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Summary. We present a new method, based on the idea of the meccano method and a novel
T-mesh optimization procedure, to construct a T-spline parameterization of 2D geometries
for the application of isogeometric analysis. The proposed method only demands a boundary
representation of the geometry as input data. The algorithm obtains, as a result, high qual-
ity parametric transformation between 2D objects and the parametric domain, the unit square.
First, we define a parametric mapping between the input boundary of the object and the bound-
ary of the parametric domain. Then, we build a T-mesh adapted to the geometric singularities
of the domain in order to preserve the features of the object boundary with a desired tolerance.
The key of the method lies in defining an isomorphic transformation between the parametric
and physical T-mesh finding the optimal position of the interior nodes by applying a new T-
mesh untangling and smoothing procedure. Bivariate T-spline representation is calculated by
imposing the interpolation conditions on points sited both on the interior and on the boundary
of the geometry. The efficacy of the proposed technique is shown in several examples.

Key words: T-spline parameterization, simultaneous mesh untangling and smooth-
ing, meccano method, isogeometric analysis, quadtree.

1 Introduction

An open problem in the context of isogeometric analysis [1, 2, 7] is how to obtain a
spline parameterization of a complex computational domain from the CAD descrip-
tion of its boundary.

Parameterization is suitable for analysis if it does not have self-intersection, i.e.,
the Jacobian is strictly positive at any point of the computational domain. Moreover,
in order to expect a high accuracy in numerical results it is necessary to obtain a good
quality parameterization. Orthogonality and uniformity of isoparametric curves are
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desirable for the tensor-product structured parameterization. This task is not trivial
and can be very time-consuming. For application of IGA it is essential to have an
efficient method to construct T-spline parameterization. In the present work we in-
vestigate this problem for planar geometries.

There are only a few works addressing this problem. In [25], the parameteriza-
tion is found by solving a constraint optimization problem for the control points of
a planar B-spline surface. Constraints are defined by imposing injectivity sufficient
conditions in terms of control points, and the optimization consists in the minimiza-
tion of some energy functions in order to reach a good orthogonality and uniformity
of the parametric mapping. Another similar technique was proposed by these authors
in [26]. They use a harmonic mapping obtained by solving an optimization problem
for the control points. Additional term is added to the objective function in order
to improve the quality where needed. The use of harmonic mapping is a common
characteristic of several works dealing with 2D and 3D parameterization methods
[19, 20, 21].

In this paper, we propose a different approach where the parameterization is ac-
complished by transforming isomorphically a T-mesh from the parametric domain
to the physical one. The construction of this transformation is mainly based on a
simultaneous T-mesh untangling and smoothing procedure.

As far as we know, the only case of performing mesh untangling and smoothing
procedure for a T-mesh, in order to construct T-spline representation of 3D domains,
was described in [24, 27]. They remove tangled elements by maximizing the worst
Jacobian. Smoothing is performed by moving each node towards the mass center of
its neighboring elements. Another strategy for optimizing a grid with hanging nodes
was described in [3]. Mesh optimization is carried out via a global grid smoothing
functional based on shape quality and size control metrics for the elements of the
mesh. Some constraints are imposed on the position of hanging nodes in order to
place them in the middle point of their edge.

In our previous works [11, 13] we constructed the physical T-mesh of the solid
using a volumetric parameterization obtained by deforming a tetrahedral mesh of
the solid. In general, this approach does not provide an optimal T-mesh quality in
the sense of its uniformity and orthogonality. Now, we propose a different approach
where the optimization is applied directly to the T-mesh.

Our technique is simple and easy to implement. Satisfactory results are obtained
with low computational effort for a variety of complex geometries.

This paper is organized as follows. In next section we describe the main steps
of the proposed algorithm. In section 3 we explain the process of boundary param-
eterization and the construction of T-mesh adapted to the singularities of the object
boundary. Section 4 describes the simultaneous T-mesh untangling and smoothing
procedure that leads to the construction of a high quality T-mesh of the object. The
modeling of the geometry by means of bivariate T-splines is developed in section 5.
A quality improvement strategy, based on adaptive refinement, is described in the
section 6. In section 7 we illustrate the results of the application of the algorithm to
some 2D domains. Finally, in section 8 we present the conclusions and set out some
challenges.



T-spline parameterization for isogeometric analysis 3

Fig. 1. General scheme of the T-spline parameterization method.

2 General Scheme of the Method

In this section we summarize the proposed method in order to facilitate its under-
standing. Some ideas of the method are taken from our previous works on mesh
untangling and smoothing and the meccano method [4, 5, 8, 10, 22, 23], but they
have been adapted to the requirements of the present work.

The algorithm includes the following stages:

1. Boundary parameterization and construction of an adapted T-mesh: A bijective
correspondence between the input boundary of the object and the boundary of
the parametric domain is defined. Then, an adapted T-mesh is generated by re-
fining the initial mesh in order to approximate the geometry with a prescribed
tolerance. During this process, the boundary nodes of the parametric domain are
mapped to the boundary of the object.

2. T-Mesh optimization: We relocate the inner nodes of the T-mesh by applying a
simultaneous mesh untangling and smoothing procedure. A previous relocation
of the inner nodes is accomplished in order to facilitate this task.

3. Construction of a T-spline representation of the geometry: The T-spline param-
eterization is obtained by imposing interpolation conditions. As interpolation
points, we take the vertices of the physical T-mesh obtained after the optimiza-
tion process and other necessary additional points.

4. Adaptive refinement to improve the mesh quality: If the quality of the T-mesh is
not satisfactory, we apply an adaptive refinement in order to increase the degree
of freedom in the areas with high distortion. Then, we return to step 2 and repeat
the process until reaching a good T-spline parameterization.

The T-mesh used in this work has a balanced quadtree structure: all refinements
are performed by dividing a cell into 4 equal cells and a procedure of balancing
is applied in order to allow just one hanging node per edge. The input boundary
representation is given by a polygonal, however it could be given by B-spline curves.

A scheme of the algorithm is shown in Fig. 1.
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(a)

(b)

Fig. 2. (a) Illustaration of the refinement criterion used for the boundary approximation. (b)
Construction of the adapted T-mesh in order to approximate the object boundary with a desired
tolerance. Example of the boundary approximation corresponding to the upper edge of the unit
square. Red line represents the input boundary.

3 Boundary Parameterization and Construction of an Adapted
T-mesh

In order to define a parametric mapping between the input boundary polygonal of
the object and the boundary of the parametric domain, the unit square, we have to
select four points of the polygonal that will correspond to the four corners of the
square. These points divide the input polygonal into four parts that are mapped via
chord-length parameterization into its corresponding edge of the square. The selec-
tion of the corners must be appropriate. Namely, the corners should be situated in
convex areas of the input boundary polygonal, where the inner angle formed by the
polygonal in these points is less than 180◦. Obviously, the optimal value of this angle
is 90◦. At present this selection is carried out by the user.

Next, we construct an adapted T-mesh that approximates the input boundary with
a prescribed tolerance ε . To do that, an approximation error is calculated for each
boundary cell and the cell is refined if this error is greater than ε . A cell refinement
produces a new boundary point that is projected over the input boundary polygonal,
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(a) (b)

(c) (d)

Fig. 3. Stages of the T-mesh construction for the Spot test model geometry. (a) Parametric
T-mesh adapted to the boundary of the geometry; (b) tangled physical mesh after boundary
mapping (the color bold lines represent the correspondence between parametric and physical
boundaries); (c) previous relocation by using Coons patch, highlighting self-intersections; (d)
optimized physical T-mesh.

obtaining a more accurate approximation of the geometry. As approximation error,
we evaluate the area of the triangles formed by the cell edge in the physical space
and each vertex of the input polygonal approximated by this edge. A cell is refined
if there is at least one triangle whose area exceeds ε , see Fig. 2(a). The process of
construction of an adapted T-mesh is illustrated in Fig. 2 (b).

As result of this stage, the position of the boundary nodes in the physical domain
are known and the position of the inner nodes will be defined by means of the T-
mesh optimization procedure developed in next section. Fig. 3(a) shows an example
of the adapted parametric T-mesh constructed in this stage and, Fig. 3(b), illustrates
the resulting tangled T-mesh of the physical domain that will be optimized.
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4 T-mesh Optimization

The key of the proposed method lies in the optimization procedure that allows to
obtain a high quality physical T-mesh used to construct the T-spline representation
of the object.

It is preferable to perform a previous relocation of the inner nodes in order to
reduce the computational effort during the optimization process. In the present work,
we have used for this purpose Coons patch [6, 14] to define a surface that interpolates
given boundary curves. This previous relocation procedure facilitates the untangling
process, but in general does not obtain a satisfactory mesh quality and can produce
self-intersections, as shown in Fig. 3(c). Therefore, it is essential to apply an efficient
optimization algorithm.

4.1 Objective Function

The mesh optimization process is carried out by iterative relocation of each inner
node of the mesh in such a way that the new position of the node improves the quality
of the local submesh corresponding to this node. A local submesh is the set of all the
elements connected with the movable or free node. The local objective function for a
free node is based on algebraic shape quality metrics proposed by Knupp in [17, 18]
for triangular and quadrilateral elements. Shape quality metric for a given triangle
is defined in terms of the Jacobian matrix of the affine mapping from ideal triangle
to the given one. This shape quality metric represents the deviation of the physical
triangle from the ideal one. It attains its maximum value, 1, if the triangle is similar
to the ideal one, and it equals 0 if the triangle is degenerated. The distortion metric of
an element is defined as the inverse of its quality metric. In order to asses the quality
of the local submesh for a given free node of a T-mesh, we have to decompose each
neighboring cell into triangles and asses the quality of each triangle. For a T-mesh,
this decomposition depends on the type of the free node. There are two types of
free node: a regular node and a hanging node. The optimal position of each free
node is determined by minimizing a local objective function. We define the objective
function as a sum of shape distortion metrics of the triangles of the local submesh.
For each triangle of the physical mesh, the corresponding triangle of the parametric
mesh is used as its ideal element. Therefore, each cell of the physical mesh tends to
have the same shape as its counterpart cell of the parametric mesh. Thus, repeating
this procedure for all the inner nodes of the mesh, we achieve the physical mesh of
the object is as similar to the parametric one as possible.

A regular node is surrounded by four cells with equal or different sizes. In order
to perform the mesh improvement, the local submesh is decomposed in twelve trian-
gles, three triangles per cell whose qualities depends on the position of the free node.
Fig. 4(a) illustrates this decomposition and Fig. 4(c) shows the feasible region of the
objective function.

In a hanging node case, the free node is surrounded by three cells and the local
submesh is decomposed in eleven triangles. The cell in which the node forms a T-
junction is decomposed in five triangles whose qualities depend on the position of the
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(a) (b)

(c) (d)

Fig. 4. Triangular decomposition of the free node local submesh, where the red point is the
free node. (a) Regular node case, where each cell is decomposed in three triangles; (b) hanging
node case, where five triangles are formed in the cell where the node generates a T-juntion; (c)
barriers (red lines) and feasible region (light blue) induced by the 12 triangles in the objective
function for a regular node; (d) barriers and feasible region induced by the 11 triangles in the
objective function for a hanging node.

free node. Each one of the other two cells is decomposed in three triangles, as was
described in the case of a regular node. Fig. 4(b) shows the decomposition of a local
submesh for hanging node case and the feasible region of the objective function.
Note that, for the ideal case shown in Fig. 4(d), the feasible region induced by these
eleven triangles is the same as the one obtained after a refinement of the T-junction
cell, see Fig. 4(c).

In order to define the objective function we introduce the following concepts.
Let T be a triangle whose vertices are given by xk = (xk,yk)

T ∈ R2, k = 0,1,2
and TR be the reference triangle with vertices u0 = (0,0)T , u1 = (1,0)T and u2 =
(0,1)T . If we choose x0 as the translation vector, the affine map that takes TR to T is
x =Au+x0, where A is the Jacobian matrix of the affine map referenced to node x0,
and expressed as A = (x1 −x0,x2 −x0).

Let consider that TI is our ideal or target triangle whose vertices are v0, v1 and
v2. If we take v0 = (0,0)T , the linear map that takes TR to TI is v =Wu, where W =
(v1,v2) is its Jacobian matrix. As the parametric and real meshes are topologically
identical, each triangle in the physical space has its counterpart in the parametric
space.

Affine map that takes TI to T is given by x =AW−1v+x0, and its Jacobian ma-
trix is S = AW−1. Note that this weighted matrix S depends on the node chosen as
reference, so this node must be the same for T and TI . We can use matrix norms, de-
terminant or trace of S to construct algebraic quality metrics of T . For example, the
mean ratio, q = 2σ

∥S∥2 , is an easily computable algebraic quality metric of T , where

σ = det(S) and ∥S∥ is the Frobenius norm of S. The maximum value of q is the
unity, and it is reached when A = µRW , where µ is a scalar and R is a rotation ma-
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trix. In other words, q is maximum if and only if T and TI are similar. Besides, any
flat triangle has quality measure zero. We can derive an optimization function from
this quality metric. Thus, let x = (x,y)T be the position of the free node, and let Sm
be the weighted Jacobian matrix of the m-th triangle connected to this free node. We
define the objective function of x, associated to an m-th triangle as

ηm =
∥Sm∥2

2σm
(1)

The local objective function used for mesh quality improvement is defined by
means of the inverse of mean ratio quality metric of each triangle of the local sub-
mesh. The function to be minimized is given by

K(x) =
M

∑
m=1

ηm (2)

where M is the number of triangles in the local submesh and Sm is the Jacobian
matrix associated to the affine mapping from the ideal triangle to the physical one.

Objective function defined by Eq. (2) is appropriate to improve the quality of a
valid mesh, but it does not work properly when there are inverted elements [15, 16].
In previous works [8, 12] we have used a modified objective function K∗, where
the untangling and smoothing are carried out in the same stage. This modified ob-
jective function K∗ does not have singularities, it works as the original function K
for the valid elements and tends to untangle the inverted and degenerated ones. This
objective function is defined as

K∗(x) =
M

∑
m=1

∥Sm∥2

2h(σm)
(3)

where h(σ) = 1
2 (σ +

√
σ2 +4δ 2).

Objective function K∗ is smooth in R2, so the unconstrained optimization prob-
lem can be easily solved with any standard method.

In case of a conformal local submesh, the result obtained by minimizing the
objective function K∗ is, when possible, an orthogonal submesh, as shown in Fig.
5(a). However, not satisfactory result is obtained for a non-conformal submesh. In
this case, two special situations can appear: a regular node surrounded by cells of
different scales and a hanging node. In these situations, a variation in the position of
the free node does not affect in the same way to the quality of the triangles of the
local submesh. The objective function tends to form triangles as similar as possible
to the reference ones, but the influence of the smaller cells are greater than the bigger
ones. For example, in Fig. 5(b) it can be seen how the free node is moved toward the
small cell and, therefore, the resulting mesh is not orthogonal.

This problem is solved by a modification of the objective function K∗, namely
multiplying the terms of the objective function by appropriate weights.
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(a)

(b) (c)

Fig. 5. Resulting meshes after optimization with different objective functions. (a) Orthogonal
mesh using K∗; (b) not satisfactory result for a non-conformal local submesh using K∗; (c)
orthogonal mesh using weighted objective function K∗

τ .

4.2 Weighted Objective Function

The terms of the objective function K∗ can be grouped according to the belonging to
each cell of the local submesh. Each group is multiplied by an appropriated weight
in order to avoid the mentioned problems in section 4.1.

For a regular node, the weighted objective function is

K∗
τ (x) = τ1

3

∑
m=1

∥Sm∥2

2h(σm)
+ τ2

6

∑
m=4

∥Sm∥2

2h(σm)
+ τ3

9

∑
m=7

∥Sm∥2

2h(σm)
+ τ4

12

∑
m=10

∥Sm∥2

2h(σm)

(4)

where each summation is the group associated to each cell and τi is the applied
weight. We can prove that this weight is equal to the scale factor of the cell in the
parametric space, but it has not been included due to space limitation of this paper.
We assume that the smallest cells in the local submesh have scale factor τ = 1 and
the other cells can have scale factor τ = 2 or τ = 4, as illustrated in Fig. 6(a). Fig.
5(c) shows the resulting orthogonal mesh when these weights are applied.

A hanging node is surrounded by three cells as it was mentioned above. In this
case, the weighted objective functions is

K∗
τ (x) = τ1

3

∑
m=1

∥Sm∥2

2h(σm)
+ τ2

6

∑
m=4

∥Sm∥2

2h(σm)
+ τ3

11

∑
m=7

∥Sm∥2

2h(σm)
(5)

Hanging node is a more particular case because its local submesh is decomposed
in different types of triangles. To guarantee the orthogonality in the local submesh
after optimization, we have determined that the weights are τ3 =

8
5 for the cell where

the node forms a T-junction and τ1 = τ2 = 1 for the other two cells, as shown in Fig.
6(b).
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(a) (b)

Fig. 6. Weights applied to the objective functions K∗
τ . (a) Regular node where τ1 = 1, τ2 =

τ4 = 2 and τ3 = 4; (b) hanging node where τ1 = τ2 = 1 and τ3 =
8
5 .

5 Construction of a T-spline Representation of the Geometry

In this section we describe the construction of T-spline representation for 2D geome-
tries. We have to obtain a global one-to-one parametric transformation that maps the
parametric domain into the physical domain S : Ω̂ = [0,1]2 → Ω .

5.1 T-splines

In order to define T-spline basis functions of degree 3 over a given T-mesh in 2D,
a local knot vector for both parametric directions should be assigned to each basis
function Rα : Ξα =

(
ξα1

,ξα2
,ξα3

,ξα4
,ξα5

)
, Hα =

(
ηα1

,ηα2
,ηα3

,ηα4
,ηα5

)
. These

knot vectors are inferred by traversing T-mesh edges. This basis function is associ-
ated to the central knot (ξα3

,ηα3
) that is called anchor. As we are using open knot

vector structure, there are some blending functions that have the same anchor.
The T-spline blending functions that we use in this work are rational B-spline

functions defined as

Rα (ξ) =
Nα (ξ)

∑
β∈A

Nβ (ξ)
(6)

being Nα (ξ) = N1
α (ξ )N2

α (η ) the bivariate B-spline function defined over its local
knot vectors Ξα = {Ξα ,Hα}, and A is the index set of the basis spanned by T-mesh.

A detailed report about T-splines and their relationship with isogeometric analy-
sis can be found in [2].

5.2 Interpolation

We build bivariate T-spline surface representation of our physical domain as lineal
combination of T-spline blending functions

S(ξ) = ∑
α∈A

Pα Rα (ξ) (7)
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(a) (b)

Fig. 7. Interpolation points in parametric and physical domains. (a) Parametric domain, ξv -
vertices of the mesh, ξe - additional interpolation points situated on the edges of the mesh, ξc

- additional points situated in the four corner cells; (b) interpolation points in physical domain.

where Pα ∈ R2 is the control point corresponding to the α-th blending function.
Control points Pα are found by imposing interpolation conditions. Assuming that

the set of blending functions are linearly independent, we need as many interpolation
points as blending functions.

As interpolation points, first of all, we use the anchors of the blending functions.
Each anchor coincides with a T-mesh vertex, ξv

α , and its position in the physical
space, xv

α , was determined by the mesh optimization process.
According to the strategy adopted in the section 5.1, that leads to an open knot

vector structure along the boundary of the mesh, the total number of blending func-
tions is greater than the number of vertices of the T-mesh. Therefore, we have to take
additional interpolation points. These additional points are associated to functions
whose knot vectors Ξα or Hα contains exactly three repeated knots. We assign to
each of these functions an interpolation point approximately sited where the func-
tion attains its maximum. The positions of these interpolation points in parametric
and physical spaces are shown in Fig. 7(a). For each additional interpolation point
ξα , its position in the physical space, xα , should be defined. The interpolation points
ξe

α , situated at the mid point of an edge of the parametric mesh, are mapped to the
mid point of the same edge of the physical T-mesh. The positions in the physical
space of the four interpolation points ξc

α situated in the center of the corner cells of
the parametric mesh are determined by optimizing the local submesh formed after a
fictitious quadtree partition of these cells.

Finally we solve the linear system of equations

xβ = S
(
ξβ

)
= ∑

α∈A
Pα Rα

(
ξβ

)
, ∀ξβ , β ∈ A (8)

where ξβ are interpolation points in parametric space and xβ are their images in the
physical space.
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Fig. 8. Mean ratio Jacobian. A quality metric of the parametric mapping S at any point P0 in
terms of the mean ratio of the triangle P′

0P′
1P′

2.

6 Adaptive Refinement to Improve the Mesh Quality

6.1 Mean ratio Jacobian

Our objective is to get high-quality geometry parameterization suitable for isogeo-
metric analysis. The parametric T-spline mapping of Eq. 7 is suitable for analysis if it
has positive Jacobian in all the domain. High distortion of the geometry can produce
a large variation of the Jacobian that can lead to a poor accuracy in the numerical
results. Therefore, a good uniformity and orthogonality of the isoparametric curves
are desired for the parametric mapping S.

A high quality of the optimized T-mesh is a necessary, but not sufficient, condi-
tion for a high quality of the T-spline mapping. It can happen that the Jacobian of the
spline parameterization takes negative values even if all the cells of the T-mesh are
valid. In order to assess the quality of the constructed parametric transformation we
analyze the mean ratio Jacobian, given by

Jr(ξ) =
2 det(J)
∥J∥2 , (9)

where J is the Jacobian matrix of the mapping S at the point ξ = (ξ ,η) and ∥J∥ is
its Frobenius norm.

The value of the mean ratio Jacobian at any point P0 of the parametric domain
is a shape quality metric for the infinitesimal triangle formed by two isoparametric
curves of the physical domain passing through the point P′

0 = S(P0), as illustrated in
Fig. 8. In contrast to the scaled Jacobian, that represents a quality of the mapping S
in the sense of the orthogonality of its isoparametric curves, the mean ratio Jacobian
represents both: a quality of the mapping in the sense of the orthogonality and uni-
formity of its isoparametric curves. Scaled Jacobian attains its maximum value 1 at
the given point if the mapping conserves orthogonality of the isoparametric curves.
Mean ratio Jacobian is equal 1 at the point P0 if the mapping conserves orthogonal-
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ity and produces the same length distortion in both parametric directions, i.e., the
mapping is conformal at this point.

It is easy to see that ∀ξ : 0≤ |Jr(ξ)| ≤ |Js(ξ)| ≤ 1, where Js =
det(J)

∥Sξ ∥∥Sη∥ is scaled
Jacobian.

6.2 Adaptive Refinement

Parameterization of complex geometries entails a severe distortion that can lead to
appearance of low quality cells, even cells with negative Jacobian. This can be ex-
plained by the lack of degrees of freedom provided by the inner nodes. In order to
improve the mesh quality in this case, we propose an adaptive strategy that refines
all the cells with low quality. A similar idea was implemented for tetrahedral meshes
in [9].

We proceed as follows. For each cell of the mesh, the mean ratio Jacobian is
calculated at Gauss quadrature points. We use 16 = 4×4 quadrature points per cell.
A cell Ω̂e is marked to refine if, at least, one of its quadrature points has mean ratio
Jacobian less than a certain threshold δ . The refined T-mesh is optimized again and
the process is repeated until a satisfactory mesh quality is obtained. Fig. 9 illustrates
the efficiency of the proposed strategy. Additional refinements were applied to Gran
Canaria Island domain with δ = 0.2. The initial mesh with 3439 cells produces a
T-spline parametric mapping with low quality in some areas and negative Jacobian
in the North East part of the island. After adaptive refinement we have a mesh with
3577 cells and positive Jacobian in all the domain. Moreover, the minimum value of
mean ratio Jacobian at the quadrature points is 0.21.

7 Results and Applications

7.1 Geometric Modeling Results

The proposed algorithm was tested on several 2D domains. For all of them, we have
obtained parametric mappings of high quality suitable for isogeometric analysis. In
this section we present some results of the application of the method.

Fig. 10 shows the resulting T-spline representation of the Spot test model and
the color map of the mean ratio Jacobian, represented in parametric and physical
domains. As it was described in section 6, we have analyzed the quality of the para-
metric mapping by evaluating the mean ratio Jacobian at the quadrature points of
each cell. In this case, no adaptive refinement was necessary.

Fig. 11 shows the physical T-mesh, the T-spline representation and the color map
of the mean ratio Jacobian of the Gran Canaria Island geometry presented in previous
section. We have constructed the adapted T-mesh starting from an initial uniform
8×8 mesh. Adaptive refinements were applied in order to improve the mesh quality
in some areas with high distortion. In particular, three iterations were necessary to
obtain a parametric mapping with mean ratio Jacobian greater than δ = 0.2 in all
quadrature points.
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(a)

(b) (c)

(d) (e)

Fig. 9. Adaptive refinement strategy to improve the parametric transformation quality in
Gran Canaria island domain. (a) T-spline representation of the domain; (b) initial T-spline
parametrization with negative Jacobian; (c) resulting T-spline parameterization with no neg-
ative Jacobian after applying adaptive refinement; (d) mean ratio Jacobian of the initial
parametrization; (e) mean ratio Jacobian of the final parametrization.

Another example is shown in Fig. 12. In this case, one adaptive refinement was
necessary to reach a mean ratio Jacobian greater than δ = 0.15 in all quadrature
points.
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(a) (b)

Fig. 10. Spot test model with 844 cells, 1456 control points and 13504 quadrature points.
(a) Color map of the mean ratio Jacobian of the parametric transformation represented in the
parametric domain; (b) color map of the mean ratio Jacobian in the physical domain.

8 Conclusions and Challenges

We have proposed a new effective technique for obtaining a single T-spline param-
eterization of 2D geometries for the application of isogeometric analysis. A new
T-mesh untangling and smoothing procedure have been applied in order to define
an isomorphic transformation between parametric and physical T-mesh. Presented
technique is simple and easy to implement. The algorithm have been tested in sev-
eral 2D geometries and, for all of them, we have obtained a high quality parametric
transformation between the object and the parametric domain. To asses the quality
of the parametric mapping, we evaluate its mean ratio Jacobian. Thereby, we detect
the areas with low quality and perform an adaptive refinement in order to increase
the degree of freedom in the areas with high distortion. This strategy allows to obtain
a parameterization suitable for analysis with no negative Jacobian, even for complex
geometries.

All the geometries presented in this work have been parameterized with the unit
square. As a next step, we plan on overcome this limitation and to develop an al-
gorithm to parameterize a 2D object with more complex polygon-type parametric
domain that fits better the geometry. Also, in future research we expect to extend the
presented method to 3D.
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