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Abstract

Approximate inverses, based on Frobenius norm minimization, of real non-
singular matrices are analyzed from a purely theoretical point of view. In
this context, this paper provides several sufficient conditions, that assure us
the possibility of improving (in the sense of the Frobenius norm) some given
approximate inverses. Moreover, the optimal approximate inverses of matrix
A ∈ Rn×n, among all matrices belonging to certain subspaces of Rn×n, are
obtained. Particularly, a natural generalization of the classical normal equa-
tions of the system Ax = b is given, when searching for approximate inverses
N 6= AT such that AN is symmetric and ‖AN − I‖F <

∥∥AAT − I
∥∥
F
.

Keywords: Approximate inverses; Frobenius norm minimization; Trace;
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1. Introduction

Let Rn×n be the set of all n×n real matrices. In the following, A ∈ Rn×n

is assumed to be nonsingular, the symbols AT , A−1 and tr (A) stand for the
transpose, the inverse, and the trace of matrix A, respectively, and I denotes
the n× n identity matrix.

Roughly speaking, by a left (right, respectively) approximate inverse of
A, we mean a matrix N ∈ Rn×n such that the matrix product NA (AN ,
respectively) is “close to the identity” in a certain sense. This closeness may
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Preprint submitted to Applied Mathematics and Computation March 13, 2013

*Manuscript
Click here to download Manuscript: AMCD1100877R2.tex Click here to view linked References

http://ees.elsevier.com/amc/download.aspx?id=399917&guid=fc8cfb6f-4fb3-49a3-a87b-502bdc83feba&scheme=1
http://ees.elsevier.com/amc/viewRCResults.aspx?pdf=1&docID=27631&rev=2&fileID=399917&msid={8E10C4AC-C7E3-4502-8E38-4206DE842DA1}


be measured by using an adequate matrix norm, and throughout this paper
we use the Frobenius norm ‖·‖F . Moreover, we address only the case of
the right approximate inverses and, for simplicity, they will be referred to
as approximate inverses (but analogous results can be obtained for the left
ones). More precisely, we begin with the following definition.

Definition 1.1. Let A,N,N ′ ∈ Rn×n. Assume that A is nonsingular. Then

we say that N is better approximate inverse of A than N ′, or that N improves

N ′ as approximate inverse of A if and only if

‖AN − I‖F < ‖AN ′ − I‖F .

In this context, given a linear subspace S of Rn×n, we consider the prob-
lem of obtaining the optimal approximate inverse N of matrix A in the
subspace S. In accordance with Definition 1.1, throughout this paper the
terms “the optimal” or “the best”, mean that matrix N ∈ S minimizes the
Frobenius norm on the residual matrix AM − I. More precisely, “the opti-
mal” approximate inverse N of A in S is the solution to the minimization
problem

min
M∈S

‖AM − I‖F = ‖AN − I‖F , (1.1)

but the approximate inverse N is not necessarily optimal in any other sense
of the word.

The optimization problem (1.1) is tightly connected to the numerical
analysis of linear systems

Ax = b, A ∈ R
n×n, x, b ∈ R

n, (1.2)

where A is a large, sparse and nonsingular matrix.
Indeed, in numerical linear algebra, the resolution of these systems is

usually performed by iterative methods based on Krylov subspaces [1, 2]. In
general, the convergence of such Krylov methods is not assured or may be
too slow. To improve their behavior, a preconditioning matrix N is used to
transform the system (1.2) into the following equivalent system,

ANy = b, x = Ny, (1.3)

the so-called right preconditioned system, which is performed in order to get
a preconditioned matrix AN , as close as possible to the identity [3], and N
is called a (right) approximate inverse preconditioner of system (1.2).
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Often, the preconditioners are parametrized by prescribed sparsity pat-
terns [4, 5], but we consider here a more general case of linear parametrization
where the approximate inverse N , defined by Eq. (1.1), belongs to an arbi-
trary matrix subspace S of Rn×n. In [6], the authors introduce the idea to
use Frobenius norm minimization for preconditioning problems. Some of the
methods for constructing sparse approximate inverse preconditioners that are
best approximations in the Frobenius norm, can be found, for instance, in
[7, 8, 9, 10, 11, 12, 13, 14, 15] and in the references therein.

It is important to highlight here that the purpose of this paper is to
provide purely theoretical results about the optimal approximate inverses
N ∈ S ⊆ Rn×n given by Eq. (1.1), in the theoretical context of Definition
1.1. However, our purpose is not to propose new algorithms for the numerical
problem of preconditioning linear systems. Only, in a few cases, our results
are related to computational strategies using special approximate inverse
preconditioners based on Frobenius minimization.

The main goal of this paper is to apply several spectral properties of
the matrix product AN (N being the solution to problem (1.1)) to obtain
sufficient conditions for the existence of approximate inverses improving (in
the sense of Definition 1.1) some given approximate inverses. By the way, we
obtain the optimal approximate inverses of matrix A, among all the matrices
belonging to certain linear subspaces of Rn×n.

For this purpose, in Section 2, we recall some useful expressions for matrix
N , and several spectral properties of matrix AN . Next, Section 3 is devoted
to establish our new results: the above mentioned sufficient conditions for
improving approximate inverses, as well as the optimal approximate inverses
of matrix A in certain matrix subspaces of Rn×n. Finally, conclusions are
presented in Section 4.

2. Some preliminaries

Now, we present some preliminary results required to make this paper
self-contained. For more details about these previous results and for their
proofs, we refer the reader to [16, 17, 18].

2.1. Expressions for matrix N

Taking advantage of the well-known fact that the matrix Frobenius norm
derives from an inner product, the solution N to problem (1.1) can be directly
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obtained via orthogonal projections. Here, and in the following, orthogonal-
ity is with respect to the Frobenius inner product 〈·, ·〉F . More precisely,
using the orthogonal projection theorem, the matrix product AN is the or-
thogonal projection of the identity onto the subspace AS, as stated by the
following Lemma [16].

Lemma 2.1. Let A ∈ Rn×n be nonsingular and let S be a linear subspace of

Rn×n. Then, the solution to problem (1.1) is characterized by

tr
(
AtANM t

)
= tr (AM) , ∀M ∈ S, (2.1)

and the minimum Frobenius norm is

‖AN − I‖2F = n− tr(AN).

Moreover,

‖AN‖2F = tr(AN).

Equation (2.1) implicitly gives the solution N to problem (1.1). For
the purposes of this paper, it suffices to recall here the following simple
explicit formula. The basic idea simply consists of expressing the orthogonal
projection AN of the identity matrix onto the subspace AS by its expansion
with respect to an orthonormal basis of AS [16].

Lemma 2.2. Let A ∈ Rn×n be nonsingular. Let S be a linear subspace of

R
n×n of dimension d, and {M1, ...,Md} a basis of S such that {AM1, ..., AMd}

is an orthogonal basis of AS. Then, the solution to problem (1.1) is

N =

d∑

i=1

tr (AMi)

‖AMi‖
2

F

Mi, (2.2)

and the minimum Frobenius norm is

‖AN − I‖2F = n−

d∑

i=1

[tr (AMi)]
2

‖AMi‖
2

F

. (2.3)

Remark 2.1. In addition to formula (2.2), other explicit expressions for the
optimal preconditioners N can be given using an arbitrary basis of subspace
S. The idea consists of using the Gram-Schmidt orthonormalization proce-
dure to obtain an orthonormal basis of AS, and then to apply Eq. (2.2).
Such expressions have been developed for computational purposes in [16],
and they have been applied to the preconditioning of large linear systems
arising from real-world cases.
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2.2. Spectral properties of matrix AN

Let us denote by {λi (AN)}ni=1
and {σi (AN)}ni=1

the sets of eigenvalues
and singular values, respectively, of the matrix product AN arranged, as
usual, in nonincreasing order of their modules, i.e.,

|λ1 (AN)| ≥ |λ2 (AN)| ≥ · · · ≥ |λn (AN)| ≥ 0,
σ1 (AN) ≥ σ2 (AN) ≥ · · · ≥ σn (AN) ≥ 0.

The following proposition states some spectral properties of matrix AN . We
refer the reader to [17, 18] for different proofs of these properties.

Proposition 2.1. Let A ∈ Rn×n be nonsingular and let S be a linear sub-

space of Rn×n. Then

‖AN‖2F ≤ n, (2.4)

0 ≤ tr (AN) ≤ n, (2.5)

σn (AN) ≤ |λn (AN)| ≤ 1 (2.6)

and

(1− |λn (AN)|)2 ≤ (1− σn (AN))2 ≤ ‖AN − I‖2F

≤ n
(
1− |λn (AN)|2

)
≤ n

(
1− σ2

n (AN)
)
.

Moreover, ‖AN − I‖F decreases to 0 at the same time as the trace of

AN increases to n, and also, at the same time as the smallest singular value

σn (AN) (or the smallest eigenvalue’s modulus |λn (AN)|) of matrix AN in-

creases to 1.

3. Improving approximate inverses of matrix A

To avoid confusion, from now on |λn (A)| and |λn (AN)| denote the small-
est eigenvalue’s modulus of matrices A and AN , respectively. Similarly,
σn (A) and σn (AN) stand for the smallest singular value of matrices A and
AN , respectively.

Now, using Eqs. (2.4), (2.5) and (2.6), we prove the following corollaries
of Proposition 2.1, which provide different sufficient conditions for improving
some given approximate inverses, i.e., for reducing the Frobenius norm on
the residual matrix AM − I.

It is important to recall here that the sentences “is better approximate
inverse of A than...” or “the best or the optimal approximate inverse of

5



A among...”, used throughout this paper, have always the precise meaning
stated by Definition 1.1 (and not any other meaning).

The first corollary provides us the best approximate inverse of matrix A,
among all the n× n scalar matrices.

Corollary 3.1. Let A ∈ Rn×n be nonsingular.

(i) If tr (A) /∈ [0, n] or if |λn (A)| > 1, then there exists a scalar matrix αI
which is better approximate inverse of A than the identity matrix, i.e.,

∃ α ∈ R, α 6= 1 s.t. ‖A (αI)− I‖F = ‖αA− I‖F < ‖A− I‖F .

(ii) The scalar α that minimizes ‖αA− I‖F is

α =
tr (A)

‖A‖2F
. (3.1)

Proof. To prove (i) consider the matrix subspace S = span {I} of Rn×n.
Suppose that N = I is the solution to problem (1.1) for subspace S. Then,
on one hand, using Eq. (2.5), we have

N = I ⇒ tr (AN) = tr (A) ∈ [0, n] ,

which contradicts the hypothesis on tr (A). On the other hand, using Eq.
(2.6), we have

N = I ⇒ |λn (AN)| = |λn (A)| ≤ 1,

which contradicts the hypothesis on λn (A).
To prove (ii), just consider that the solution N to problem (1.1) for the

subspace S = span {I} can be obtained from Eq. (2.2), using the basis {I}
of S. That is,

N =
tr (A)

‖A‖2F
I ⇒ α =

tr (A)

‖A‖2F
. �

The following corollary provides the optimal approximate inverse of ma-
trix A, among all scalar multiples of A.

Corollary 3.2. Let A ∈ Rn×n be nonsingular.

(i) If tr (A2) /∈ [0, n] or if |λn (A)| > 1, then there exists a scalar multiple αA
of A which is better approximate inverse of A than A itself, i.e.,

∃ α ∈ R, α 6= 1 s.t. ‖A (αA)− I‖F =
∥∥αA2 − I

∥∥
F
<
∥∥A2 − I

∥∥
F
.
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(ii) The scalar α that minimizes ‖αA2 − I‖F is

α =
tr (A2)

‖A2‖2F
.

We omit the proof of Corollary 3.2, since it is similar to that of Corollary
3.1 if we use matrix A instead of I.

Next corollary deals with the search of symmetric approximate inverses
for symmetric matrices. Throughout this paper, the set of all n × n real
symmetric matrices is denoted by Sn (R).

Corollary 3.3. Let A ∈ Sn (R) be nonsingular.

(i) If ‖A‖2F > n or if |λn (A)| > 1, then there exists a symmetric matrix M
which is better approximate inverse of A than A itself, i.e.,

∃ M ∈ Sn (R) , s.t. ‖AM − I‖F <
∥∥A2 − I

∥∥
F
.

(ii) The symmetric matrix N that minimizes ‖AM − I‖F is given by

tr
(
A2NM

)
= tr (AM) , ∀M ∈ Sn (R) .

Proof. To prove (i) consider the matrix subspace S = Sn (R) of all sym-
metric matrices in Rn×n. Suppose that N = A is the solution to problem
(1.1) for subspace S. Then, on one hand, using Eq. (2.5), we have

N = A ⇒ tr (AN) = tr
(
A2
)
= tr

(
AAT

)
= ‖A‖2F ∈ [0, n] ,

which contradicts the hypothesis on ‖A‖2F . On the other hand, using Eq.
(2.6), we have

N = A ⇒ |λn (AN)| =
∣∣λn

(
A2
)∣∣ = |λn (A)|

2 ≤ 1,

which contradicts the hypothesis on λn (A).
To prove (ii), it suffices to apply Eq. (2.1) for subspace S = Sn (R). �
The following three corollaries are close related to the Frobenius norm

based preconditioning of linear systems. For this reason, from now on we
must assume that the solution N to problem (1.1) is nonsingular, in order to
get a nonsingular preconditioned matrix AN .

First we need to set some notations. In the following, Mi,j denotes the
n×nmatrix whose only nonzero term ismij = 1, ei denotes the i-th canonical
vector (i.e., Aei is the i-th column of A), and the symbols ‖·‖

2
and 〈·, ·〉

2
stand

for the Euclidean vector norm and inner product, respectively.
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Remark 3.1. Since the only non-null column of matrix AMi,j is its j-th
one, which coincides with the i-th column Aei of matrix A, then we have

tr (AMi,j) = aji, ‖AMi,j‖
2

F
= ‖Aei‖

2

2
. (3.2)

Moreover
〈AMi,j , AMi′,j〉F = 〈Aei, Aei′〉2 for all i 6= i′

and
〈AMi,j, AMi′,j′〉F = 0 for all j 6= j′,

so that any system of matrices {AMi,j}
n

j=1
is orthogonal with respect to the

Frobenius inner product.

Often, the diagonal matrix diag
(
a−1

11
, a−1

22
, . . . , a−1

nn

)
is used as an approx-

imate inverse preconditioner of system (1.2). However, this is not always the
optimal choice among the diagonal approximate inverses, as the following
corollary states.

Corollary 3.4. Let A ∈ Rn×n be nonsingular, such that aii 6= 0, for all

i = 1, 2, . . . , n.
(i) If matrix A is not diagonal, then there exists an n×n diagonal matrix D
which is better approximate inverse of A than diag

(
a−1

11
, a−1

22
, . . . , a−1

nn

)
, i.e.,

there exists D ∈ Rn×n (D diagonal) such that

‖AD − I‖F <
∥∥A · diag

(
a−1

11
, a−1

22
, . . . , a−1

nn

)
− I
∥∥
F
.

(ii) The diagonal matrix D that minimizes ‖AD − I‖F is

D = diag

(
a11

‖Ae1‖
2

2

, · · · ,
ann

‖Aen‖
2

2

)
. (3.3)

Moreover, the corresponding minimum residual Frobenius norm is given by

∥∥AD − I
∥∥2
F
= n−

n∑

i=1

a2ii
‖Aei‖

2

2

. (3.4)

Proof. To prove (i) consider the matrix subspace S of all diagonal ma-
trices in Rn×n. Suppose that N = diag

(
a−1

11
, a−1

22
, . . . , a−1

nn

)
is the solution to

problem (1.1) for subspace S. Then,

(AN)ij =

{
1, if i = j,

aij · a
−1

jj , if i 6= j
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and thus, we have

‖AN‖2F =
n∑

i=1

(AN)2ii +
∑

i 6=j

(AN)2ij = n+
∑

i 6=j

(
aij · a

−1

jj

)2
> n,

since there exists i 6= j such that aij 6= 0, because, by assumption, A is not
diagonal. But the inequality ‖AN‖2F > n contradicts Eq. (2.4).

To prove (ii), consider the canonical basis {Mi,i}
n

i=1
of subspace S. Since

the basis {AMi,i}
n

i=1
of AS is orthogonal (Remark 3.1), then the solution N

to problem (1.1) for the subspace S can be obtained using Eqs. (2.2) and
(3.2)

D =

n∑

i=1

tr (AMi,i)

‖AMi,i‖
2

F

Mi,i =

n∑

i=1

aii

‖Aei‖
2

2

Mi,i = diag

(
a11

‖Ae1‖
2

2

, · · · ,
ann

‖Aen‖
2

2

)
.

Finally, to prove (3.4), it suffices to use Eqs. (2.3) and (3.2)

∥∥AD − I
∥∥2
F
= n−

n∑

i=1

[tr (AMi,i)]
2

‖AMi,i‖
2

F

= n−

n∑

i=1

a2ii
‖Aei‖

2

2

. �

Remark 3.2. The optimal diagonal (left) preconditioner D̂ that minimizes
‖DA− I‖F was already presented in [15], and it is given by the following
expression

D̂ = diag

(
a11

‖eT
1
A‖

2

2

, · · · ,
ann

‖eTnA‖
2

2

)
.

Note the similarity/duality between the above expression for D̂ and Eq. (3.3)

for D: The only difference between both expressions is that D̂ involves the
Euclidean norms of the rows eTi A of matrix A, while D involves the Euclidean
norms of its columns Aei. Anyway, our proof for D is different from that
given in [15] for D̂.

Obviously, the optimal diagonal approximate inverse (3.3) of matrix A,
has exactly one nonzero element per column. This suggests the following
question: Which is the best approximate inverse of matrix A, among all the
n × n matrices that have exactly one nonzero element per column? The
answer is given in the next corollary, which generalizes Corollary 3.4.
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Corollary 3.5. Let A ∈ Rn×n be nonsingular. The best approximate inverse

of matrix A, among all n×n matrices that have exactly one nonzero element

per column is

N =
n∑

j=1

ajij∥∥Aeij
∥∥2
2

Mij ,j,

where, for each fixed index j = 1, 2, . . . , n, its corresponding index ij is given
by ∣∣ajij

∣∣
∥∥Aeij

∥∥
2

= max

{
|aj1|

‖Ae1‖2
,

|aj2|

‖Ae2‖2
, . . . ,

|ajn|

‖Aen‖2

}
. (3.5)

Moreover, the corresponding minimum residual Frobenius norm is given by

‖AN − I‖2F = n−
n∑

j=1

a2jij∥∥Aeij
∥∥2
2

. (3.6)

Proof. Let j ∈ {1, 2, . . . , n} be arbitrary, but fixed. The optimal approx-
imate inverse Ni,j of matrix A, among all the n × n matrices whose only
nonzero term is placed at the i-th row, j-th column, can be obtained as the
solution to problem (1.1) for subspace S = span {Mi,j}. That is, using Eqs.
(2.2) and (3.2), we get

Ni,j =
tr (AMi,j)

‖AMi,j‖
2

F

Mi,j =
aji

‖Aei‖
2

2

Mi,j ,

for which, using Eqs. (2.3) and (3.2), we have

‖ANi,j − I‖2
F
= n−

[tr (AMi,j)]
2

‖AMi,j‖
2

F

= n−
a2ji

‖Aei‖
2

2

.

Consequently, the index i ∈ {1, 2, . . . , n} that minimizes ‖ANi,j − I‖2
F
is the

one that maximizes the quotient a2ji/ ‖Aei‖
2

2
, that is, the index ij defined by

Eq. (3.5).
Now, consider the subspace S of all n × n matrices that have exactly

one nonzero term per column, placed at the optimal position (ij , j), for each
column j = 1, 2, . . . , n. Obviously, S = span

{
Mij ,j

}n
j=1

.

Since the basis
{
AMij ,j

}n
j=1

of AS is orthogonal (Remark 3.1), then the

solution N to problem (1.1) for the subspace S can be obtained using Eqs.
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(2.2) and (3.2)

N =

n∑

j=1

tr
(
AMij ,j

)
∥∥AMij ,j

∥∥2
F

Mij ,j =

n∑

j=1

ajij∥∥Aeij
∥∥2
2

Mij ,j.

Finally, to prove (3.6), it suffices to use Eqs. (2.3) and (3.2)

‖AN − I‖2F = n−
n∑

j=1

[
tr
(
AMij ,j

)]2
∥∥AMij ,j

∥∥2
F

= n−
n∑

j=1

a2jij∥∥Aeij
∥∥2
2

. �

Let us consider the dual question to the one solved by Corollary 3.5
namely, to obtain the best approximate inverse N of matrix A, among all
the n × n matrices that have exactly one nonzero element per row. For
this problem, we can proceed in a similar way to the proof of Corollary 3.5.
Then, we consider the subspace S ′ of all n × n matrices that have exactly
one nonzero term per row, placed at the optimal position (i, ji), for each row
i = 1, 2, . . . , n. However, in the case that ji = ji′ , we have (see Remark 3.1)

〈
AMi,ji, AMi′,ji′

〉
F
= 〈Aei, Aei′〉2 for all i 6= i′,

so that the basis {AMi,ji}
n

i=1
of subspace AS ′ is not necessarily orthogonal.

Thus, Lemma 2.2 can not be applied, and we need other explicit expressions
for the optimal approximate inverse N (as explained in Remark 2.1).

Our last corollary, is related to the problem of transforming system (1.2)
into a symmetric system. As is well-known, using the transpose of the coef-
ficients matrix A as preconditioner is not, in general, a good strategy. For
instance, the spectral condition number of the preconditioned matrix AAT

satisfies
κ2

(
AAT

)
= κ2

2
(A) .

In this context, next corollary provides an approximate inverse of A that
improves AT (in the sense of Definition 1.1), preserving the symmetry of the
preconditioned matrix.

Corollary 3.6. Let A ∈ R
n×n be nonsingular. Let S ′ be a matrix subspace

of Rn×n such that

AT ∈ S ′ ⊆
{
M ∈ R

n×n
∣∣∣ (AM)T = AM

}
. (3.7)
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(i) If ‖A‖2F > n or if σn (A) > 1, then there exists a matrix N which is better

approximate inverse of A than AT , and such that AN becomes symmetric.

More precisely,

∃ N ∈ S ′, N 6= AT , s.t. ‖AN − I‖F <
∥∥AAT − I

∥∥
F
. (3.8)

(ii) The matrix N that minimizes ‖AN − I‖F over subspace S ′ is given by

tr (ANAM) = tr (AM) , ∀M ∈ S ′. (3.9)

Proof. To prove (i) consider the matrix subspace S = S ′. Suppose that
N = AT is the solution to problem (1.1) for subspace S. Then, on one hand,
using Eq. (2.5), we have

N = AT ⇒ tr (AN) = tr
(
AAT

)
= ‖A‖2F ∈ [0, n] ,

which contradicts the hypothesis on ‖A‖2F . On the other hand, using Eq.
(2.6), we have

N = AT ⇒ |λn (AN)| =
∣∣λn

(
AAT

)∣∣ = σ2

n (A) ≤ 1,

which contradicts the hypothesis on σn (A).
To prove (ii), it suffices to apply Eq. (2.1) for subspace S = S ′ using the

fact that AM is symmetric for all M ∈ S ′. �
From a theoretical point of view, Corollary 3.6 leads to a natural gener-

alization of the normal equations of system (1.2).
For this purpose, by defining M = PAT , where P is a symmetric matrix,

AM is symmetric and the right preconditioned system

AMy = b, x = My

can be rewritten as

APATy = b, x = PATy
(
P T = P

)
, (3.10)

a natural generalization of the classical normal equations (P = I) related to
system (1.2)

AAT y = b, x = ATy. (3.11)

Corollary 3.6 has stated that whenever ‖A‖2F > n (or whenever σn (A) >
1), we can assure that there exists a matrix M such that AM is symmetric
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and, at the same time, M improves AT as approximate inverse of A. But,
due to the definition of M and to the fact that AM is symmetric if and only
if P is symmetric, this is equivalent to saying that there exists a symmetric
matrix P for which the generalized normal equations (3.10) improve (in the
sense of the Frobenius norm minimization) the classical normal equations
(3.11).

Moreover, from a practical point of view, note that Eq. (3.7) can be
rewritten as

AT ∈ S ′ ⊆
{
PAT

∣∣ P T = P
}

(3.12)

and this enables one to obtain, for several adequate subspaces S ′, an ex-
plicit expression for the optimal preconditioners N satisfying Eq. (3.8) –note
that Eq. (3.9) only defines N implicitly. Two examples that illustrate this
procedure are given below.

Example 3.1. Let {P1, . . . , Pd} be a linearly independent set of n× n real
symmetric matrices, containing the identity. The subspace

S ′ = span
{
P1A

T , . . . , PdA
T
}

clearly satisfies Eq. (3.12) (or, equivalently, Eq. (3.7)).
Hence, we can explicitly obtain the solution N to problem (1.2) for sub-

space S ′ from its basis
{
P1A

T , . . . , PdA
T
}
. Two cases are possible:

(i) If
{
AP1A

T , . . . , APdA
T
}
is an orthogonal basis of subspace AS ′ then we

just use Lemma 2.2 for obtaining N .
(ii) If

{
AP1A

T , . . . , APdA
T
}
is not an orthogonal basis of subspace AS ′ then

we use the formulas developed in [16] for obtaining N (see Remark 2.1).

Example 3.2. As a special case of Example 3.1, consider the canonical basis
of the subspace Sn (R) of n× n real symmetric matrices

{Mi,i}
n

i=1
∪ {Mi,j +Mj,i}i<j

,

where recall that Mi,j denotes the n× n matrix whose only nonzero term is
mij = 1. Then we have the following basis of the subspace of all matrices
PAT such that P is symmetric

{
PAT

∣∣P T = P
}
= span

({
Mi,iA

T
}n
i=1

∪
{
(Mi,j +Mj,i)A

T
}
i<j

)
(3.13)

and then one can consider the subspace S ′ = span
{
Mi,iA

T
}n
i=1

, and iter-
atively augmenting its bases in order to obtain different preconditioners N
satisfying Eq. (3.8).

13



Another practical interest of Corollary 3.6 stands in the possibility of
using the conjugate gradient method for solving the right preconditioned
system ANy = b, x = Ny when matrix AN is, besides symmetric, positive
definite.

Remark 3.3. Due to the well-known inequality σn (A) ≤ |λn (A)| for every
nonsingular matrix A [19], Corollaries 3.1-3.3 are also valid if we replace the
assumption |λn (A)| > 1 by the more restrictive one σn (A) > 1.

Remark 3.4. Let A ∈ Rn×n such that σn (A) > 1. Then, Corollaries 3.1-3.3
and 3.6 are also valid for all matrices obtained by any permutations of the
rows and/or columns of matrix A. Indeed, let QAP be any matrix obtained
by any permutations of the rows and/or columns of A. Since the permutation
matrices are orthogonal, and since the spectral matrix norm ‖·‖

2
is unitarily

invariant [20], then we have

σn (QAP ) =
∥∥(QAP )−1

∥∥−1

2
=
∥∥P TA−1QT

∥∥−1

2
=
∥∥A−1

∥∥−1

2
= σn (A)

and thus

σn (A) > 1 ⇒ σn (QAP ) > 1 ⇒ |λn (QAP )| > 1,

so that matrix QAP also satisfies the spectral hypothesis of those corollaries.

4. Concluding remarks

As starting point, we have considered the problem of obtaining the opti-
mal (in the sense of the Frobenius norm) approximate inverse N of a non-
singular matrix A ∈ Rn×n over an arbitrary matrix subspace S ⊆ Rn×n, i.e.,
the solution to the minimization problem (1.1). Using the spectral properties
of the matrix product AN (e.g., tr (AN) ∈ [0, n] , |λn (AN)| ≤ 1, etc.), we
have established different sufficient conditions that assure us the possibility
of improving some given approximate inverses (i.e., reducing the Frobenius
norm on matrix AM−I). Moreover, we have explicitly obtained the optimal
approximate inverse N , for different matrix subspaces S of Rn×n. The most
relevant cases in this sense correspond to the optimal diagonal approximate
inverse and to an approximate inverse N 6= AT such that AN is symmetric
and ‖AN − I‖F <

∥∥AAT − I
∥∥
F
. The latter led us to generalize the classical

normal equations of system Ax = b.
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For future research, one can consider the problem of obtaining the optimal
approximate inverse of matrix A for different matrix subspaces S ⊂ Rn×n,
not analyzed in this paper. This can be performed, not only in the same way,
but also in a different way to the one used here like, for instance, using the
orthogonal complement of S with respect to the Frobenius inner product. An
additional line for future research, from a numerical/computational point of
view, could consist of applying the results presented in this theoretical paper
to the preconditioning problem of large linear systems.
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