
The effect of parallelization on a
tetrahedral mesh optimization

method
D. Benitez, E. Rodríguez, J.M. Escobar, R. Montenegro

SIANI Research Institute
University of Las Palmas de Gran Canaria, SPAIN

PPAM13: The effect of parallelization on a tetrahedral mesh optimization method 2/36

Motivation
• Untangling and smoothing of tetrahedral

meshes is an important step in the
optimization of meshes in problems with
moving boundaries because it provides
simulations with elements of good quality

• Improving the speed of mesh generation
helps users iterate problem setup faster

• There are currently no parallel mesh
untangling algorithms in existence

• There are also no parallel simultaneous
mesh untangling and smoothing
techniques in the literature

PPAM13: The effect of parallelization on a tetrahedral mesh optimization method 3/36

Outline

• We propose a new parallel algorithm for
simultaneous untangling and smoothing of
tetrahedral meshes (it is a tetrahedral mesh
optimization method)

• We also provide a detailed analysis of its
parallelization on a many-core computer:
• parallel scalability
• load balancing
• parallelism bottlenecks
• influence of 3 graph coloring algorithms

PPAM13: The effect of parallelization on a tetrahedral mesh optimization method 4/36

Summary
• Our mathematical approach to

tetrahedral mesh optimization
• The novel parallel algorithm
• Experimental methodology
• Performance scalability
• Load balancing
• Parallelism bottlenecks
• Influence of coloring algorithms on

parallel performance
• Conclusions and future work

PPAM13: The effect of parallelization on a tetrahedral mesh optimization method 5/36

Our mathematical approach to
tetrahedral mesh optimization

Tetrahedral mesh
with non-valid

tetrahedra
(artificially tangled

for our experimental
tests)

Optimized
tetrahedral mesh
without non-valid

tetrahedra

Equilateral
tetrahedron

Example of a valid
tetrahedral mesh

for a cube

Valid
Tetrahedron

A mesh vertex
(node)

PPAM13: The effect of parallelization on a tetrahedral mesh optimization method 6/36

Our mathematical approach to
tetrahedral mesh optimization

TANGLED MESHES

UNTANGLED MESHES

Bunny Tube Bone Screwdriver Toroid HR toroid

PPAM13: The effect of parallelization on a tetrahedral mesh optimization method 7/36

Our mathematical approach to
tetrahedral mesh optimization

Equilateral
tetrahedron

Its quality (q) specifies the
degree to which regularity is

achieved:
q=1: equilateral tetrahedron
q<1: non-equilateral tetrahedron

q < 1
q < 1

q → 1

PPAM13: The effect of parallelization on a tetrahedral mesh optimization method 8/36

Our mathematical approach to
tetrahedral mesh optimization

• M : a tetrahedral mesh
• v : inner mesh node
• xv : node position
• Nv : the local submesh

(set of tetrahedra
connected to the node v)

• K(xv) : objetive function
that measures the quality
of the local submesh

PPAM13: The effect of parallelization on a tetrahedral mesh optimization method 9/36

Our mathematical approach to
tetrahedral mesh optimization

• Our untangling and smoothing technique
finds the new position xv that each inner
mesh node v must hold, in such a way
that K(xv) is optimized

• This process repeats several times for all
the nodes of the mesh M

• Mathematical details: J. M. Escobar , E. Rodrıguez
, R. Montenegro , G. Montero , J. M. Gonzalez-Yuste (2003)
Simultaneous untangling and smoothing of tetrahedral
meshes. Computer Methods in Applied Mechanics and
Engineering, 192: 2775-2787

PPAM13: The effect of parallelization on a tetrahedral mesh optimization method 10/36

The novel parallel algorithm
• Sequential algorithm (SUS) for the

simultaneous untangling and
smoothing of a tetrahedral mesh M

1. function OptimizeNode(xv, Nv)
2. Optimize objective function K(xv)
3. end function
4. procedure SUS
5. Q ← 0
6. k ← 0
7. while Q < and k < maxIter do
8. for each vertex v M do
9. x’v ← OptimizeNode(xv,Nv)
10. end do
11. Q ← quality(M)
12. k ← k+1
13. end do
14. end procedure

PPAM13: The effect of parallelization on a tetrahedral mesh optimization method 11/36

The novel parallel algorithm
• Sequential algorithm (SUS) for the

simultaneous untangling and
smoothing of a tetrahedral mesh M

1. function OptimizeNode(xv, Nv)
2. Optimize objective function K(xv)
3. end function
4. procedure SUS
5. Q ← 0
6. k ← 0
7. while Q < and k < maxIter do
8. for each vertex v M do
9. x’v ← OptimizeNode(xv,Nv)
10. end do
11. Q ← quality(M)
12. k ← k+1
13. end do
14. end procedure

INPUTS:
•M : tangled tetrahedral mesh,
•maxIter : maximum number of
untangling and smoothing iterations
•Nv : set of tetrahedra connected to the
free node v
•xv :is the initial position of the free
node
•x’v : its position after optimization,
which is implemented with procedure
OptimizeNode()
•Q measures the lowest quality of a
tetrahedron of M
•quality() : function that provides the
minimum quality of mesh M

PPAM13: The effect of parallelization on a tetrahedral mesh optimization method 12/36

The novel parallel algorithm
• Sequential algorithm (SUS) for the

simultaneous untangling and
smoothing of a tetrahedral mesh M

1. function OptimizeNode(xv, Nv)
2. Optimize objective function K(xv)
3. end function
4. procedure SUS
5. Q ← 0
6. k ← 0
7. while Q < and k < maxIter do
8. for each vertex v M do
9. x’v ← OptimizeNode(xv,Nv)
10. end do
11. Q ← quality(M)
12. k ← k+1
13. end do
14. end procedure

OUTPUT:
•an untangled and smoothed mesh M,
whose minimum quality must be larger
than an user-specified threshold

PPAM13: The effect of parallelization on a tetrahedral mesh optimization method 13/36

The novel parallel algorithm
• Sequential algorithm (SUS) for the

simultaneous untangling and
smoothing of a tetrahedral mesh M

1. function OptimizeNode(xv, Nv)
2. Optimize objective function K(xv)
3. end function
4. procedure SUS
5. Q ← 0
6. k ← 0
7. while Q < and k < maxIter do
8. for each vertex v M do
9. x’v ← OptimizeNode(xv,Nv)
10. end do
11. Q ← quality(M)
12. k ← k+1
13. end do
14. end procedure

This algorithm iterates sequentially
over all the mesh vertices in some
order, at each step adjusting the
spatial coordinates x’vf a free node v

PPAM13: The effect of parallelization on a tetrahedral mesh optimization method 14/36

The novel parallel algorithm
• Sequential algorithm (SUS) for the

simultaneous untangling and
smoothing of a tetrahedral mesh M

1. function OptimizeNode(xv, Nv)
2. Optimize objective function K(xv)
3. end function
4. procedure SUS
5. Q ← 0
6. k ← 0
7. while Q < and k < maxIter do
8. for each vertex v M do
9. x’v ← OptimizeNode(xv,Nv)
10. end do
11. Q ← quality(M)
12. k ← k+1
13. end do
14. end procedure

This process repeats several times for
all the nodes of the mesh M

PPAM13: The effect of parallelization on a tetrahedral mesh optimization method 15/36

The novel parallel algorithm
• Parallel algorithm (pSUS) for the

simultaneous untangling and smoothing
of a tetrahedral mesh M

1. function OptimizeNode(xv, Nv)
2. Optimize objective function K(xv)
3. end function
4. procedure Coloring(G=(V,E))
5. G is partitioned into independent

sets I={I1, I2, …} using C1, C2 or C3
coloring algorithm

6. end procedure

7. procedure pSUS
8. I ← Coloring(G=(V,E))
9. k ← 0
10. Q ← 0
11. while Q < and k < maxIter do
12. for each independent set Ii I do
13. for each vertex v Ii in parallel do
14. x’v ← OptimizeNode(xv,Nv)
15. end do
16. end do
17. Q ← quality(M)
18. k ← k+1
19. end do
20. end procedure

Its inputs are the same as
described for sequential
algorithm

PPAM13: The effect of parallelization on a tetrahedral mesh optimization method 16/36

The novel parallel algorithm
• Parallel algorithm (pSUS) for the

simultaneous untangling and smoothing
of a tetrahedral mesh M

1. function OptimizeNode(xv, Nv)
2. Optimize objective function K(xv)
3. end function
4. procedure Coloring(G=(V,E))
5. G is partitioned into independent

sets I={I1, I2, …} using C1, C2 or C3
coloring algorithm

6. end procedure

7. procedure pSUS
8. I ← Coloring(G=(V,E))
9. k ← 0
10. Q ← 0
11. while Q < and k < maxIter do
12. for each independent set Ii I do
13. for each vertex v Ii in parallel do
14. x’v ← OptimizeNode(xv,Nv)
15. end do
16. end do
17. Q ← quality(M)
18. k ← k+1
19. end do
20. end procedure

We implemented graph coloring
with procedure Coloring(),
which partitions the mesh in a
disjoint sequence of
independent sets: I1, I2, …

PPAM13: The effect of parallelization on a tetrahedral mesh optimization method 17/36

The novel parallel algorithm
• Parallel algorithm (pSUS) for the

simultaneous untangling and smoothing
of a tetrahedral mesh M

1. function OptimizeNode(xv, Nv)
2. Optimize objective function K(xv)
3. end function
4. procedure Coloring(G=(V,E))
5. G is partitioned into independent

sets I={I1, I2, …} using C1, C2 or C3
coloring algorithm

6. end procedure

7. procedure pSUS
8. I ← Coloring(G=(V,E))
9. k ← 0
10. Q ← 0
11. while Q < and k < maxIter do
12. for each independent set Ii I do
13. for each vertex v Ii in parallel do
14. x’v ← OptimizeNode(xv,Nv)
15. end do
16. end do
17. Q ← quality(M)
18. k ← k+1
19. end do
20. end procedure

This parallel algorithm optimize
in parallel the nodes of each
independent set

PPAM13: The effect of parallelization on a tetrahedral mesh optimization method 18/36

Experimental methodology

• Finis Terrae
supercomputer
(www.cesga.es), the
third largest
supercomputer in
Spain

• 1 many-core node HP Integrity
Superdome, with 128 cores Itanium
Montvale and 1.024 GB (NUMA): shared
memory architecture

PPAM13: The effect of parallelization on a tetrahedral mesh optimization method 19/36

Experimental methodology
• Six different tangled benchmark meshes

“m=6358” “m=9176” “m=11525” “m=39617” “m=201530” “m=520128”
Bunny Tube Bone Screwdriver Toroid HR toroid

PPAM13: The effect of parallelization on a tetrahedral mesh optimization method 20/36

Experimental methodology
• Description of the tangled benchmark

meshes. The quality of non-valid
tetrahedra is considered zero. So, the
minimum quality is zero for all meshes

Name Number
of
vertices
(m)

Number of
tetrahedra

Average
mesh
quality

Number of
inverted
tetrahedra

Maximum
vertex
degree

Object

“m=6358” 6358 26446 0.2618 2215 26 Bunny
“m=9176” 9176 35920 0.1707 13706 26 Tube
“m=11525” 11525 47824 0.2660 1924 26 Bone
“m=39617” 39617 168834 0.1302 83417 26 Screwdriver
“m=201530” 201530 840800 0.2409 322255 26 Toroid
“m=520128” 520128 2201104 0.0657 1147390 26 HR toroid

PPAM13: The effect of parallelization on a tetrahedral mesh optimization method 21/36

Experimental methodology
• Intel C++ compiler 11.1 with “O2” flag
• Linux system kernel “2.6.16.53-0.8-smp”.
• The source code of the parallel version

included OpenMP directives, which were
disabled when the sequential version was
compiled

• Both software versions were profiled with
PAPI API, which uses performance counter
hardware of Itanium 2 processors

• Hardware binding: processor and memory

PPAM13: The effect of parallelization on a tetrahedral mesh optimization method 22/36

Experimental methodology
• For each benchmark mesh we run the

parallel version multiple times using a
given maximum number of active threads
between 1 and 128

• Each run is divided into two phases
• The first of them completely untangles a

mesh. This phase loops over all mesh
vertices repetitively

• The second phase smoothes the mesh
until successive iterations increases the
minimum mesh quality less than 5%

PPAM13: The effect of parallelization on a tetrahedral mesh optimization method 23/36

Performance scalability
• True speed-up and parallel efficiency of

the body of the main loop

0%

20%

40%

60%

80%

100%

120%

0

20

40

60

80

100

120

1 2 4 8 16 24 32 40 48 56 64 72 80 88 96 104
112
120
128

PA
RA

LL
EL
 E
FF
IC
IE
N
CY

 (%
)

SP
EE
D
‐U
P
‐b

od
y
of
 th

e
m
ai
n
lo
op

NUMBER OF THREADS/CORES USED

Speed‐Up Parallel Efficiency

m=6358

CN

S

t
tUpSpeed

C

N

N
S

ficiencyParallelEf C %100

x’v ← OptimizeNode(xv,Nv)

PPAM13: The effect of parallelization on a tetrahedral mesh optimization method 24/36

Performance scalability
• True speed-up and parallel efficiency of the

body of the complete parallel Algorithm

m=6358
0%

20%

40%

60%

80%

100%

120%

0

20

40

60

80

100

120

1 2 4 8 16 24 32 40 48 56 64 72 80 88 96 104
112
120
128

PA
RA

LL
EL
 E
FF
IC
IE
N
CY

 (%
)

SP
EE
D
‐U
P
‐p
ar
al
le
l A

lg
or
it
hm

 2

NUMBER OF THREADS/CORES USED

Speed‐Up Parallel Efficiency

procedure pSUS
…

while Q < and k < maxIter do
for each independent set Ii I do
for each vertex v Ii in parallel do

x’v ← OptimizeNode(xv,Nv)

PPAM13: The effect of parallelization on a tetrahedral mesh optimization method 25/36

Performance scalability
• Best runtime for the complete parallel

algorithm (procedure pSUS)

Name of
tetrahedral

mesh

Serial
runtime

(seconds)

Best
parallel
runtime

(seconds)

Best
number

of
cores

Best
Speed-Up

Best
parallel

efficiency

Best
coloring
algorith

m

Number
of

colors

Number
of

iterations
(U&S)

Minimum
mesh

quality

Average
mesh

quality

m=6358 17.33 1.49 72 11.7X 16.2% C1 29 25 0.1319 0.6564
m=9176 37.25 1.17 88 31.9X 36.3% C3 29 26 0.2580 0.6823
m=11525 33.69 1.13 120 29.7X 24.8% C3 10 38 0.1109 0.6474
m=39617 87.40 1.59 128 54.9X 42.9% C1 31 11 0.1698 0.7329
m=201530 2505.37 81.28 128 30.8X 24.1% C2 21 143 0.2275 0.6687
m=520128 2259.72 41.86 120 54.0X 45.0% C3 34 36 0.2233 0.6750

PPAM13: The effect of parallelization on a tetrahedral mesh optimization method 26/36

Performance scalability
• Performance model for our parallel

algorithm based on Amdahl’s law

O
Nc

P
Nc

S
N tt

tS
C

St

P
NC

t
O
Nc

P
NcN ttt

C

Sequential time

Parallel time without overhead

Parallel time with overhead

Speed-up

fIPC
Nt I

 CPU time

PPAM13: The effect of parallelization on a tetrahedral mesh optimization method 27/36

Performance scalability
• Performance model for our parallel

algorithm based on Amdahl’s law

0

10

20

30

40

50

60

70

80

1 2 4 8 16 32 64 128 256 512

SP
EE
D
‐U
P

NUMBER OF THREADS/CORES USED

"m=6358"‐model
"m=6358"‐realData
"m=11525"‐model
"m=11525"‐realData
"m=39617"‐model
"m=39617"‐realData

REAL
DATA

MODEL

C

C
N

P
Nc

S

P
Nc

O
Nc

P
Nc

S

O
Nc

P
Nc

S
N

t
t

t
t

t
t

tt
tS

11
C

SP
N N

tt
C

P
I

O
Nc

O
I

P
Nc

consf
P
Nc

O
Nc

N NIPC
NIPC

t
t

C

Conclusion:
parallel efficiency
deteriorate as the
number of threads
increases because

they tend to be
dominated by the
thread scheduling

overhead

PPAM13: The effect of parallelization on a tetrahedral mesh optimization method 28/36

Load balancing
• Load unbalancing when meshes with

different number of vertices (m) and up
to 128 Itanium2 cores are used. C3
coloring algorithm and dynamic
OpenMP thread scheduling are used

avg
N t

ttL
C

minmax%100
 tmax > tavg > tmin > 0

PPAM13: The effect of parallelization on a tetrahedral mesh optimization method 29/36

Parallelism bottlenecks
• During runtime of the main mesh optimization

procedure, stall cycles of each parallel thread are
in the range from 29%(1 core) to 58%(128 cores)

• These computation bottlenecks are located in:
• double-precision floating-point units: from 70%(1c) to

27%(128c) of stall cycles
• data loads: from 16%(1c) to 55%(128c)

–cache memories: main source of data load stall
cycles

–NUMA (Non-Uniform Memory Access) memory: less
than 1% of data load stall cycles

• branch instructions: from 5%(1c) to 14%(128c)
• “no-operation” instructions (40%): caused by the long

instruction format and compiler inefficiency

PPAM13: The effect of parallelization on a tetrahedral mesh optimization method 30/36

Influence of coloring algorithms
on parallel performance

Distance-1 coloring :
adjacent nodes do
not have the same

color

An independent set of
a graph is a set of not

adjacent vertices

PPAM13: The effect of parallelization on a tetrahedral mesh optimization method 31/36

Influence of coloring algorithms
on parallel performance

• Percentage of total parallel runtime that is required by the
three graph coloring algorithms C1, C2, and C3 when the
six benchmark meshes are untangled and smoothed and
128 Itanium2 processors are used

• This means that the computational load required by our
parallel algorithm is much heavier than required by graph
coloring algorithms.

PPAM13: The effect of parallelization on a tetrahedral mesh optimization method 32/36

Influence of coloring algorithms
on parallel performance

• Speed-up achieved by the complete
parallel algorithm (pSUS) depends on
the mesh coloring algorithm

m=39617

PPAM13: The effect of parallelization on a tetrahedral mesh optimization method 33/36

Influence of coloring algorithms
on parallel performance

• Speed-up achieved by the complete parallel algorithm
(pSUS) for all six benchmark meshes when three graph
coloring algorithms (C1, C2, and C3) are used and all 128
shared-memory Itanium2 processors are active

PPAM13: The effect of parallelization on a tetrahedral mesh optimization method 34/36

Conclusions

• We demonstrate that this algorithm is
highly scalable when run on a high-
performance shared-memory many-core
computer with up to 128 Itanium 2
processors.

• It is due to the graph coloring algorithm
that is used to identify independent sets
of vertices without computational
dependency

PPAM13: The effect of parallelization on a tetrahedral mesh optimization method 35/36

Conclusions
• We have analyzed the causes of its

parallel deterioration on a 128-core
shared-memory high performance
computer using six benchmark meshes.

• It is mainly due to loop-scheduling
overhead of the OpenMP programming
methodology.

• The graph coloring algorithm has low
impact on the total execution time.
However, the total execution time of our
parallel algorithm depends on the
selected coloring algorithm.

PPAM13: The effect of parallelization on a tetrahedral mesh optimization method 36/36

Future work
• Our parallel algorithm is CPU bound and

its demonstrated scalability potential for
many-core architectures encourages us
to extend our work to achieve higher
performance improvements from
massively parallel GPUs.

• The main problem will be to reduce the
negative impact of global memory
random accesses when the non-
consecutive mesh vertices are
optimized by the same streaming
multiprocessor.

