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In this paper, we analyze the best approximation AN (in the Frobenius sense) to the identity matrix in
an arbitrary matrix subspace AS (A ∈ Rn×n nonsingular, S being any fixed subspace of Rn×n). Some
new geometrical and spectral properties of the orthogonal projection AN are derived. In particular,
new inequalities for the trace and for the eigenvalues of matrix AN are presented for the special case
that AN is symmetric and positive definite.

1 Introduction

The set of all n × n real matrices is denoted by Rn×n, and I denotes the identity matrix of order n.
In the following, AT and tr (A) denote, as usual, the transpose and the trace of matrix A ∈ Rn×n.
The notations 〈·, ·〉F and ‖·‖F stand for the Frobenius inner product and matrix norm, defined on the
matrix space Rn×n. Throughout this paper, the terms orthogonality, angle and cosine will be used in
the sense of the Frobenius inner product.

Our starting point is the linear system

Ax = b, A ∈ Rn×n, x, b ∈ Rn, (1.1)

where A is a large, nonsingular and sparse matrix. The resolution of this system is usually performed
by iterative methods based on Krylov subspaces (see, e.g., [2, 15]). The coefficient matrix A of system
(1.1) is often extremely ill-conditioned and highly indefinite, so that in this case, Krylov subspace
methods are not competitive without a good preconditioner (see, e.g., [15, 19]). Then to improve the
convergence of these Krylov methods, system (1.1) can be preconditioned with an adequate nonsingular
preconditioning matrix N , transforming it into any of the equivalent systems

NAx = Nb, (1.2)

ANy = b, x = Ny, (1.3)

the so-called left and right preconditioned systems, respectively. In this paper, we address only the
case of the right-hand side preconditioned matrices AN , but analogous results can be obtained for the
left-hand side preconditioned matrices NA.
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The preconditioning of system (1.1) is often performed in order to get a preconditioned matrix AN
as close as possible to the identity in some sense, and the preconditioner N is called an approximate
inverse of A. The closeness of AN to I may be measured by using a suitable matrix norm like, for
instance, the Frobenius norm [3]. In this way, the problem of obtaining the best preconditioner N
(with respect to the Frobenius norm) of system (1.1) in an arbitrary subspace S of Rn×n is equivalent
to the minimization problem; see, e.g., [14]

min
M∈S

‖AM − I‖F = ‖AN − I‖F . (1.4)

The solution N to problem (1.4) will be referred to as the “optimal” or the “best” approximate
inverse of matrix A in the subspace S. Since matrix AN is the best approximation to the identity in
subspace AS, it will be also referred to as the orthogonal projection of the identity matrix onto the
subspace AS. Although many of the results presented in this paper are also valid for the case that
matrix N is singular, from now on, we assume that the optimal approximate inverse N (and thus also
the orthogonal projection AN) is a nonsingular matrix. The solution N to problem (1.4) has been
studied as a natural generalization of the classical Moore-Penrose inverse in [16], where it has been
referred to as the S-Moore-Penrose inverse of matrix A.

The main goal of this paper is to derive new geometrical and spectral properties of the best
approximations AN (in the sense of formula (1.4)) to the identity matrix. Such properties could
be used to analyze the quality and theoretical effectiveness of the optimal approximate inverse N as
preconditioner of system (1.1). However, it is important to highlight that the purpose of this paper
is purely theoretical and we are not looking for immediate numerical or computational approaches
(although our theoretical results could be potentially applied to the preconditioning problem). In
particular, the term “optimal (or best) approximate inverse” is used in the sense of formula (1.4), and
not in any other sense of this expression.

Among the many different works dealing with practical algorithms that can be used to compute
approximate inverses, we refer the reader to e.g., [3, 6, 7, 10] and to the references therein. In [3],
the author presents an exhaustive survey of preconditioning techniques and, in particular, describes
several algorithms for computing sparse approximate inverses based on Frobenius norm minimization
like, for instance, the well-known SPAI and FSAI algorithms. Also focused on approximate inverses
based on minimizing ‖AM − I‖F , in [6], an iterative descent-type method is used to approximate
each column of the inverse, and the iteration is done with “sparse-matrix by sparse-vector” operations.
When the system matrix is expressed in in block-partitioned form, some preconditioning options are
explored in [7]. In [10], the idea of “target” matrix is introduced, in the context of sparse approximate

inverse preconditioners, and the generalized Frobenius norms ‖B‖2F,H = tr
(
BHBT

)
(H symmetric

positive definite) are used, for minimization purposes, as an alternative to the classical Frobenius
norm.

The last results of our work are devoted to the special case that matrix AN is symmetric and
positive definite. In this sense, let us recall that the cone of symmetric and positive definite matrices
has a rich geometrical structure and, in this context, the angle that any symmetric and positive definite
matrix forms with the identity plays a very important role [1]. In that paper, the authors extend this
geometrical point of view, and analyze the geometrical structure of the subspace of symmetric matrices
of order n, including the location of all orthogonal matrices, not only the identity matrix.

This paper has been organized as follows. In Section 2, we present some preliminary results
required to make the paper self-contained. Sections 3 and 4 are devoted to obtain new geometrical
and spectral relations, respectively, for the orthogonal projections AN of the identity matrix. Finally,
Section 5 closes the paper with its main conclusions.

2



2 Some Preliminaries

Now, we present some preliminary results concerning the orthogonal projection AN of the identity
onto the matrix subspace AS ⊂ Rn×n. For more details about these results and for their proofs, we
refer the reader to [14, 16, 8].

Taking advantage of the prehilbertian character of the matrix Frobenius norm, the solution N to
problem (1.4) can be obtained using the orthogonal projection theorem. More precisely, the matrix
product AN is the orthogonal projection of the identity onto the subspace AS, and it satisfies the
conditions stated by the following lemma; see [14, 8].

Lemma 2.1 Let A ∈ Rn×n be nonsingular and let S be a linear subspace of Rn×n. Let N be the
solution to problem (1.4). Then

0 ≤ ‖AN‖2F = tr(AN) ≤ n. (2.1)

0 ≤ ‖AN − I‖2F = n− tr(AN) ≤ n. (2.2)

An explicit formula for matrix N can be obtained by expressing the orthogonal projection AN of
the identity matrix onto the subspace AS by its expansion with respect to an orthonormal basis of
AS [14]. This is the idea of the following lemma.

Lemma 2.2 Let A ∈ Rn×n be nonsingular. Let S be a linear subspace of Rn×n of dimension d, and
{M1, ...,Md} a basis of S such that {AM1, ..., AMd} is an orthogonal basis of AS. Then, the solution
N to problem (1.4) is

N =

d∑
i=1

tr (AMi)

‖AMi‖2F
Mi, (2.3)

and the minimum (residual) Frobenius norm is

‖AN − I‖2F = n−
d∑

i=1

[tr (AMi)]
2

‖AMi‖2F
. (2.4)

Let us mention two possible options, both taken from [14], for choosing in practice the subspace

S and its corresponding basis {Mi}di=1. The first example consists of considering the subspace S of
n× n matrices with a prescribed sparsity pattern, i.e.,

S =
{
M ∈ Rn×n : mij = 0 for all (i, j) /∈ K

}
, K ⊂ {1, 2, . . . , n} × {1, 2, . . . , n} .

Then, denoting by Mi,j the n× n matrix whose only nonzero entry is mij = 1, a basis of subspace S
is clearly {Mi,j : (i, j) ∈ K}, and then {AMi,j : (i, j) ∈ K} will be a basis of subspace AS (since we
have assumed that matrix A is nonsingular). In general, this basis of AS is not orthogonal, so that
we only need to use the Gram-Schmidt procedure to obtain an orthogonal basis of AS, in order to
apply the orthogonal expansion (2.3).

For the second example, consider a linearly independent set of n × n real symmetric matrices
{P1, . . . , Pd} and the corresponding subspace

S′ = span
{
P1A

T , . . . , PdA
T
}
,

which clearly satisfies

S′ ⊆
{
M = PAT : P ∈ Rn×n PT = P

}
=
{
M ∈ Rn×n : (AM)

T
= AM

}
.
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Hence, we can explicitly obtain the solution N to problem (1.4) for subspace S′, from its basis{
P1A

T , . . . , PdA
T
}

, as follows. If
{
AP1A

T , . . . , APdA
T
}

is an orthogonal basis of subspace AS′ then
we just use the orthogonal expansion (2.3) for obtaining N . Otherwise, we use again the Gram-
Schmidt procedure to obtain an orthogonal basis of subspace AS′, and then we apply formula (2.3).
The interest of this second example stands in the possibility of using the conjugate gradient method
for solving the preconditioned linear system, when the symmetric matrix AN is positive definite. For
a more detailed exposition of the computational aspects related to these two examples, we refer the
reader to [14].

Now, we present some spectral properties of the orthogonal projection AN . From now on, we
denote by {λi}ni=1 and {σi}ni=1 the sets of eigenvalues and singular values, respectively, of matrix AN
arranged, as usual, in nonincreasing order, i.e.,

|λ1| ≥ |λ2| ≥ · · · ≥ |λn| > 0, (2.5)

σ1 ≥ σ2 ≥ · · · ≥ σn > 0. (2.6)

The following lemma [8] provides some inequalities involving the eigenvalues and singular values
of the preconditioned matrix AN .

Lemma 2.3 Let A ∈ Rn×n be nonsingular and let S be a linear subspace of Rn×n. Then

n∑
i=1

λ2i ≤
n∑

i=1

|λi|2 ≤
n∑

i=1

σ2
i = ‖AN‖2F = tr(AN) =

n∑
i=1

λi ≤
n∑

i=1

|λi| ≤
n∑

i=1

σi. (2.7)

The following fact [8] is a direct consequence of Lemma 2.3.

Lemma 2.4 Let A ∈ Rn×n be nonsingular and let S be a linear subspace of Rn×n. Then the smallest
singular value and the smallest eigenvalue’s modulus of the orthogonal projection AN of the identity
onto the subspace AS are never greater than 1. That is,

0 < σn ≤ |λn| ≤ 1. (2.8)

The following theorem [8] establishes a tight connection between the closeness of matrix AN to
the identity matrix and the closeness of σn (|λn|) to the unity.

Theorem 2.1 Let A ∈ Rn×n be nonsingular and let S be a linear subspace of Rn×n. Let N be the
solution to problem (1.4). Then

(1− |λn|)2 ≤ (1− σn)
2 ≤ ‖AN − I‖2F ≤ n

(
1− |λn|2

)
≤ n

(
1− σ2

n

)
. (2.9)

Remark 2.1 Theorem 2.1 states that the closer the smallest singular value σn of matrix AN is to the
unity, the closer matrix AN will be to the identity, i.e., the smaller ‖AN − I‖F will be; and conversely.
The same happens with the smallest eigenvalue’s modulus |λn| of matrix AN . In other words, we get
a good approximate inverse N of A when σn (|λn|) is sufficiently close to 1.

To finish this section, let us mention that, recently, lower and upper bounds on the normalized
Frobenius condition number of the orthogonal projection AN of the identity onto the subspace AS,
have been derived in [17]. In addition, that work proposes a natural generalization (related to an
arbitrary matrix subspace S of Rn×n) of the normalized Frobenius condition number of the nonsingular
matrix A.
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3 Geometrical Properties

In this section, we present some new geometrical properties for matrix AN , N being the optimal
approximate inverse of matrix A, defined by (1.4). Our first lemma states some basic properties
involving the cosine of the angle between matrix AN and the identity, i.e.,

cos (AN, I) =
〈AN, I〉F
‖AN‖F ‖I‖F

=
tr (AN)

‖AN‖F
√
n
. (3.1)

Lemma 3.1 Let A ∈ Rn×n be nonsingular and let S be a linear subspace of Rn×n. Let N be the
solution to problem (1.4). Then

cos (AN, I) =
tr (AN)

‖AN‖F
√
n

=
‖AN‖F√

n
=

√
tr (AN)√

n
. (3.2)

0 ≤ cos (AN, I) ≤ 1. (3.3)

‖AN − I‖2F = n
(
1− cos2 (AN, I)

)
. (3.4)

Proof. First, using (3.1) and (2.1) we immediately obtain (3.2). As a direct consequence of (3.2) we
derive that cos (AN, I) is always nonnegative. Finally, using (2.2) and (3.2), we get

‖AN − I‖2F = n− tr (AN) = n
(
1− cos2 (AN, I)

)
(3.5)

and the proof is concluded. �

Remark 3.1 In [5], the authors consider an arbitrary approximate inverse Q of matrix A and derive
the following equality

‖AQ− I‖2F = (‖AQ‖F − ‖I‖F )
2

+ 2 (1− cos (AQ, I)) ‖AQ‖F ‖I‖F , (3.6)

that is, the typical decomposition (valid in any inner product space) of the strong convergence into the

convergence of the norms (‖AQ‖F − ‖I‖F )
2

and the weak convergence (1− cos (AQ, I)) ‖AQ‖F ‖I‖F .
Note that for the special case that Q is the optimal approximate inverse N defined by (1.4), formula
(3.4) has stated that the strong convergence is reduced just to the weak convergence and, indeed, just
to the cosine cos (AN, I).

Remark 3.2 More precisely, formula (3.4) states that the closer cos (AN, I) is to the unity (i.e.,
the smaller the angle ∠ (AN, I) is), the smaller ‖AN − I‖F will be; and conversely. This gives us a
new measure of the quality (in the Frobenius sense) of the approximate inverse N of matrix A, by
comparing the minimum residual norm ‖AN − I‖F with the cosine of the angle between AN and the
identity, instead of with tr (AN), ‖AN‖F (Lemma 2.1) or with σn, |λn| (Theorem 2.1). So, for a fixed
nonsingular matrix A ∈ Rn×n and for different subspaces S ⊂ Rn×n, we have

tr (AN)↗ n⇔ ‖AN‖F ↗
√
n⇔ σn ↗ 1⇔ |λn| ↗ 1

⇔ cos (AN, I)↗ 1⇔ ‖AN − I‖F ↘ 0.
(3.7)

Obviously, the optimal theoretical situation corresponds to the case

tr (AN) = n⇔ ‖AN‖F =
√
n⇔ σn = 1⇔ λn = 1

⇔ cos (AN, I) = 1⇔ ‖AN − I‖F = 0

⇔ N = A−1 ⇔ A−1 ∈ S.
(3.8)
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Remark 3.3 Note that the ratio between cos (AN, I) and cos (A, I) is independent of the order n of
matrix A. Indeed, assuming that tr (A) 6= 0 and using (3.2), we immediately obtain

cos (AN, I)

cos (A, I)
=

‖AN‖F :
√
n

tr (A) : ‖A‖F
√
n

= ‖AN‖F
‖A‖F
tr (A)

. (3.9)

The following lemma compares the trace and the Frobenius norm of the orthogonal projection AN .

Lemma 3.2 Let A ∈ Rn×n be nonsingular and let S be a linear subspace of Rn×n. Let N be the
solution to problem (1.4). Then

tr (AN) ≤ ‖AN‖F ⇔ ‖AN‖F ≤ 1⇔ tr (AN) ≤ 1⇔ cos (AN, I) ≤ 1√
n
, (3.10)

tr (AN) ≥ ‖AN‖F ⇔ ‖AN‖F ≥ 1⇔ tr (AN) ≥ 1⇔ cos (AN, I) ≥ 1√
n
. (3.11)

Proof. Using (2.1), we immediately obtain the four left-most equivalences. Using (3.2), we immediately
obtain the two right-most equivalences. �

The next lemma provides us with a relationship between the Frobenius norms of the inverses of
matrices A and its best approximate inverse N in subspace S.

Lemma 3.3 Let A ∈ Rn×n be nonsingular and let S be a linear subspace of Rn×n. Let N be the
solution to problem (1.4). Then ∥∥A−1∥∥

F

∥∥N−1∥∥
F
≥ 1. (3.12)

Proof. Using (2.1), we get

‖AN‖F ≤
√
n = ‖I‖F =

∥∥∥(AN) (AN)
−1
∥∥∥
F
≤ ‖AN‖F

∥∥∥(AN)
−1
∥∥∥
F
⇒
∥∥∥(AN)

−1
∥∥∥
F
≥ 1 (3.13)

and hence ∥∥A−1∥∥
F

∥∥N−1∥∥
F
≥
∥∥N−1A−1∥∥

F
=
∥∥∥(AN)

−1
∥∥∥
F
≥ 1 (3.14)

and the proof is concluded. �
The following lemma compares the minimum residual norm ‖AN − I‖F with the distance (with

respect to the Frobenius norm)
∥∥A−1 −N∥∥

F
between the inverse of A and the optimal approximate

inverse N of A in any subspace S ⊂ Rn×n. First, note that for any two matrices A,B ∈ Rn×n (A
nonsingular), from the submultiplicative property of the Frobenius norm, we immediately get

‖AB − I‖2F =
∥∥A (B −A−1)∥∥2

F
≤ ‖A‖2F

∥∥B −A−1∥∥2
F
. (3.15)

However, for the special case that B = N (the solution to problem (1.4)), we also get the following
inequality.

Lemma 3.4 Let A ∈ Rn×n be nonsingular and let S be a linear subspace of Rn×n. Let N be the
solution to problem (1.4). Then

‖AN − I‖2F ≤ ‖A‖F
∥∥N −A−1∥∥

F
. (3.16)
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Proof. Using the Cauchy-Schwarz inequality and (2.2), we get∣∣〈A−1 −N,AT
〉
F

∣∣ ≤ ∥∥A−1 −N∥∥
F

∥∥AT
∥∥
F
⇒∣∣tr ((A−1 −N)A)∣∣ ≤ ∥∥A−1 −N∥∥

F

∥∥AT
∥∥
F
⇒∣∣tr (A (A−1 −N))∣∣ ≤ ∥∥N −A−1∥∥

F
‖A‖F ⇒

|tr (I −AN)| ≤
∥∥N −A−1∥∥

F
‖A‖F ⇒

n− tr (AN) ≤
∥∥N −A−1∥∥

F
‖A‖F ⇒

‖AN − I‖2F ≤ ‖A‖F
∥∥N −A−1∥∥

F
. �

(3.17)

The following extension of the Cauchy-Schwarz inequality, in a real or complex inner product space
(H, 〈·, ·〉), was obtained by Buzano [4]. For all a, x, b ∈ H, we have

|〈a, x〉 · 〈x, b〉| ≤ 1

2
(‖a‖ ‖b‖+ |〈a, b〉|) ‖x‖2 . (3.18)

The next lemma provides us with lower and upper bounds on the inner product 〈AN,B〉F , for any
n× n real matrix B.

Lemma 3.5 Let A ∈ Rn×n be nonsingular and let S be a linear subspace of Rn×n. Let N be the
solution to problem (1.4). Then for every B ∈ Rn×n, we have

|〈AN,B〉F | ≤
1

2

(√
n ‖B‖F + |tr (B)|

)
. (3.19)

Proof. Using (3.18) for a = I, x = AN , b = B, and (2.1), we get

|〈I, AN〉F · 〈AN,B〉F | ≤
1

2
(‖I‖F ‖B‖F + |〈I,B〉F |) ‖AN‖

2
F ⇒

|tr (AN) · 〈AN,B〉F | ≤
1

2

(√
n ‖B‖F + |tr (B)|

)
‖AN‖2F ⇒

|〈AN,B〉F | ≤
1

2

(√
n ‖B‖F + |tr (B)|

)
. �

(3.20)

The next lemma provides an upper bound on the arithmetic mean of the squares of the n2 terms
in the orthogonal projection AN . By the way, it also provides us with an upper bound on the
arithmetic mean of the n diagonal terms in the orthogonal projection AN . These upper bounds (valid
for any matrix subspace S) are independent of the optimal approximate inverse N and thus they are
independent of the subspace S, and only depend on matrix A.

Lemma 3.6 Let A ∈ Rn×n be nonsingular with tr (A) 6= 0 and let S be a linear subspace of Rn×n.
Let N be the solution to problem (1.4). Then

‖AN‖2F
n2

≤
‖A‖2F

[tr (A)]
2 ,

tr (AN)

n
≤

n ‖A‖2F
[tr (A)]

2 . (3.21)
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Proof. Using (3.18) for a = AT , x = I, b = AN , the Cauchy-Schwarz inequality for
〈
AT , AN

〉
F

, and

(2.1), we get∣∣〈AT , I
〉
F
· 〈I, AN〉F

∣∣ ≤ 1

2

(∥∥AT
∥∥
F
‖AN‖F +

∣∣〈AT , AN
〉
F

∣∣) ‖I‖2F ⇒
|tr (A) · tr (AN)| ≤ n

2

(
‖A‖F ‖AN‖F +

∣∣〈AT , AN
〉
F

∣∣)
≤ n

2

(
‖A‖F ‖AN‖F +

∥∥AT
∥∥
F
‖AN‖F

)
= n ‖A‖F ‖AN‖F ⇒

|tr (A)| ‖AN‖2F ≤ n ‖A‖F ‖AN‖F ⇒
‖AN‖F

n
≤
‖A‖F
|tr (A)|

⇒

‖AN‖2F
n2

≤
‖A‖2F

[tr (A)]
2 ⇒

tr (AN)

n
≤

n ‖A‖2F
[tr (A)]

2 . �

(3.22)

Remark 3.4 Lemma 3.6 has the following interpretation in terms of the quality of the optimal
approximate inverse N of matrix A in subspace S. The closer the ratio n ‖A‖F / |tr (A)| is to zero,
the smaller tr (AN) will be, and thus, due to (2.2), the larger ‖AN − I‖F will be, and this happens
for any matrix subspace S.

Remark 3.5 By the way, from Lemma 3.6 we obtain the following inequality for any nonsingular
matrix A ∈ Rn×n. Consider any matrix subspace S s.t. A−1 ∈ S. Then N = A−1 and using Lemma
3.6, we get

‖AN‖2F
n2

=
‖I‖2F
n2

=
1

n
≤
‖A‖2F

[tr (A)]
2 ⇒ |tr (A)| ≤

√
n ‖A‖F . (3.23)

4 Spectral Properties

In this section, we present some new spectral properties for matrix AN , N being the optimal approxi-
mate inverse of matrix A, defined by (1.4). Mainly, we focus on the case that matrix AN is symmetric
and positive definite. This has been motivated by the following reason. When solving a large non-
symmetric linear system (1.1) by using Krylov methods, a possible strategy consists of searching for
an adequate optimal preconditioner N such that the preconditioned matrix AN is symmetric posi-
tive definite [14]. This enables one to use the conjugate gradient method (CG-method), which is, in
general, a computationally efficient method for solving the new preconditioned system [15, 9].

Our starting point is Lemma 2.3, which has established that the sets of eigenvalues and singular
values of any orthogonal projection AN satisfy

n∑
i=1

λ2i ≤
n∑

i=1

|λi|2 ≤
n∑

i=1

σ2
i =

n∑
i=1

λi ≤
n∑

i=1

|λi| ≤
n∑

i=1

σi. (4.1)

Let us particularize (4.1) for some special cases.
First, note that if AN is normal (i.e., for all 1 ≤ i ≤ n: σi = |λi| [12]) then (4.1) becomes

n∑
i=1

λ2i ≤
n∑

i=1

|λi|2 =

n∑
i=1

σ2
i =

n∑
i=1

λi ≤
n∑

i=1

|λi| =
n∑

i=1

σi. (4.2)

In particular, if AN is symmetric (σi = |λi| = ±λi ∈ R) then (4.1) becomes

n∑
i=1

λ2i =

n∑
i=1

|λi|2 =

n∑
i=1

σ2
i =

n∑
i=1

λi ≤
n∑

i=1

|λi| =
n∑

i=1

σi. (4.3)
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In particular, if AN is symmetric and positive definite (σi = |λi| = λi ∈ R+), then the equality holds
in all inequalities (4.1), i.e.,

n∑
i=1

λ2i =

n∑
i=1

|λi|2 =

n∑
i=1

σ2
i =

n∑
i=1

λi =

n∑
i=1

|λi| =
n∑

i=1

σi. (4.4)

The next lemma compares the traces of matrices AN and (AN)
2
.

Lemma 4.1 Let A ∈ Rn×n be nonsingular and let S be a linear subspace of Rn×n. Let N be the
solution to problem (1.4). Then
(i) For any orthogonal projection AN

tr
(

(AN)
2
)
≤ ‖AN‖2F = tr (AN) . (4.5)

(ii) For any symmetric orthogonal projection AN∥∥∥(AN)
2
∥∥∥
F
≤ tr

(
(AN)

2
)

= ‖AN‖2F = tr (AN) . (4.6)

(iii) For any symmetric positive definite orthogonal projection AN∥∥∥(AN)
2
∥∥∥
F
≤ tr

(
(AN)

2
)

= ‖AN‖2F = tr (AN) ≤ [tr (AN)]
2
. (4.7)

Proof.
(i) Using (4.1), we get

n∑
i=1

λ2i ≤
n∑

i=1

σ2
i =

n∑
i=1

λi. (4.8)

(ii) It suffices to use the obvious fact that
∥∥∥(AN)

2
∥∥∥
F
≤ ‖AN‖2F and the following equalities taken

from (4.3)
n∑

i=1

λ2i =

n∑
i=1

σ2
i =

n∑
i=1

λi. (4.9)

(iii) It suffices to use (4.6) and the fact that (see, e.g., [13, 18]) if P and Q are symmetric positive
definite matrices then tr (PQ) ≤ tr (P ) tr (Q) for P = Q = AN . �

The rest of the paper is devoted to obtain new properties about the eigenvalues of the orthogonal
projection AN for the special case that this matrix is symmetric positive definite.

First, let us recall that the smallest singular value and the smallest eigenvalue’s modulus of the
orthogonal projection AN are never greater than 1 (see Lemma 2.4). The following theorem establishes
the dual result for the largest eigenvalue of matrix AN (symmetric positive definite).

Theorem 4.1 Let A ∈ Rn×n be nonsingular and let S be a linear subspace of Rn×n. Let N be the
solution to problem (1.4). Suppose that matrix AN is symmetric and positive definite. Then the largest
eigenvalue of the orthogonal projection AN of the identity onto the subspace AS is never less than 1.
That is,

σ1 = λ1 ≥ 1. (4.10)
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Proof. Using (4.4), we get

n∑
i=1

λ2i =

n∑
i=1

λi ⇒ λ2n − λn =

n−1∑
i=1

(
λi − λ2i

)
. (4.11)

Now, since λn ≤ 1 (Lemma 2.4), then λ2n − λn ≤ 0. This implies that at least one summand in the
right-most sum in (4.11) must be less than or equal to zero. Suppose that such summand is the k-th
one (1 ≤ k ≤ n− 1). Since AN is positive definite, then λk > 0 and thus

λk − λ2k ≤ 0 ⇒ λk ≤ λ2k ⇒ λk ≥ 1 ⇒ λ1 ≥ 1 (4.12)

and the proof is concluded. �
In Theorem 4.1, the assumption that matrix AN is positive definite is essential for assuring that

|λ1| ≥ 1, as the following simple counter-example shows. Moreover, from Lemma 2.4 and Theorem
4.1, respectively, we have that the smallest and largest eigenvalue of AN (symmetric positive definite)
satisfy λn ≤ 1 and λ1 ≥ 1, respectively. Nothing can be asserted about the remaining eigenvalues
of the symmetric positive definite matrix AN , which can be greater than, equal to, or less than the
unity, as the same counter-example also shows.

Example 4.1 For n = 3, let

Ak =

 3 0 0
0 k 0
0 0 1

 , k ∈ R, (4.13)

let I3 be identity matrix of order 3, and let S be the subspace of all 3 × 3 scalar matrices, i.e.,
S = span {I3}. Then the solution Nk to problem (1.4) for subspace S can be immediately obtained
by using formula (2.3) as follows

Nk =
tr (Ak)

‖Ak‖2F
I3 =

k + 4

k2 + 10
I3 (4.14)

and then we get

AkNk =
k + 4

k2 + 10
Ak =

k + 4

k2 + 10

 3 0 0
0 k 0
0 0 1

 . (4.15)

Let us arrange the eigenvalues and singular values of matrix AkNk, as usual, in nonincreasing order
(as shown in (2.5) and (2.6)).

On one hand, for k = −2 we have

A−2N−2 =
1

7

 3 0 0
0 −2 0
0 0 1

 . (4.16)

and then

σ1 = |λ1| =
3

7
≥ σ2 = |λ2| =

2

7
≥ σ3 = |λ3| =

1

7
. (4.17)

Hence, A−2N−2 is indefinite and σ1 = |λ1| = 3/7 < 1.
On the other hand, for 1 < k < 3, we have (see matrix (4.15))

σ1 = λ1 = 3
k + 4

k2 + 10
≥ σ2 = λ2 = k

k + 4

k2 + 10
≥ σ3 = λ3 =

k + 4

k2 + 10
(4.18)
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and then
k = 2 : σ1 = λ1 = 9

7 > 1, σ2 = λ2 = 6
7 < 1, σ3 = λ3 = 3

7 < 1.

k = 5
2 : σ1 = λ1 = 6

5 > 1, σ2 = λ2 = 1, σ3 = λ3 = 2
5 < 1.

k = 8
3 : σ1 = λ1 = 90

77 > 1, σ2 = λ2 = 80
77 > 1, σ3 = λ3 = 30

77 < 1.

(4.19)

Hence, for AkNk positive definite, we have (depending on k): λ2 < 1, λ2 = 1 or λ2 > 1.

The following corollary improves the lower bound zero, on both tr (AN), given in (2.1), and
cos (AN, I), given in (3.3).

Corollary 4.1 Let A ∈ Rn×n be nonsingular and let S be a linear subspace of Rn×n. Let N be the
solution to problem (1.4). Suppose that matrix AN is symmetric and positive definite. Then

1 ≤ ‖AN‖F ≤ tr (AN) = ‖AN‖2F ≤ n. (4.20)

cos (AN, I) ≥ 1√
n
. (4.21)

Proof. Denote by ‖·‖2 the spectral norm. Using the well-known inequality ‖·‖2 ≤ ‖·‖F [11], Theorem
4.1 and (2.1), we get

‖AN‖F ≥ ‖AN‖2 = σ1 = λ1 ≥ 1 ⇒ 1 ≤ ‖AN‖F ≤ tr (AN) = ‖AN‖2F ≤ n. (4.22)

Finally, (4.21) follows immediately from (4.20) and (3.11). �
Let us mention that an upper bound on all the eigenvalues moduli and on all singular values of

any orthogonal projection AN , can be immediately obtained from (4.1) and (2.1) as follows

n∑
i=1

|λi|2 ≤
n∑

i=1

σ2
i = ‖AN‖2F ≤ n ⇒ |λi| , σi ≤

√
n for all i = 1, 2, . . . , n. (4.23)

Our last theorem improves the upper bound given in (4.23) for the special case that the orthogonal
projection AN is symmetric positive definite.

Theorem 4.2 Let A ∈ Rn×n be nonsingular and let S be a linear subspace of Rn×n. Let N be the
solution to problem (1.4). Suppose that matrix AN is symmetric and positive definite. Then all the
eigenvalues of matrix AN satisfy

σi = λi ≤
1 +
√
n

2
for all i = 1, 2, . . . , n. (4.24)

Proof. First, note that the assertion is obvious for the smallest singular value since |λn| ≤ 1 for any
orthogonal projection AN (Lemma 2.4). For any eigenvalue of AN , we use the fact that x−x2 ≤ 1/4
for all x > 0. Then from (4.4), we get

n∑
i=1

λ2i =

n∑
i=1

λi ⇒ λ21 − λ1 =

n∑
i=2

(
λi − λ2i

)
≤ n− 1

4
⇒

λ1 ≤
1 +
√
n

2
⇒ λi ≤

1 +
√
n

2
for all i = 1, 2, . . . , n. �

(4.25)
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5 Conclusion

In this paper, we have considered the orthogonal projection AN (in the Frobenius sense) of the
identity matrix onto an arbitrary matrix subspace AS (A ∈ Rn×n nonsingular, S ⊂ Rn×n). Among
other geometrical properties of matrix AN , we have established a strong relation between the quality
of the approximation AN ≈ I and the cosine of the angle ∠ (AN, I). Also, the distance between AN
and the identity has been related to the ratio n ‖A‖F / |tr (A)| (which is independent of the subspace
S). The spectral analysis has provided lower and upper bounds on the largest eigenvalue of the
symmetric positive definite orthogonal projections of the identity.
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