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Motivation
• Untangling and smoothing of tetrahedral 

meshes is an important step in the 
optimization of meshes in problems with 
moving boundaries because it provides 
simulations with elements of good quality

• Improving the speed of mesh generation 
helps users iterate problem setup faster

• There are currently no parallel mesh 
untangling algorithms in existence 

• There are also no parallel simultaneous 
mesh untangling and smoothing 
techniques in the literature
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Outline

• We propose a new parallel algorithm for 
simultaneous untangling and smoothing of 
tetrahedral meshes (it is a tetrahedral mesh 
optimization method)

• We also provide a detailed analysis of its 
parallelization on a many-core computer:
• parallel scalability
• load balancing
• parallelism bottlenecks
• influence of 3 graph coloring algorithms 
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Summary
• Our mathematical approach to 

tetrahedral mesh optimization
• The novel parallel algorithm
• Experimental methodology
• Performance scalability
• Load balancing
• Parallelism bottlenecks
• Influence of coloring algorithms on 

parallel performance
• Conclusions and future work
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Our mathematical approach to 
tetrahedral mesh optimization

Tetrahedral mesh 
with non-valid 

tetrahedra 
(artificially tangled 

for our experimental 
tests)

Optimized 
tetrahedral mesh 
without  non-valid 

tetrahedra

Equilateral 
tetrahedron

Example of a valid 
tetrahedral mesh 

for a cube

Valid 
Tetrahedron

A mesh vertex 
(node)
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Our mathematical approach to 
tetrahedral mesh optimization

TANGLED MESHES

UNTANGLED MESHES

Bunny           Tube Bone Screwdriver         Toroid           HR toroid
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Our mathematical approach to 
tetrahedral mesh optimization

Equilateral 
tetrahedron

Its quality (q) specifies the 
degree to which regularity is 

achieved:
q=1: equilateral tetrahedron
q<1: non-equilateral tetrahedron

q < 1
q < 1

q → 1
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Our mathematical approach to 
tetrahedral mesh optimization

• M : a tetrahedral mesh
• v : inner mesh node
• xv : node position
• Nv : the local submesh 

(set of tetrahedra 
connected to the node v)

• K(xv) : objetive function 
that measures the quality 
of the local submesh
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Our mathematical approach to 
tetrahedral mesh optimization

• Our untangling and smoothing technique 
finds the new position xv  that each inner 
mesh node v must hold, in such a way 
that K(xv) is optimized

• This process repeats several times for all 
the nodes of the mesh M

• Mathematical details: J. M. Escobar , E. Rodrıguez 
, R. Montenegro , G. Montero , J. M. Gonzalez-Yuste (2003) 
Simultaneous untangling and smoothing of tetrahedral 
meshes. Computer Methods in Applied Mechanics and 
Engineering, 192: 2775-2787
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The novel parallel algorithm
• Sequential algorithm (SUS) for the 

simultaneous untangling and 
smoothing of a tetrahedral mesh M

1. function OptimizeNode(xv, Nv)   
2. Optimize objective function K(xv)
3. end function
4. procedure SUS
5. Q ← 0
6. k ← 0
7. while Q <  and k < maxIter do
8. for each vertex v  M do
9. x’v ← OptimizeNode(xv,Nv)
10. end do
11. Q ← quality(M)
12. k ← k+1
13. end do
14. end procedure
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The novel parallel algorithm
• Sequential algorithm (SUS) for the 

simultaneous untangling and 
smoothing of a tetrahedral mesh M

1. function OptimizeNode(xv, Nv)   
2. Optimize objective function K(xv)
3. end function
4. procedure SUS
5. Q ← 0
6. k ← 0
7. while Q <  and k < maxIter do
8. for each vertex v  M do
9. x’v ← OptimizeNode(xv,Nv)
10. end do
11. Q ← quality(M)
12. k ← k+1
13. end do
14. end procedure

INPUTS:
•M : tangled tetrahedral mesh, 
•maxIter : maximum number of 
untangling and smoothing iterations
•Nv : set of tetrahedra connected to the 
free node v
•xv :is the initial position of the free 
node
•x’v : its position after optimization, 
which is implemented with procedure 
OptimizeNode()
•Q measures the lowest quality of a 
tetrahedron of M 
•quality() : function that provides the 
minimum quality of mesh M
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The novel parallel algorithm
• Sequential algorithm (SUS) for the 

simultaneous untangling and 
smoothing of a tetrahedral mesh M

1. function OptimizeNode(xv, Nv)   
2. Optimize objective function K(xv)
3. end function
4. procedure SUS
5. Q ← 0
6. k ← 0
7. while Q <  and k < maxIter do
8. for each vertex v  M do
9. x’v ← OptimizeNode(xv,Nv)
10. end do
11. Q ← quality(M)
12. k ← k+1
13. end do
14. end procedure

OUTPUT:
•an untangled and smoothed mesh M, 
whose minimum quality must be larger 
than an user-specified threshold 
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The novel parallel algorithm
• Sequential algorithm (SUS) for the 

simultaneous untangling and 
smoothing of a tetrahedral mesh M

1. function OptimizeNode(xv, Nv)   
2. Optimize objective function K(xv)
3. end function
4. procedure SUS
5. Q ← 0
6. k ← 0
7. while Q <  and k < maxIter do
8. for each vertex v  M do
9. x’v ← OptimizeNode(xv,Nv)
10. end do
11. Q ← quality(M)
12. k ← k+1
13. end do
14. end procedure

This algorithm iterates sequentially 
over all the mesh vertices in some 
order, at each step adjusting the 
spatial coordinates x’vf a free node v
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The novel parallel algorithm
• Sequential algorithm (SUS) for the 

simultaneous untangling and 
smoothing of a tetrahedral mesh M

1. function OptimizeNode(xv, Nv)   
2. Optimize objective function K(xv)
3. end function
4. procedure SUS
5. Q ← 0
6. k ← 0
7. while Q <  and k < maxIter do
8. for each vertex v  M do
9. x’v ← OptimizeNode(xv,Nv)
10. end do
11. Q ← quality(M)
12. k ← k+1
13. end do
14. end procedure

This process repeats several times for 
all the nodes of the mesh M
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The novel parallel algorithm
• Parallel algorithm (pSUS) for the 

simultaneous untangling and smoothing 
of a tetrahedral mesh M

1. function OptimizeNode(xv, Nv)   
2. Optimize objective function K(xv)
3. end function
4. procedure Coloring(G=(V,E))
5. G is partitioned into independent 

sets I={I1, I2, …} using C1, C2 or C3
coloring algorithm

6. end procedure

7. procedure pSUS
8. I ← Coloring(G=(V,E))          
9. k ← 0
10. Q ← 0
11. while Q <  and k < maxIter do
12. for each independent set Ii  I do
13. for each vertex v  Ii in parallel do
14. x’v ← OptimizeNode(xv,Nv)
15. end do
16. end do
17. Q ← quality(M)
18. k ← k+1
19. end do
20. end procedure

Its inputs are the same as 
described for sequential 
algorithm 
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The novel parallel algorithm
• Parallel algorithm (pSUS) for the 

simultaneous untangling and smoothing 
of a tetrahedral mesh M

1. function OptimizeNode(xv, Nv)   
2. Optimize objective function K(xv)
3. end function
4. procedure Coloring(G=(V,E))
5. G is partitioned into independent 

sets I={I1, I2, …} using C1, C2 or C3
coloring algorithm

6. end procedure

7. procedure pSUS
8. I ← Coloring(G=(V,E))          
9. k ← 0
10. Q ← 0
11. while Q <  and k < maxIter do
12. for each independent set Ii  I do
13. for each vertex v  Ii in parallel do
14. x’v ← OptimizeNode(xv,Nv)
15. end do
16. end do
17. Q ← quality(M)
18. k ← k+1
19. end do
20. end procedure

We implemented graph coloring 
with procedure Coloring(), 
which partitions the mesh in a 
disjoint sequence of 
independent sets: I1, I2, …
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The novel parallel algorithm
• Parallel algorithm (pSUS) for the 

simultaneous untangling and smoothing 
of a tetrahedral mesh M

1. function OptimizeNode(xv, Nv)   
2. Optimize objective function K(xv)
3. end function
4. procedure Coloring(G=(V,E))
5. G is partitioned into independent 

sets I={I1, I2, …} using C1, C2 or C3
coloring algorithm

6. end procedure

7. procedure pSUS
8. I ← Coloring(G=(V,E))          
9. k ← 0
10. Q ← 0
11. while Q <  and k < maxIter do
12. for each independent set Ii  I do
13. for each vertex v  Ii in parallel do
14. x’v ← OptimizeNode(xv,Nv)
15. end do
16. end do
17. Q ← quality(M)
18. k ← k+1
19. end do
20. end procedure

This parallel algorithm optimize 
in parallel the nodes of each 
independent set
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Experimental methodology

• Finis Terrae 
supercomputer 
(www.cesga.es), the 
third largest 
supercomputer in 
Spain

• 1 many-core node HP Integrity 
Superdome, with 128 cores Itanium 
Montvale and 1.024 GB (NUMA): shared 
memory architecture
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Experimental methodology
• Six different tangled benchmark meshes

“m=6358”      “m=9176”          “m=11525” “m=39617”     “m=201530” “m=520128”
Bunny           Tube Bone Screwdriver         Toroid           HR toroid
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Experimental methodology
• Description of the tangled benchmark 

meshes. The quality of non-valid 
tetrahedra is considered zero. So, the 
minimum quality is zero for all meshes

Name Number 
of 
vertices 
(m) 

Number of 
tetrahedra 

Average 
mesh 
quality 

Number of 
inverted  
tetrahedra 

Maximum 
vertex  
degree 

Object 

“m=6358” 6358 26446 0.2618 2215 26 Bunny 
“m=9176” 9176 35920 0.1707 13706 26 Tube 
“m=11525” 11525 47824 0.2660 1924 26 Bone 
“m=39617” 39617 168834 0.1302 83417 26 Screwdriver
“m=201530” 201530 840800 0.2409 322255 26 Toroid 
“m=520128” 520128 2201104 0.0657 1147390 26 HR toroid 
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Experimental methodology
• Intel C++ compiler 11.1 with “O2” flag 
• Linux system kernel “2.6.16.53-0.8-smp”. 
• The source code of the parallel version 

included OpenMP directives, which were 
disabled when the sequential version was 
compiled

• Both software versions were profiled with 
PAPI API, which uses performance counter 
hardware of Itanium 2 processors 

• Hardware binding: processor and memory
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Experimental methodology
• For each benchmark mesh we run the 

parallel version multiple times using a 
given maximum number of active threads 
between 1 and 128

• Each run is divided into two phases
• The first of them completely untangles a 

mesh. This phase loops over all mesh 
vertices repetitively

• The second phase smoothes the mesh 
until successive iterations increases the 
minimum mesh quality less than 5%
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Performance scalability
• True speed-up and parallel efficiency of 

the body of the main loop
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Performance scalability
• True speed-up and parallel efficiency of the 

body of the complete parallel Algorithm

m=6358
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procedure pSUS
…

while Q <  and k < maxIter do
for each independent set Ii  I do
for each vertex v  Ii in parallel do

x’v ← OptimizeNode(xv,Nv)
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Performance scalability
• Best runtime for the complete parallel 

algorithm (procedure pSUS)

Name of 
tetrahedral 

mesh

Serial 
runtime 

(seconds)

Best 
parallel 
runtime 

(seconds)

Best 
number 

of 
cores

Best 
Speed-Up

Best 
parallel 

efficiency

Best 
coloring 
algorith

m

Number 
of 

colors

Number 
of 

iterations 
(U&S)

Minimum 
mesh 

quality

Average 
mesh 

quality

m=6358 17.33 1.49 72 11.7X 16.2% C1 29 25 0.1319 0.6564
m=9176 37.25 1.17 88 31.9X 36.3% C3 29 26 0.2580 0.6823
m=11525 33.69 1.13 120 29.7X 24.8% C3 10 38 0.1109 0.6474
m=39617 87.40 1.59 128 54.9X 42.9% C1 31 11 0.1698 0.7329
m=201530 2505.37 81.28 128 30.8X 24.1% C2 21 143 0.2275 0.6687
m=520128 2259.72 41.86 120 54.0X 45.0% C3 34 36 0.2233 0.6750



PPAM13: The effect of parallelization on a tetrahedral mesh optimization method 26/36

Performance scalability
• Performance model for our parallel 

algorithm based on Amdahl’s law
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Performance scalability
• Performance model for our parallel 

algorithm based on Amdahl’s law
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Conclusion: 
parallel efficiency 
deteriorate as the 
number of threads 
increases because 

they tend to be 
dominated by the 
thread scheduling 

overhead



PPAM13: The effect of parallelization on a tetrahedral mesh optimization method 28/36

Load balancing
• Load unbalancing when meshes with 

different number of vertices (m) and up 
to 128 Itanium2 cores are used. C3
coloring algorithm and dynamic 
OpenMP thread scheduling are used

avg
N t

ttL
C

minmax%100 
 tmax > tavg  > tmin > 0
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Parallelism bottlenecks
• During runtime of the main mesh optimization 

procedure, stall cycles of each parallel thread are 
in the range from 29%(1 core) to 58%(128 cores)

• These computation bottlenecks are located in:
• double-precision floating-point units: from 70%(1c) to 

27%(128c) of stall cycles 
• data loads: from 16%(1c) to 55%(128c)

–cache memories: main source of data load stall 
cycles

–NUMA (Non-Uniform Memory Access) memory: less
than 1% of data load stall cycles

• branch instructions: from 5%(1c) to 14%(128c)
• “no-operation” instructions (40%): caused by the long 

instruction format and compiler inefficiency
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Influence of coloring algorithms 
on parallel performance

Distance-1 coloring : 
adjacent nodes do 
not have the same 

color

An independent set of 
a graph is a set of not 

adjacent vertices
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Influence of coloring algorithms 
on parallel performance

• Percentage of total parallel runtime that is required by the 
three graph coloring algorithms C1, C2, and C3 when the 
six benchmark meshes are untangled and smoothed and 
128 Itanium2 processors are used

• This means that the computational load required by our 
parallel algorithm is much heavier than required by graph 
coloring algorithms. 



PPAM13: The effect of parallelization on a tetrahedral mesh optimization method 32/36

Influence of coloring algorithms 
on parallel performance

• Speed-up achieved by the complete 
parallel algorithm (pSUS) depends on 
the mesh coloring algorithm

m=39617
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Influence of coloring algorithms 
on parallel performance

• Speed-up achieved by the complete parallel algorithm 
(pSUS) for all six benchmark meshes when three graph 
coloring algorithms (C1, C2, and C3) are used and all 128 
shared-memory Itanium2 processors are active
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Conclusions

• We demonstrate that this algorithm is 
highly scalable when run on a high-
performance shared-memory many-core 
computer with up to 128 Itanium 2 
processors.

• It is due to the graph coloring algorithm 
that is used to identify independent sets 
of vertices without computational 
dependency 
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Conclusions
• We have analyzed the causes of its 

parallel deterioration on a 128-core 
shared-memory high performance 
computer using six benchmark meshes. 

• It is mainly due to loop-scheduling 
overhead of the OpenMP programming 
methodology.

• The graph coloring algorithm has low 
impact on the total execution time. 
However, the total execution time of our 
parallel algorithm depends on the 
selected coloring algorithm. 
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Future work
• Our parallel algorithm is CPU bound and 

its demonstrated scalability potential for 
many-core architectures encourages us 
to extend our work to achieve higher 
performance improvements from 
massively parallel GPUs. 

• The main problem will be to reduce the 
negative impact of global memory 
random accesses when the non-
consecutive mesh vertices are 
optimized by the same streaming 
multiprocessor.


