiped, so that every point of
the terrain surface is on the original coordinates z, y, but at an altitude equal
to the minimum terrain height, 2,;,. In the upper plane of the parallelepiped
we set the nodes of level 7; of the mesh sequence that defines the terrain surface
at altitude h. Generally, the remaining points also keep their coordinates x, ¥,
but their heights are obtained by replacing their corresponding 2y by 2z, in
(2). The triangulation of this set of points is done using a variant of Watson
incremental algorithm [2] that effectively solves the problems derived from the
round-off errors made when working with floating coma numbers.

Once the triangulation is built in the parallelepiped, the final mesh is obtained
by re-establishing its original heights. This latter process can be understood as a
compression of the global mesh defined in the parallelepiped, such that its lowest
plane becomes the terrain surface. In this way, conformity is ensured.

Sometimes when re-establishing the position of each point to its real height,
poor quality, or even inverted elements may occur. For inverted elements, their
volume V,, evaluated as the Jacobian determinant |J| associated with the map
from reference tetrahedron to the physical one e, becomes negative. For this
reason, we need a procedure to untangle and smooth the resulting mesh, as
analysed in Sect. 6.

We must also take into account the possibility of getting a high quality mesh
by smoothing algorithms, based on movements of nodes around their initial
positions, depends on the topological quality of the mesh. It is understood that
this quality is high when every node valence, i.e., the number of nodes connected
to it, approaches the valence corresponding to a regular mesh formed by quasi-
equilateral tetrahedra.

Our domain mesh keeps the topological quality of the triangulation obtained
in the parallelepiped and an appropriate smoothing would thus lead to high
quality meshes.



6 Mesh Optimisation

The most accepted techniques for improving valid triangulation quality are based
upon local smoothing. In short, these techniques locate the new positions that the
mesh nodes must hold so that they optimise a certain objective function based
upon a quality measurement of the tetrahedra connected to the adjustable or
free node. The objective functions are generally useful for improving the quality
of a valid mesh. They do not work properly, however, in the case of inverted
elements, since they show singularity when the tetrahedra volumes change their
sign. To avoid this problem we can proceed as in [4], where an optimisation
method consisting of two stages is proposed. In the first, the possible inverted
elements are untangled by an algorithm that maximises the negative Jacobian
determinants corresponding to the inverted elements. In the second, the resulting
mesh from the first stage is smoothed. We propose here an alternative to this
procedure in which the untangling and smoothing are performed in the same
stage. To do this, we shall use a modification of the objective function proposed
in [1]. Thus, let N (v) be the set of the s tetrahedra attached to free node v, and
r = (z,y, 2) be its position vector. Hence, the function to minimise is given by

(G
Zfe =2

VI o
e=1 e

where f. is the objective function associated to tetrahedron e, If (i = 1,...,6)
are the edge lengths of the tetrahedron e and V, its volume. If N(v) is a valid
sub-mesh, then the minimisation of F’ originates positions of v for which the local
mesh quality improves [1]. Nevertheless, F' is not bounded when the volume of
any tetrahedron of N (v) is null. Moreover, we cannot use F if there are inverted
tetrahedra. Thus, if N(v) contains any inverted or zero volume elements, it will
be impossible to find the relative minimum by conventional procedures, such
as steepest descent, conjugate gradient, etc. To remedy this situation, we have
modified function f, in such a way that the new objective function is nearly
identical to F in the minimum proximity, but being defined and regular in all
R3. We substitute V, in (11) by the increasing function

M) = 3 (Ve + /VZ 5 307) (12)

such that VV, € R, h(V,) > 0, being the parameter § = h(0). In this way, the
new objective function here proposed is given by

6

o D)
Z¢e B ;lz )]2/3' (13)

The asymptotic behaviour of h(V;), that is, h(V.) ~ V., when V, — +o0, will
make function f. and its corresponding modified version ¢, as close as required,



for a value of § small enough and positive values of V.. On the other hand,
when V., — —oo, then h(V,) — 0. For the most inverted tetrahedra we shall
then have a value of ¢, further from the minimum than for the less inverted
ones. Moreover, with the proposed objective function &, the problems of F' for
tetrahedra with values close to zero are avoided. Due to the introduction of
parameter §, the singularity of f, disappears in ¢.. As smaller values of § are
chosen, function ¢, behaves much like f.. As a result of these properties, we may
conclude that the positions of v that minimise objective functions F' and & are
nearly identical. Nevertheless, contrary to what happens to F', it is possible to
find the minimum of ¢ from any initial position of the free node. In particular,
we can start from positions for which N(v) is not a valid sub-mesh. Therefore,
by using the modified objective function &, we can untangle the mesh and, at
the same time, improve its quality. The value of ¢ is selected in terms of point v
under consideration, making it as small as possible and in such a way that the
evaluation of the minimum of ¢ does not present any computational problem.
Finally, we would state that the steepest descent method has been the one used
to calculate the minimum of the objective function.

7 Numerical Experiments

As a practical application of the mesh generator, we have considered a rectangu-
lar area in the south of La Palma island of 45.6 x 31.2 km, where extreme heights
vary from 0 to 2279 m. The upper boundary of the domain has been placed at
h =9 km. To define the topography we used a digitalisation of the area where
heights were defined over a grid with a spacing step of 200 m in directions x
and y. Starting from a uniform mesh 71 of the rectangular area with an element
size of about 2 x 2 km, four global refinements were made using Rivara 4-T
algorithm [12]. Once the data were interpolated on this refined mesh, we applied
the derefinement algorithm developed in [3,11] with a derefinement parameter
of € = 40 m. Thus, the adapted mesh approximates the terrain surface with an
error less than that value. The node distribution of 7; is the one considered on
the upper boundary of the domain.

The result obtained is shown in Fig. 1, fixing as the only parameter distance
D = 1.5 km. In this case, the mesh has 57193 tetrahedra and 11841 nodes, with
a maximum valence of 26. The node distribution obtained with this strategy
has such a quality that it is hardly modified after five steps of the optimisation
process, although there is initial tangling that is nevertheless efficiently solved;
see Fig. 2, where g(e) is the quality measure proposed in [4] for tetrahedron e.
In fact, to avoid inverted tetrahedra, the technique proposed in Sect. 6 has been
efficiently applied. Moreover, the worst quality measure of the optimised mesh
tetrahedra is about 0.2.

We note that the number of parameters necessary to define the resulting
mesh is quite low, as well as the computational cost. In fact, the complexity of
2-D refinement/derefinement algorithm is linear [11]. Besides, in experimental
results we have approximately obtained a linear complexity in function of the
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Fig. 1. Resulting mesh after five steps of the optimisation process
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Fig. 2. Quality curves of the generated mesh and the resulting mesh after five steps of
the optimisation process. Function g(e) is a quality measure for tetrahedron e

number of points for our algorithm of 3-D Delaunay triangulation [2]. In the
present application only a few seconds of CPU time on a Pentium III were
necesary to construct the mesh before its optimisation. Finally, the complexity
of each step of the mesh optimisation process is also linear. In practice we have
found acceptable quality meshes appling a limited number of steps of this latter
algorithm.
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8 Conclusions

We have established the main aspects for generating a three-dimensional mesh
capable of adapting to the topography of a rectangular area with minimal user
intervention. In short, an efficient and adaptive point generation has been stated
which is well distributed in the domain under study, because it preserves the
topographic information of the terrain with a decreasing density as altitude
increases. Points are generated using refinement/derefinement techniques in 2-
D and the vertical spacing function here introduced. Next, with the aid of an
auxiliary parallelepiped, a proceeding based on Delaunay triangulation has been
set forth to generate the mesh automatically, assuring conformity with the terrain
surface. Nevertheless, the obtained point distribution could also be useful in
generating the three-dimensional mesh with other classical techniques, such as
advancing front [6] and normal offsetting [7]. Finally, the procedure here proposed
for optimising the generated mesh allows us to solve the tangling problems and
mesh quality at the same time.
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