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Abstract. A multi-mesh adaptive scheme for convection-diffusion-reaction problems is pre-
sented. The proposal is applied to air quality modeling, especifically to the simulation of a
pollutant punctual emissions. The performance of the proposal is analyzed with different non-
linear reaction models, including the photochemical model CB05 implmented within the Comu-
nity Multiscale Air Quality model, which involves sixty-two species and very different charac-
teristic reaction times. The problem is solved with splitting of transport and reaction processes.
This allows to discretize the species in distinct computational meshes, adapted to the distribu-
tion of the error indicator of each case. A common reference mesh is used for all species and
during all problem evolution. A remeshing technique based on imposing the volume of new
elements is used to define and update the computational meshes. An error indicator well suited
for problems involving large variation of the unknowns is used. A single-mesh strategy, with
remeshing adapted to the most demanding specie in each part of the domain, is used for com-
parison. The results of the examples presented show that the accuracy of single and multi-mesh
strategies are similar. Instead, computational cost of multi-mesh is lower than single-mesh in
most cases. Reduction increases with the number of species and the number of plumes. An
example of a punctual emissor in a three-dimensional domain, with realistic values of CB05
components, is presented.
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1 Introduction

Air quality modeling aims to represent all the processes that occur to pollutans in the at-
mosphere. These processes are modelized in a set of partial differential equations (PDEs).
Traditionally, these PDEs are numerically evaluated in structured grids whose horitzontal res-
olution is in the order of few kilometers and the vertical resolution depends on altitude, finer
near the ground level [22]. Some of the processes occur in smaller scales than the geometric
resolution and they may not be well presented. For example, emissions of an industrial plant
are diluted in a cell of a coarse grid and the details of the chemical interaction are lost because
of the nonlinearity of the chemical reactions [9].

In order to decrease this source of uncertainly, adaptive schemes have been proposed in air
quality modeing at local scale. In adaptive schemes, domain is discretized such that a mesure
of the error is reduced. Various strategies have been presented. For example, in [28], the
mesh is adapted moving the nodes of a structured, regular grid (r-adaptivity). The accuracy of
small-scale plume structure near the source is higher than with a uniform static grid; however,
the computational cost is several times larger with adaptivity, since both grids have the same
number of nodes. Adaptivity strategy does not reduce the problem size in this case. This
strategy has been merged with the Comunity Multiscale Air Quality (CMAQ) model [10]. On
the other hand, in [29, 11], the mesh is updated inserting new nodes in the elements whose
error is larger than a tolerance (h-adaptivity). The computational cost of the adaptive scheme
is lower than that obtained with an uniform mesh, for the same accuracy. In both schemes,
a dynamic adaptive scheme is used; the mesh is updated several times during the simulation.
Instead, in [32] a nested grid aproach is proposed. A finer grid is defined in the interior of some
cells of a coarse grid; the size of the coarse grid is an intenger multiple of the size of the fine
grid. The solution of the coarse mesh is computed before the finer mesh and is used as initial
conditions; the solution of the coarse mesh in the overlaped zone may be updated. Typically,
the zone discretized with a finner mesh is defined a-priori. This last approach is not well suited
for unstructured meshes.

Most of the adaptive schemes, as these referenced, solve the problem with a single and
unique mesh for all species. However, the species may exhibit some qualitative differences:
While some may be very smooth in all the domain and can be discretized with coarse meshes
with accuracy, others may have big gradients in some regions of the domain and may need some
refinement in it in order to decrease the error. In this kind of problems, involving a large num-
ber of unknowns with different spatial distribution, multi-mesh schemes can help. They have
been used in a wide range of problems involving different unknwons. Every component of the
solution is discretized in a different mesh, that can be independently adapted to the evolution
of its reference component. In [14, 12], a multi-mesh approach is used for an optimal control
problem and dentritic growth. In [26, 7, 27], several examples are solved using hp-adaptive Fi-
nite Element Mehtod with a multi-mesh approach. In [31], an example for dentritic growth and
a detailed explenation of matrix assembling and elemental integration are presented. However,
in all references, the number of unknowns is reduced, two or three, and a tree-like algorthm is
used to refine the meshes.

In this work, we propose a multi-mesh adaptive scheme for convection-difussion-reaction
equations, especifically for air quality modeling with realistic photochemical models, involving
a large number of unknowns. Model is splitted in transport and reaction parts. Transport is
decoupled beetwen species, and each one can be solved independently of the others. Mesh of
each specie is adapted to the specific characteristics of its spatial distribution with a recently
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proposed adaptive scheme [17]. Reaction is reduced to a set of differential equations involv-
ing all species, uncoupled node by node. Time-integration of reaction is computed at all nodes
present in any mesh. With this approach, a tree-like discretization of the domain is not necessary
because the solution is not couppled in a large system of linear equations. A set of numerical
tests have been done for a point source emision problem using different chemical models in-
volving different number of species. Computational cost of single and multi-mesh strategies are
compared. An example of the punctual emission problem with a realistic set of values of CB05
components, varying in height, is presented to illustrate the practical application of the proposal.
Values are provided by a simulation with the CMAQ model. CMAQ-CB05 implementation is
merged with the convection-difussion-reaction model.

2 Mathematical and numerical model

Convection-diffusion-reaction equations descriving transportation of contaminants given a
velocity field can be expressed as:

∂tui + Ltiui − Lriu = 0 in Ω× (0, T ]

ui(x, 0) = u0i(x) in Ω

Mui = 0 in ∂Ω× (0, T ]

(1)

where ui stands for the concentration of specie i ∈ {1, ..., ne}, ne is the number of species,
u ∈ Rne is the vector of unknowns, Ω ⊂ R3 is a bounded subset and M are the boundary
conditions. Two diferential operators, Lti and Lri , descrive transport and reactions:

Ltiui = a · ∇ui −∇ · (Di · ∇ui)− si (2a)

Lriu = ri(u) (2b)

where a is the advective velocity, Di is the diffusion coefficient tensor and ri(u) is the veloc-
ity of production due to chemical reactions and si is an optional source term. Functions are
assumed sufficiently differentiable in all their variables.

Equation (1) defines a system of coupled partial differential equations (PDE). The solution
of each component depends on all the others because of coupling in the reactive term. In air
quality modeling, it is common to use an splitting strategy to separate all the physical and
chemical processes that occur to the pollutants in the atmosphere [5, 3, 4]. Each process is
evaluated with a specific numerical method designed for the particularites of each one. In this
work, a second order Strang Splitting between transport and reaction is proposed. Let ϕ be a
approximation of u, and ϕi, i = 1, 2, 3, approximations to ϕ, then following steps are defined
to time integrate the system of PDE from tn to tn+1:
1: Reactive Step

∂tϕ
1 = Lr(ϕ1) for [tn, tn+1/2], ϕ1(., tn) = ϕ(., tn), (3a)

2: Transportation Step, ∀i ∈ {1, ...ne}

∂tϕ
2
i + Lti(ϕ2

i ) = 0 for [tn, tn+1], ϕ2
i (., tn) = ϕ1

i (., tn+1/2), (3b)

3: Reactive Step

∂tϕ
3 = Lr(ϕ3) on [tn+1/2, tn+1], ϕ3(., tn+1/2) = ϕ2(., tn+1) (3c)
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and setting:
ϕ(., tn+1) = ϕ3(., tn+1). (3d)

Equation (3b) defines a decoupled PDE, one PDE for each component of the solution.
Equations (3a) and (3c) are still coupled PDEs. Equation (3b) defines the usual transporta-
tion (convection-difusion) equation. Any numerical scheme well suited for this problem can be
used. In this work, we use the Finite Element Method. The solution of each specie is discretized
in a different mesh Ti:

ui(x, t) ≈ ϕi(x, t) =

ndfi∑
j=1

ϕi,j(t)Ni,j(x) (4)

where Ni,j ∈ V i
h is the component j of the basis of functions of specie i, and V i

h is the cor-
responding finite element space associated with the mesh Ti, and ndfi is the number of nodes
of specie i. This aproximation is introduced in the weak formulation, equation (3b). A Least-
Square stabilization tecnique and a Crank-Nicolson scheme are used (further details can be
found in [6]). The resulting system of linear equations is solved with the Conjugate Gradient
Method wih an incomplete Cholesky preconditioner [20, 15].

The reactive step, defined in equations (3a) and (3c), is couppled between all species. Intro-
ducing the weak formulation, the problem can be stated as: find ϕ such that:{

(∂tϕ, v) = (r(ϕ), v), ∀v ∈ H2(Ω)

ϕ(x, tn) = ϕ0(x), in Ω
(5)

where (·, ·) is the inner product, v are the test functions of the solution space H2(Ω) and ∂tϕ =
0 in ΓD is assumed. Since all species are not defined in the same mesh, formally, a new mesh,
T =

⋃ne

i=1 Ti, that contains all nodes of the set of meshes {T1, ..., Tne} is defined. The space of
the solution associated to this new mesh, Vh, contains all the spaces of the solutions associated
to the meshes where the solution was defined; that is: V i

h ⊂ Vh ∀i ∈ {1, ..., ne}. Solution is
discretized as:

ϕ =
∑
j

ϕj(t)N j(x) (6)

whereN j is the component j of the basis function of V h. Introducing this definition in equation
(5), applying the inner product and assuming r(ϕ) =

∑
j r(ϕj)N j(x), the problem reduces to

a system of ordinary differential equations, ∀j ∈ B\BD:{
∂tϕj = r(ϕj), for [tn, tn+1/2]

ϕj(tn) = ϕj,0

(7)

with B the set of nodes of T , BD the subset of nodes that belong to the Dirichlet boundary and
B\BD the complementary subset.

In order to integrate the reaction step, equation (7), it is not mandatory to construct the mesh
T or any field associated to this mesh. This can be avoided solving the system at each node of
each mesh separatedly, using the interpolated value of all the others species at that node. For
the interpolation, the value of the local coordinates of the nodes of a mesh correspondig to one
specie in all the other computational meshes are needed. Local coordinates are computed before
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the reactive step and saved. Each time that the value of any specie is needed it can be computed
easely from these data.

The numerical scheme for the standard single-mesh strategy can be seen as a particular case
of the previous formulation. Let T be the mesh that is shared for all species. Then, the mesh
used to compute the reactive step, that contains all the different nodes of the set of meshes
coincides with the mesh that is used for the transportation; that is T =

⋃ne

i=1 Ti = T . As a
consequence, in the reactive step there is no need to interpolate any data and all the components
of the solution of the ordinary systems of equations are used.

3 Adaptive algorithm

We use an adaptive scheme for time dependent problems based on [2]. There exist several
algorithm to adapte the time step, for example [30]. In this work, only the spatial discretization
is updated and the time step is kept constant in the whole simulation. The mesh adaptation
process is done everym time steps. The first block of time steps is calculated until a convergence
criteria is met (a global error indicator is lower than a tolerance and the number of nodes of two
consecutive meshes is quite similar). This process is done in order reduce the error that arraise
from the definition of the first computational mesh, that needs to be fine enought to capture the
essential features of the solution [16] . The scheme is detailed in Algorithm 1, being ui,n the
solution of specie i at t = n∆t, and ∆t = mδt the remeshing time step and δt the integration
time step.

Algorithm 1 Adaptive scheme without convergence control (except first ∆t)
∆t = mδt
T 0 = T ref
while No convergence do

Compute the discret problem [0,∆t] in {T 0
i }

Compute error indicator and generate the new set of meshes {T 0
i }

end while
Save (ui,1,T 0

i ) for i = 1, ..., ne
n = 1
T ni = T 0

i

while n∆t < T do
Compute the discret problem [n∆t, (n+ 1)∆t] in {T ni }
Save (ui,(n+1), T ni ) for i = 1, ..., ne
Compute error indicator and generate the new set of meshes {T n+1

i }
Interpolate ui,n+1 to T n+1

i for i = 1, ..., ne
n = n+ 1

end while

The adaption of the mesh is based on remeshing a reference mesh with a maximum volume
constraint imposed to its elements. The reference mesh should include an adequate description
of the domain and common characteristics of all species. The maximum volume depends on
the error indicator and the volumes of the elements of the previous computational mesh. It is
imposed to the new elements of the mesh T n+1

i that lies in the interior of the element r of the
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Figure 1: Vertical profile of the horizontal velocity modulus and the vertical diffusion.

mesh T ref . It is calculated as

V n+1
i,r =

{
mine∈Si,r

(
Vi,e

1+αηi,e

)
for Si,r 6= ∅

βV n
i,r for Si,r = ∅

(8)

where Si,r are the subset of elements of the previous computational mesh, T ni , that lies on the
region r whose error indicator is larger than a tolerance, ηi,e and Vi,e are the error indicator and
volume of element e of the specie i, and α > 0 and β > 1 are two constants that modulate
the refinement and the derrefinement, respectively. Further details of the implementation and a
discussion of the values of the constants can be found in [17]. With this algorithm, the size of
the elements can increase or decrease drastically in a single iteration. The quality of the meshes
is preserved, and the number of iterations needed to solve the linear system of equations using
an iterative method is kept low and constant. The meshes are constructed using Tetgen [24, 25],
a constrained Delaunay tetrahedral mesh generator.

For a single-mesh adaptive scheme, the computatinal meshes should be adapted to the most
demanding specie in each part of the domain. The error indicator and the volume constraint
are evaluated for all components of the solution. The new mesh is generated imposing the most
restrictive volume constraint in each region:

V n+1
r = min

1≤i≤ne

(
min
e∈Si,r

(
Vi,e

1 + αηi,e

))
(9)

if i exists such as Si,r 6= ∅, and V n+1
r = βV n

r if Si,r = ∅ for all i.
The error is aproximated by an error indicator. In the literature there are several examples

of error indicators for the convection-diffusion-reaction equation [13, 18]. This indicators are
functions of the gradient or the maximum difference of the solution in the element. This kind
of indicators are well suited to localize a boundary layer, but do not yeld good results for the
point-source problem because the solution tends to be smooth in the domain and oscillations
typicaly apear on the low values of the solution. A more adequate error indicator is:

ηω =

{
0 if uh < Tolu in ω
‖∇log(uh)‖ω if uh > Tolu in ω

(10)

where Tolu defines the lower limit of the solution of which the mesh is no longer refined,
typically a number related to the precision of the computer.
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Chemical
elements

Species emision rates (π ·102

g/s)
Rivad-4 N, O, S NOx, NO3, SO2, SO2−

4 eSO2 = π · 104;
eNOx = 2.5 · π · 103

CB05-6 N, O NO2, NO, O, O3, NO3, N2O5 eNO = 6; eO = 8
CB05-15 N, O, H NO2, NO, O, O3, NO3, OH−, HO2,

N2O5, HNO3, HONO, PNA, H2O2,
XO2, ROOH, CH2O

eNO = 6; eO = 8 ;
eOH− = 4

CB05-29 N, O, H, C,
Cl, S, free-
radical

NO2, NO, O, O3, NO3, OH−, HO2,
N2O5, HNO3, HONO, PNA, H2O2,
XO2, ROOH, CH2O, CO, MEO2,
MEPX, MEO2, FACD, SO2, SO2−

4 ,
SULAER, Cl2, Cl, HOCl, ClO, FACl,
HCl

eNO = 6; eO = 8;
eOH− = 4; eSO2 = 6;
eCO = 8; eCl = 4

Table 1: Definition of the chemical mechanisms and the test examples.

Figure 2: Reference mesh; profile at y = 24000 m.

4 Test examples

The proposal is applied to the test problem introduced in [11, 17]. It includes of a point
source emission in a domain of size Ω = [0, 52000] × [18000, 30000] × [0, 3000] m3. The
punctual source is discretized with a sphere with radius R = 5 m. The meterological data
corresponds to neutral conditions of [11, 23]. The convective velocity is parallel to the x-axis
and its norm depends on height (see Figure 1). The diffusion tensor is diagonal and constant
in the horitzontal plane, Dxx = Dyy = 50 m2/s. The vertical component, Dzz, also depends
on height (see Figure 1). First, both initial and inflow and outflow boundary conditions are set
equal to zero. In next section, the problem is solved with all species, with realistic initial and
boundary conditions. The emision rates, ei, are given as a total point source value. They are
applied to an emision sphere, Γint, with external surface Asph

n ·D · ∇ui = gi(x, t) =
ei
Asph

in Γint × (0, T ) (11)

The final integration time is T = 1800 s and the computational time-step is δt = 1 s. The
mesh is adapted every m = 180 time-steps; that is ∆t = 180s, ten remeshings. According
to a previous work [17], a reduced number of remeshings minimices computational cost with
appropiated accuracy. The same reference mesh, Figure 2, is used for all the species.

This problem is solved with different non-linear chemical models. The first one is the RI-
VAD/ARM3 model, wich involves four species. The second one is the CB05 photochemical
model, the module implemented in CMAQ, wich involves sixty-two different unkowns. A set
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(a) NOx nelem = 226631

(b) NO3 nelem = 193630

(c) SO2 nelem = 174209

(d) SO2−
4 nelem = 145533

Figure 3: Solution and mesh at y = 24000 m using the RIVAD chemical model, at t = 1800s.
Primary pollutans, (a) and (c), and the secoundary ones, (b) and (d).

of test examples with the CB05 model has been defined, increasing the number of unknowns
involved in transport, from 6 to 29. The species are chosed based on their chemical composi-
tion. The unkwon species are the ones that may be formed from a set of chemical species. The
Table 1 shows the details of the species that involve each example and the emision rates.

4.1 RIVAD/ARM3 tests

The RIVAD/ARM3 scheme [21] is a simplified model that predicts the sulfate and nitrate
production rate assuming a steady state concentration of the hydroxil radical. This model con-
siders four especies and production rates are defined as [19]:

rSO2 = −rSO2−
4

= α1(u)uSO2 =
−γ1

uSO2 + δ1uNOx

uSO2 (12a)

rNOx = −rNO3 = α2(u)uNOx =
−γ2

δ2uSO2 + uNOx

uNOx (12b)

where δ1, δ2, γ1 and γ2 are four constants. The initial and the inflow boundary conditions are
zero for all species and the emision rate of the first primary pollutant is bigger than the second.
A second-order method is used for time integration.

Figure 3 show the distribution of the primaries, Figures 3a and 3c, and the secondaries pol-
lutants, Figures 3b and 3d. The primaries pollutant present the highest concentrations near the
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source; they vanish forming the secondaries pollutants. The adaptive scheme can solve the
problem without oscillations in the low values of the plume. The four meshes are different.
Each one have small volumes in the regions where the solution presents high gradients. All the
meshes have a small density of elements in the regions where the solution is very small (lower
than 10−6).

(a) NO2; nelem = 165671

(b) NO; nelem = 124638

(c) O; nelem = 72192

(d) O3; nelem = 185936

(e) NO3; nelem = 72192

(f) N2O5; nelem = 147082

Figure 4: The concentration, at t = 1800 s and y = 24000 m, of the CB05-6 test.
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4.2 CB05 model tests

In the second example we have used the CMAQ chemical module [4], CB05, wich involves
62 species and 132 reactions. The EDOs sytem is solved using backwards Euler with an adap-
tive time step. The species of each case are choosen based on their elemental composition: The
first example only involves Nitrogen and Oxigen (with ne = 6 species, named CB05-06), the
second one Nitrogen, Hidrogen and Oxigen (with ne = 15, named CB05-15) and a third one
Nitrogen, Hidrogen, Oxigen, Carbon, Clorine, Azufre y Raicales libres (with ne = 29, named
CB05-29).

Figure 4 shows the results with CB05-06 at t = 1800, for both primary pollutants, O and
NO, which is practically zero near the source. This is because they react very fast and form O3

and more oxidized nitrogen oxides. Ozone and some nitrogen oxides, NO2 and N2O5, develop
plumes. The concentration of NO3 is practically zero in all the domain, thus the mesh used to
compute it is very coarse. It can be seen that the meshes of all components are different. The
volume of the elements is sufficiently small in the regions where the solution is not smooth
and only small oscillations appear in the lowest isosurfaces. Some oscillations and numerical
diffusion effects appear at low concentrations downwind at the end of the plumes, for example
at the plume formed by NO2 in Figure 4a. This process occurs in the transition of the refined
mesh; it can be fixed with a more restrective tolerance for remeshing.

In the second test, CB05-15, the emited species, NO, O and OH−, react forming different
species involiving nitrogen (HONO, HNO3, NO2, ...), ozone and radicals. Six of the fifteen
species develope different forms of plumes and the meshes are adapted to their form. In the
last test, the main reactions that take place are the formation of components whose elementals
components are Oxigen, Nitrogen, Hidrogen and Sulfur. Other species, for example the primary
pollutant CO, are stable with this chemical conditions and do not react. Thirteen of the twenty-
nine species develop a plume.

Table 2 summarizes main characteristics of all these examples: Number of degrees of free-
doom at t = 1800 s, species which develope a plume, number of EDO solved, nEDO, and total
CPU time (s). The numbers of degrees of freedom and of species with a plume increase with
the number of unknowns. The total number of EDO solved and CPU-time does not. First de-
pends on the distribution of nodes between meshes. Rivad example involves more EDO than
CB05 tests, even the number of unknowns is much higher. CPU time increases substantialy
between CB05 and Rivad. This is because the standard chemical driver of CMAQ has been
compiled with the transport code, without specific implementation adjustments; Rivad model
is directly implented with the transport Finite Element Model. Within CB05 examples, CB05-
06 and CB05-15 cases present a similar number of EDO and CPU-time (although the number
of degrees of freedom doubles). CPU time doubles in last example, which doubles again in
number of degrees of freedom (with respect to CB05-06 and CB05-15). Positive correlations
beetwen the number of unknows, species, plumes and CPU-time are found, starting over an
umbral value.

The results of three tests shows that all species are discretized in very different meshes.
Acording to table 3, the number of nodes of the finner mesh is at least, two times the number of
nodes of the coarser mesh. The species whose solution is low and smooth in the whole domain
are discretized with very coarse meshes, even in the reference mesh. Instead, if the solution of
one component develpes a plume, presenting high spatial variations of component concetration,
it is discretized with a refined mesh. The density of elements is large where the solution present
higher variantions (in orders of magnitude), trying to minimize spurios oscillations at very low
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ndof Species
with
plume

nEDO CPU-time (s)

Rivad single-mesh 194648 4 2.29 · 108 3897
Rivad multi-mesh 146920 4 2.74 · 108 3228 (83.05%)

CB05-6 single-mesh 220650 4 1.625 · 108 12623
CB05-6 multi-mesh 158109 4 1.823 · 108 12042 (95.40%)

CB05-15 single-mesh 580935 6 1.6881 · 108 15374
CB05-15 multi-mesh 328406 6 1.841 · 108 10952 (71.24%)
CB05-29 single-mesh 1083179 13 1.6358 · 108 28192
CB05-29 multi-mesh 639854 13 2.0974 · 108 19340 (68.61%)

Table 2: Comparison of the number of elements at t = 1800 s, CPU-time and total number of
EDOs systems solved using multi-mesh and single-mesh schemes.

values. The number of species that develope plume is not know a priori, since it depends on
the emisions, the concentration of all the other species, the meteorological conditions and the
reaction rates. As a consequence, it is mandatory to take into account some species that have
very low concentration (below 10−7) just because they can potencially be formed.

Chemical model min nnod Multim max nnod Multi nnod Unimesh
Rivad 27070 41496 46726

CB05-6 16573 36648 36775
CB05-15 16573 36599 38729
CB05-29 16573 36125 37351

Table 3: Comparison of the number of nodes using the multi-mesh and single-mesh schemes at
t = 1800 s.

4.3 Comparison of multi-mesh and single-mesh adaptive schemes

Four problems previously presented have been solved using the single-mesh scheme. The
results obtained by both methods are very similar; the spurious oscillations that appear are of
the same order. The size of the meshes using the single-mesh scheme is always similar to that
of the most demanding specie of the multi-mesh scheme (see Table 3). Thus, the number of
degrees of freedom is larger with the single-mesh scheme (see Table 2). Instead, the number of
EDOs is larger with multi-mesh because the number of nodes uncommon between all meshes is
also always larger than the size of one single mesh; see Table 3, with single-meshes more than
two times the minimum multi-mesh one.

In the multi-mesh scheme all species are discretized in coarser meshes than with the single-
mesh scheme. As a consequence, the CPU-time required for solving linear systems of equations
decrease. However, this computation saving does not imply that the computational time of the
whole simulation decrease. Using the multi-mesh scheme it is mandatory to compute the local
coordinates of all nodes with respect all the other meshes, the number of EDOs solved is higher
and more effor is needed in order to interpolate the solution every time the meshes are updated.
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This extra work cause that not always the multi-mesh scheme suppose a CPU-time saving.
Acording to Table 3, using the multi-mesh scheme the total CPU-time decrease with respect the
single-mesh in all this examples. When an important number of components are discretized in
very coarse meshes (CB05-15 and CB05-29, with 6 and 13 plumes), the improvement of multi-
mesh is significant. If an important number of contaminants develope a plume (with respect the
number of unknows), multi-mesh scheme could not represent a decrease of the computational
time of the simulation.

5 Realistic example with CB05-CMAQ

The last example correspond to the same problem used as a test, but involving realistic val-
ues of initial and boundary conditions. Full CB05 model implemented within CMAQ system is
used here, coupled with the Finite Element transport solver adn main driver. Non-zero Dirichlet
boundary conditions are imposed in the inflow, same as initial values of all species in the do-
main. Values of concentrations varies on height, being uniform in the plane coordinates. Values
are interpolated in a certain point from a CMAQ realistic simulation. The composition of the
emission is a simplified version of a coal power plant [1, 8]:

ei =


2.71 · π · 103 g/s if i = SO2

2.21 · π · 103 g/s if i = NO

2.37 · π · 103 g/s if i = CO

0 g/s all the others

(13)

Unlike data in the CMAQ simulation, here, the temperature, humidity and preasure (on which
the reactions rate deppends) are suposed to be constant in the whole domain, and values are
linearly interpolated between CMAQ altitudes. Those are reasons why at the begining of the
simulation, the background concentrations varies; until a new equilibrium is reached. These
reactions also preclude gradients in some species near the Dirichlet inflow boundary (which are
kept fixed).

Figure 5 shows the concentration of some representative species. As it can be seen, the
backgroud concentration of the majority of species is very low (below 10−7) and with smooth
variantions in all the domain. Their computational meshes are not refined, reference mesh
is used, for example, with HNO3 in Figure 5f. Some species have relative high background
concentrations, even they present layers. As a consequence, some refinement are activated
to represent the vertical variation; this is the case of ozone and CO in Figure 5c. The main
reaction that takes place is the formation of NO2 form the background ozone and emitted NO.
This reaction takes place until the avalaible ozone is consumed. The mesh in which ozone is
discretized, Figure 5e, is refined in the zones where the concentration presents large gradients.
A similar behavior is observed for CO. The interactions of CO and SO2, two of the primary
pollutans, with the others species are low; both species develope plume.

6 Conclusions

In this paper, we have presented an adaptive multi-mesh scheme for the reactive transport
problem, using the Finite Element method. Each component of the solution is discretized on
an individual mesh, that is independently adapted based on the evolution of its solution. The
proposal has been succesfully applied to a set of tests of increasing number of unknowns and
complexity of a punctual source emissor with realistic atmospheric and air quality conditions
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(a) NO2; nelem = 125025

(b) NO; nelem = 198079

(c) CO; nelem = 588565

(d) SO2; nelem = 201733

(e) O3; nelem = 402440

(f) HNO3; nelem = 72912

Figure 5: The concentration, at t = 1800, of some pollutants of the CB05-62 test at y = 24000
m.

in a three-dimensional domain. The CB05 photochemical model has been used, with the same
implementation provided with the CMAQ system.
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The proposal solves the problem with the same accuracy than a single-mesh adaptive method.
The computational cost of the multi-mesh scheme is, in general, lower than the standard single-
mesh scheme. Time saving is more important when only few species develope plume, thus,
with meshes refined and adapted, and the most ones vary smoothly through the domain, being
discretized in coarse meshes. Work needed for multi-mesh discretization is not always smaller
than the time saving given by the smaller systems of equations obtained.

Acording to the results, the adaptive multi-mesh schemes are capable of using less degrees
of freedom to achieve the same accuray than a standard single-mesh adaptive method. The size
of the mesh of the most demanding specie with the multi-mesh scheme is of the same order
than the one obtained with the single-mesh approach. But most species, specially the ones that
do not present large variation in the space, are discretized in coarse meshes, of much smaller
size. Thus, less unknows are involved; however, the number of differents nodes in the overall
meshes is larger and more systems of EDOs have to be computed.

Strategy can be applied either with a single-mesh a multi-mesh, or even a fixed number of
meshes if unknowns are asigned to each mesh; and optimal stratgies can be defined in terms of
computational resources. Problems with large number of species, developing different spatial
patterns, are more efficiently solved with multi-mesh strategies.
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