Abstract

In this work we focus our attention on two aspects relateiéabde movement in
surface meshes: smoothing of triangular meshes definedrfates and the adaption
of these meshes to match given curves or contours.

The quality improvement of the mesh is obtained by an iteegtrocess in which
each node of the mesh is moved to a new position that mininsizestain objective
function. The objective function is derived from some algabquality measure [1, 2]
of the local submesh, that is, the set of triangles connected to the adjustabfeser
node.

When we deal with meshes defined on surfaces we have to imposerestrictions
to the movement of the free node. Firstly, is clear that susztenmust be sited on the
surface after optimizing. But, this is not the only constraihwe allow the free node
to move on the surface without imposing any other restmctanly guided by the
improvement of the quality, the optimization procedure canstruct a high-quality
local mesh, but with this node in amacceptable position. To avoid this problem
the optimization is done in thparametric mesh, where the presence of barriers in
the objective function maintains the free node inside tlasifde region. In this way,
the original problem on the surface is transformed into adimensional one on the
parametric space. In our case, the parametric space is a plane, chosen in téitims
local mesh, in such a way that this mesh can be optimally pregeperforming aalid
mesh, that is, without inverted elements.

We use the flexibility that provides this techniques to adegiven surface mesh to
a curve defined on it. The idea consists on displacing thesoldse to the curve to
positions sited on the curve. The process is repeated batit is correctly approxi-
mated (interpolated) by a set of linked edges of the mesh.

The determination of which nodes can be projected on theedgraccomplished



by analyzing if there is a position on the curve on which tleefnode can be projected
without inverting any triangle of its local submesh. Theimatl position of the free
node on the curve is determined attending to the qualityefdbal submesh.

Sometimes we lack an analytic expression of the curve to teepolated and, in-
stead, it is given by a set of aligned points with a densitynfegough. This is the
case, for example, of data supplied by digitalized mapsrdesg coastal shores or
river banks.

All these questions will be conveniently supported by exi@s\p
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1 Introduction

For 2-D or 3-D meshes the quality improvement [1] can be olthiby an iterative
process in which each node of the mesh is moved to a new poditad minimizes
an objective function [2]. This function is derived from aadjty measure of the local
mesh. We have chosen, as a starting point in section 2, a Jdatoae function that
presents a barrier in the boundary of fieasible region (set of points where the free
node could be placed to getvalid local mesh, that is, withoutverted elements).
This barrier has an important role because it avoids tharigiion algorithm to
create a tangled mesh when it starts with a valid one. Nestedh, objective functions
constructed by algebraic quality measures are only dyregiplicable to inner nodes
of 2-D or 3-D meshes, but not to its boundary nodes. To oveectins problem, the
local mesh,M (p), sited on a surfac&, is orthogonally projected on a plare (the
existence and search of this plane will be discuss in se@jan such a way that it
performs a valid local mesN (¢). Therefore, it can be said thaf (p) is geometrically
conforming with respect taP [3]. Herep is the free node ok andgq is its projection on
P. The optimization of\/ (p) is got by the appropriated optimization df(¢). To do
this we try to geideal triangles inN(¢) that become equilateral it/ (p). In general,
when the local mesh/(p) is on a surface, each triangle is placed on a different plane
and it is not possible to define a feasible region>an Nevertheless, this region is
perfectly defined inV(q) as it is analyzed in section 2.1.

To construct the objective function iN(q), it is first necessary to define the ob-
jective function inM (p) and, afterward, to establish the connection between them. A
crucial aspect for this construction is to keep the barrfethe 2-D objective func-
tion. This is done with a suitable approximation in the psscéhat transforms the
original problem onX into an entirely two-dimensional one dA We develop this
approximation in section 2.2.

The optimization ofN(¢) becomes a two-dimensional iterative process. The op-
timal solutions of each two-dimensional problem form a muue{xk} of points
belonging toP. We have checked in many numerical test t{lﬁ’f} is always a con-
vergent sequence. It is important to underline that thisiiee process only takes



into account the position of the free node in a discrete sebofits, the points of:
corresponding t({x’f} and, therefore, it is not necessary that the surface is $moot
Indeed, the surface determined by the piecewise lineapiok&ion of the initial mesh

is used as a reference to define the geometry of the domain.

If the node movement only responds to an improvement of tladitgof the mesh,
it can happen that the optimized mesh loses details of tlygnatisurface. To avoid
this problem, every time the free nogés moved on>, the optimization process only
allows a small distance between the centroid of the triangfé//(p) and the under-
laying surface (the true surface, if it is known, or the ptagse linear interpolation,
if it is not).

There are several alternatives to the previous method.Xaongle, Garimella et al.
[4] develop a method to optimize meshes in which the nodekeobptimized mesh
are kept close to the original positions by imposing the Baot of the current and
original meshes to be also close. Frey et al. [5] get a confrtle gap between the
mesh and the surface by modifying the element-size (sulidiyithe longest edges
and collapsing the shortest ones) in terms of an approxomati the smallest princi-
pal curvatures radius associated to the nodes. Rassineluxaitadso use the smallest
principal curvatures radius to estimate the element-sinepatible with a prescribed
gap error. They construct a geometrical model by using thenide diffuse interpola-
tion in which local operations like edge swapping, node r@ng edge splitting, etc.
are made to adapt the mesh size and shape. More accurateampspthat have into
account the directional behavior of the surface, have beasidered in by Vigo [7]
and, recently, by Frey in [8].

Application of our proposed optimization technique is shawsection 4.

2 Construction of the Objective Function

Asitis shown in [2], [9], and [10] we can derive optimizatifumctions fromalgebraic
quality measures of the elements belonging to a local mesh. Let us considéairagin-

lar mesh defined iiR? and lett be an triangle in the physical space whose vertices are
given byx; = (J:k,yk)T € R?, k = 0,1, 2. First, we are going to introduce an alge-
braic quality measure fdr Letty be the reference triangle with vertices = (0, 0)7,

u; = (1,0)T, andu, = (0,1). If we choosex, as the translation vector, the affine
map that takegy to ¢ is x =Au + x,, where A is the Jacobian matrix of the affine
map referenced to node, given by A = (x; — x¢,x2 — xo). We will denote this

type of affine maps a&:; A4 Let nowt; be anideal triangle (not necessarily equi-
lateral) whose vertices ase;, € R?, (k = 0,1,2) and letlW; = (w; — wg, Wy — W)
be the Jacobian matrix, referenced to nedg of the affine map, M t; ; then, we

defineS = AW, ! as the weighted Jacobian matrix of the affine mlaﬁi t . Inthe
particular case that was the equilateral trianglg;, the Jacobian matri}¥/; = Wg
will be defined byw, = (0,0)”, w; = (1,0)” andw, = (1/2,v/3/2)".

We can use matrix norms, determinant or tracé e construct algebraic quality



measures of. For example, the Frobenius norm$fdefined by|.S| = \/tr (ST5),
is specially indicated because it is easily computable. sTltus shown in [1] that
qy = f@% is an algebraic quality measuretofwheres = det (.S). We use this quality

measure to construct an objective function. ket (z, y)T be the position vector of
the free node, and Ief,,, be the weighted Jacobian matrix of theth triangle of a

valid local mesh of\/ triangles. The objective function associatedtdah triangle is

N = ‘if—'Z and the corresponding objective function for the localmeghen-norm

of (77177727"'777]\4)’

n

K|, (%) = [Z e <x>] (1)

This objective function presents a barrier in the bounddrhe feasible region that
avoids the optimization algorithm to create a tangled melsénat starts with a valid
one.

Previous considerations and definitions are only diregtlyliaable for 2-D (or 3-
D) meshes, but some of them must be properly adapted whendbleas are located
on an arbitrary surface. For example, the concept of validhme not clear in this
situation because neither the concept of inverted elerseiw/e will deal with these
guestions in next subsections.

2.1 Similarity Transformation for Surfaceand Parametric Meshes

Suppose that for each local mesh(p) placed on the surfacg, that is, with all its
nodes ort, itis possible to find a plang such that the orthogonal projectionaf(p)
on P is a valid meshV(q). Moreover, suppose that we define the axes in such a way
that thez, y-plane coincide withP. If, in the feasible region ofV (q), it is possible
to define the surfac® by the parametrization(z,y) = (x,y, f(x,y)), wheref is

a continuous function, then, we can optimix&p) by an appropriate optimization
of N(q). We will refer to N(q) as theparametric mesh. The basic idea consists on
finding the positiory in the feasible region alV(¢) that makesV/ (p) be an optimum
local mesh. To do this, we searéffeal elements inN(¢) that become equilateral
in M(p). LetT € M(p) be a triangular element ori whose vertices are given by
ve = (Tk, Yk, zk)T, (k = 0,1,2) andtg be the reference triangle iR (see Figure 1).

If we choosey, as the translation vector, the affine mapﬁ TiSy = A;u+y,,
whereA, is its Jacobian matrix, given by

X1 — Zo To — Xo
A= vi—v% 12—y (2)
21 — 20 22 — 20

Now, consider that € N(q) is the orthogonal projection afon P. Then, the vertices
of t arex;, = Ily; = (:ck,yk)T, (k = 0,1,2), wherell = (el,ez)T is 2 x 3 matrix
of the affine map- LS being{e,, es, e3} the canonical basis iR?* (the associated



projector fromRR3 to P, considered as a subspaceRf, is I171I). Taking x, as
translation vector, the affine map A tisx = Apu + xg, WhereAp = IIA, is its

Jacobian matrix
X1 — Zo To — Xg
Ap = 3
r (y1—y0 y2—yo) 3

Therefore, the x 2 matrix of the affine map L ris
T = A A (4)

Let V.. be the subspace spanned by the column vectors.aind letw be the plane
defined byV, and the poinfy,. Our goal is to find thedeal trianglet; C P, moving
g on P, such that; is mapped by’ into an equilateral one;z C 7. In general, the
strict fulfillment of this requirement is only possible ¥ (q) is formed by a unique
triangle.

DuetorankA,) =rank(Ap) = 2, it exists a unique factorizatiod, = Q R, where
@ is an orthogonal matrix” @ = I) andR is an upper triangular one wift®],; > 0
(¢ = 1,2). The columns of th& x 2 matrix () define an orthonormal bas{sy;, g, }

that spand/,, so we can se@ as the matrix of the affine map, A Tr and R as the
2 x 2 Jacobian matrix of the affine map R (see Figure 1). Asg We tp and@

is an orthogonal matrix that keeps the angles and norms ofeitters, thert A TE
and, therefore
QWg = A, R'Wg ©))

is the3 x 2 Jacobian matrix of affine mafp; W 7. On the other hand, we define
on the planer
S = RW.! (6)

as the2 x 2 weighted Jacobian matrix of the affine map that transforratjuilateral
triangle into the physical one, that is; 5
We have chosen as ideal trianglesinthe equilateral oner{ = 7g), then, the
Jacobian matriXV; of the affine mapz 4 t; is calculated by imposing the condition
TW; = QWg, becauseér Qg 77 andtg W 7. Taking into account (5), it yields
TW; = A, R'Wg (7)

and, from (4), we obtain
Wi =ApR'Wpg (8)

so we define orP the ideal-weighted Jacobian matrix of the affine map %1t as
Sy = ApW;'. From (8) it results

S; = ApW5'RAG! (9)
and, from (6)
Sp= ApWi ' SWeAR = ApWi's (ApWi') ™' = 5SS, (10)



whereSy = ApW,' is theequilateral-weighted Jacobian matrix of the affine map
tg 58 ¢, Finally, from (10), we obtain the next similarity trangfioation.

S = S:1S;Sk (11)

Therefore, it can be said that the matri¢eandS; aresimilar.

Figure 1: Local surface mesW (p) and its associated parametric megty)

2.2 Optimization on the Parametric Space

It might be used, as it is defined in (6), to construct the objective functiod ahen,
solve the optimization problem. Nevertheless, this pracetias important disadvan-
tages. First, the optimization @ (p), working on the true surface, would require the
imposition of the constraint € 3. It would complicate the resolution of the problem
because, in many cases,is not defined by a smooth function. Moreover, when the
local mesh) (p) is on a curved surface, each triangle is sited on a differiamepand
the objective function, constructed fraff) lacks barriers. It is impossible to define a
feasible region in the same way as it was done at the begimfithgs section. Indeed,
all the positions of the free node, except those that miakes) = 0 for any triangle,
produce correct triangulations éf (p). However, for many purposes as, for exam-
ple, to construct a 3-D mesh from the surface triangulatibare are unacceptable
positions of the free node.



To overcome these difficulties we propose to carry out theropation of M (p) in
an indirect way, working oV (¢). With this approach the movement of the free node
will be restricted to the feasible region 6f(q), which avoids to construct unaccept-
able surface triangulations. It all will be carried out gsam approximate version of
the similarity transformation given in (11).

Let us consider that = (x,4)" is the position vector of the free nodesited on
the planeP. If we suppose that is parametrized by(x,y) = (z,v, f(z,v)), then,
the position of the free node on the surface is given by = (z,y, f(z,y))T =
(x, f(x)".

Note thatSg = APWb?l only depends ox becausély is constant andip is a
function ofx. BesidesS; = APW[1 depends oy, due toW; = ApR~'Wg, andR
is a function ofy. Thus, we havé; (x) andsS; (y). We shall optimize the local mesh
M (p) by an iterative procedure maintaining consténit(y) in each step. To do this,
at the first step, we fi¥l’; (y) to its initial value,W? = W;(y"), wherey" is given by
the initial position ofp. So, if we defineS? (x) = Ap (x) (W?)~!, we approximate
the similarity transformation (11) as

S% (x) = Sg' (x) 57 (%) Sp (%) (12)

Now, the construction of the objective function is carriad m a standard way, but
usingS? instead ofS. So, we obtain the objective function for a given triangle =

S° (x)|”
200 (x)

1’ (x) = (13)

wheres? (x) = det(S° (x)).

With this approach the optimization of the local meghp) is transformed into a
two-dimensional problem without constraints, defined\o), and, therefore, it can
be solved with low computational cost. Furthermore, if waew’? asA%(R%) ' Wg,
where A}, = Ap (x°) andR® = R (y°), it is straightforward to show that’ can be
simplified as

S° (x) = R* (A%) " Sk (x) (14)

and our objective function for the local mesh is

K| (%) = [Z (n5)" (X)] | (15)

m=1

Let now analyze the behavior of the objective function whea free node crosses
the boundary of the feasible region. If we denate = det (Ap), a% = det (4%),
p° = det (R%), wg = det (Wg) and taking into account (14), we can writ€ =

0 (031 -1 0 .0 i i
P° (a%)" apwy'. Note that?, o%, andwy are constants, s¢ has a singularity when
ap = 0, that is, wheny is placed on the boundary of the feasible regiovgf;). This
singularity determines a barrier in the objective functioat prevents the optimization



algorithm to take the free node outside this region. Thisibadoes not appear if we
use the exact weighted Jacobian maffjgiven in (6), due telet (R) = Ry3 Ros > 0.

Suppose that! = x° is the minimizing point of (15). As this objective function
has been constructed by keepinin its initial position,y?, thenx! is only the first ap-
proximation to our problem. This result is improved updgtine objective function at
y! = (x!, f(x'))T and, then, computing the new minimizing positiad,= x'. This
local optimization process is repeated, obtaining a semm{am’“} of optimal points,
until a convergence criteria is verified. We have experimgnterified in numer-
ous tests, involving continuous functions to define theas@E, that this algorithm
converges.

Let us conside” as an optimal projection plane (this aspect will be discdisse
next section). In order to prevent a loss of the details ofahginal geometry, our
optimization algorithm evaluates the difference of hesghhz]) between the centroid
of the triangles ofM/(p) and the reference surface, every time a new positiois
calculated. If this distance exceeds a threshdldp), the movement of the node
is aborted and the previous position is stored. This thidsAdgp) is established
attending to the size of the elementsdf(p). In concrete, the algorithm evaluates
the average distance between the free node and the nodescteohito it, and takes
A(p) as percentage of this distance. Other possibility is ta\fjx) as a constant for
all local meshes. In the particular case in which we have g@ficiixrepresentation
of the surface by a functiori(z,y), A(p) can be established as a percentage of the
maximum difference of heights between the original surtawe the initial mesh.

3 Search of the Optimal Projection Plane

The former procedure needs a plane in which the local mesh), is projected con-
forming a valid mesh/N(q). If this plane exists it is not unique, because a small
rotation of the coordinate system produces another vabgeption plane, that is, an-
other plane in whichV(q) is valid. We have observed that the number of iterations
required by our procedure depends on the chosen plane. énajetiis number is less

if the plane is wellfaced to M (p). We have to find the rotation of reference system
x,y, z such that the new’, v/-plane,P’, is optimal with respect to a suitable criterion.

We will denote N (¢’) as the projection of\/(p) onto P’ andt’ the projection of
the physical triangle € M(p) onto P'. Let A}, = (x] — x{, x5 — x{)) be the matrix
associated to the affine map that takes the reference elelef@meéd onP’ to t/, then,
the area of' is given by; |a),| wherea/, = det (A)).

M
Our goal is to find a coordinate system rotation such t@b@z IS maximum

m=

satisfying the constraints’, = det (A’ ) > ( for all the trlangles ofNV(¢'), that
is,m=1,..,M.In[11] a method to determine a projection plane is congidédut
without the enforcement of these constraints.

According to Euler’s rotation theorem, any rotation may lesatibed using three



angles. The so-called-convention is the most common definition. In this convention,
the rotation is given by Euler angl€s, 0, ¢)), where the first rotation is by an angle
¢ € |0, 27] about thez-axis, the second is by an andle [0, 7] about ther-axis, and
the third is by an angle € [0, 27] about thez-axis (again).

Let ®(¢, 0, 1) be the Euler’s rotation matrix such thgt= ®y, then, the Jacobian
matrix A, = (y1—Yyo, Y2—Yo) associated to the triang’reofM ( ), defined in (2), can
be spanned on the rotated coordinate systerias (y| -y, y5—y,) = PA,. Thus,
the Jacobian matrid’, is written asA’, = 1A = II®A,.. With these considerations
it is easy to proof that the value af is

ap = det(IIPA,) = my sin (¢) sin(f) + mq sin (0) cos (¢p) + mscos (0)  (16)

wherem; is the minor obtained by deleting thh row of A,.. Note that equation (16)
only depends ow andf angles, as was to be expected.

Although the above maximization problem can be solved takenaccount the
constraints, we propose an unconstrained approach.

Let us consider, as a first attempt, the objective funct@(ap )Y, 0). The

minimization of this function tends to maximize the Va|UéSO(}_> and, due to the
barrier that appears wher}, = 0 for some triangle ofV(q'), the values ofv}, are
maintained positive if the minimization algorithm startsaa interior point, that is,
a point(¢o, fp) belonging to the se¥ of angles(¢, #) such thato, (¢,60) > 0 for
(m = 1,..., M). On the other hand, if any), < 0 the barrier prevents to reach the
required minimum. In next paragraph we propose a method doafiminterior point
(¢0,6o) of U to be used as a starting point in the minimization algorithm.

Let G = [g,] be the3 x M matrix formed by the vectorg,,, normal to the
triangles ofM (p). A solution of the inequality system (if it exist&) g > 0 provides a
direction [12], defined by vectq, such that aII the triangles @f (p) can be projected
on a plane, normal to the unitary vector=£., so thata), > 0for (m =1,..., M).
Then, it only remains to find the angl¢§;and in which the coordinate system needs
to be rotated to get thé axis to point in the direction ai. More precisely, the angles
®o andd, are the solution of the equatidn’ (¢, 6y, 0) es = n, wherees = (0,0, 1)T.

If the inequality system has not solution, then, there isamyt valid projection plane
for this local mesh, against the premise done in section Bxthis case, the local
optimization procedure maintains the free n@ds its initial position.

We have observed that the previous objective function hagpatational difficul-
ties as the optimization algorithms use discrete stepsawmckehe optimal point. A
step leading outside the regidnmay indicate a decrease in the value of the objective
function and take to a false solution. To overcome this wilve propose a modifi-
cation of the objective function in such a way that it will lgular all oveiR? and its
barrier will be "smoothed”. The modification consists of stitutinga’, by h(ap,,),
whereh(«) is the positive and increasing function given by

h(a) = %(a VR T4 (17)



being the parameter = h(0). The behavior ofi(«) in function of § parameter is
such that,(lsir%h(a) =a,Va >0 and(lsin%h(a) = 0, Ya < 0. The characteristics of

h function and its application in the context of mesh untamgind smoothing have
been studied in [13], [14]. Thus, the proposed objectivectiom for searching the
projection plane is

M 1

le h(ad, (6,0))
A crucial property is that the angles that minimize the erajiand modified objec-

tive functions are nearly identical whéns small. Details about the determination of
o value for 3-D triangulations can be found in [14].

¢, 0) = (18)

4 Matching curves defined on surfaces

Node movement provides a surface mesh the ability to matelkatrary curve. Sup-
pose that the surface mesk,, is projectable on a unique plarfeéforming a para-
metric meshN. If C is a curve defined o, our objective is to move some nodes
of IV, projecting them ort’, to get an interpolation of’ by edges ofV. Note that,
associated to this interpolation, there is a mapped inkatipa on M. To achieve this
objective we have to decide which nodes\otan be projected ofi without inverting
any triangle of its local submesh. More accurately, we say éhfree node is pro-
jectable onC' if it exists any point ofC', sayq’, such that the resulting local submesh
N(q) has not any inverted triangle after carryiqgp the position of/. In general, if

q is projectable, its possible placement@ns not unique and, therefore, we have to
determine the "best” position to relocateTo decide which is the best position of this
node we could think on minimizing the objective functiphi?| (x) [17] subject to
the constraineat € C. Nevertheless, this function only works properly whgfy) is
not tangled. To overcome this problem we propose to modify/dhjective function
following the criteria developed in [14]. This modificaticonsists of substituting®

in (13) by the positive and increasing functidic®), so that the barrier associated
with the singularities of K0| (x) will be eliminated and the new function will be
smooth all oveiR?. If \Kﬂn (x) is the modified objective function, the problem of
finding the optimal position to project the free node@is

minimize|K)?| (x), subjecttax € C (19)

The objective functioran,’IO\n strongly penalizes the negative valuesrdf so that,
the minimization process of (19) leads to the constructiba cal submeshV(q)
without inverted triangles, provided itis possible. Thié, is the minimizing position
of (19) ands® (x) > 0 for all triangle of N (¢), we conclude thag is projectable or”
andx is its optimal position.

The projection of a free node afi can give rise to a local mesh with very poor
guality. This effect is partly palliated after smoothing ttemainder nodes, following



the procedure described in section 2.2. Moreover, we hasereed that the final mesh
has better quality if the constraint (x) > 0 is substituted by the most restrictive one
o’ (x) > € for all triangle of N(¢), weree > 0 is a decreasing parameter that tends to
zero as the number of global iterations increases.

The nodes are inserted in the curve without specific critefjisst according to the
increasing order of its numeration. This produces situgtio which some sections
of the curveC' can not be interpolated by edges/@fwithout removing some nodes
previously projected o'. The figure 2(a) shows a scheme of this problem and fig-
ures 2(b) and (c) explain the way to solve it by a conveniespldcement of the two
extreme nodes.

(a)

(©)

Figure 2: The line (in bold) is non-recoverable if the tworerte nodes are not moved
(a). The extreme nodes are removed from the line (b) untilr@r@mne takes its place

(©)

In some applications we lack an analytic expression of tineecto be interpolated.
Only a set of aligned point&g,. } that approximately describes a contour is available.
This is the case, for example, of data supplied by digitdlixeps describing coastal
shores or river banks. To approach this situation we solvie@ete version of (19).
Given local submesh(q), we analyze if; is projectable on any point df;. }, that is,
we check if the conditiom” (x) > ¢ for all triangle of N (q) is satisfied whex cover
{q.}. Among the positionx that satisfy previous condition we choose the optimal
point, x, as the one that minimizqu,’ﬂn. We must underline that this problem is



correctly defined only if the density of points §f.} is high enough. Typically, the
distance between contiguous points{@f} must be much shorter than the distances
between adjacent nodes bt

Usually, most of nodes ol are very far from any point of¢.} and, therefore,
they are not projectable, so it is advantageous to have #opieknowledge of which
nodes are candidates to be projected. A possibility is tocat® to each node of both
N and{q.} the square of a regular grid in which it is included. Let uspge that
the size of these squaresiis,. X d.., beingd,,.. the maximum edge present at the
mesh. We can take a quick decision about if the npecandidate to be projectable
on{q.} only by inspecting the regiors,,, formed by the square that contaipnand the
surrounding squares. Firstly, we find the subggé} of points belonging td ¢.} and
included inS,. If {¢.} # 0, we analyze if; is projectable o ¢.} as it was explained
above. Note that the distance betweeand any point of{¢.} not in S, is greater
thand,,., and, consequently, outside the feasible regiotV¢§) (the feasible region
of N(q) is included in the circle of radiug,,., and center).

5 Application

5.1 Application to scanned objects

In this subsection the proposed technique is applied to #momesh obtained from
http://www.cyberware.comy. The object is a screwdriver (see Figure 11) withi50
triangles and 3577 nodes.

The projection plane for this surface triangulation haverbehosen in terms of the
local mesh to be analyzed. We have used the objective fungjowvithn = 2.

The average quality for this application is increased fi@f22 to 0.920 in four
iterations, see Figure 12. The wof$l) triangles increases its average quality from
0.486 t0 0.704. Itis important to remark that the original geometry is astnareserved
in the optimization process, as it can be seen by comparieged df these meshes in
Figures 13 and 14. The quality curves are shown in Figure hi durve is obtained
by sorting the elements in increasing order of its quadity,).

We have fixedA(p) to 10% of average distance between the free node and the
nodes connected to it. The number of not moved nodes by tloeithign with this
election ofA(p) have beeR5 in the first iteration 167 in the second] 87 in the third,
and193 in the fourth one. We remark that the quality curves from ttes fo the fourth
iteration are very close. In particular, the algorithm ongeds one iteration to reach
an average qualit§.907.

5.2 Mesh adaption to prescribed contours in orographic surfaces

In many cases of environmental modelling, there are som@uaohnes which deter-
minate certain characteristics of the studied region. Kkanmgple, in wind simulation



[16] the well definition of contour lines of very steep slopeay be very important
for obtaining accurate results, since a change in the direof edges of the mesh can
strongly affect the computed wind. Thus, an accurate mesit beiadapted to fol-
lows these contours lines. Figure 4 shows the adaption ahiti@ mesh of figure 3,
related to a region of the north west of Gran Canaria Islanthgshore line (plotted

by points in red). A detail of these meshes are shown in figbiiasd 6.
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Figure 3: Region defined in the north west of Gran Canaria Isl&odtour plots and

initial mesh to be adapted.

The second example corresponds to a mesh of another regiGmnaof Canaria
Island in the surrounding of Arucas Mountain (figure 7) treaadapted to a spiral

around the mountain (an imaginary road), see figure 8. Invikis, we can clearly
see how the edges of the mesh end up being placed on the cugeee$-9 and??

Figure 4. Region defined in the north west of Gran Canaria Isl&@odtour plots and
shown details of these meshes.

adapted mesh.
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Figure 5: A detail of the coast in the north west of Gran Canlatéand corresponding
to the not adapted mesh.

Figure 6: A detail of the coast in the north west of Gran Canlatend corresponding
to the adapted mesh.

6 Conclusions and Future Research

We have developed an algebraic method to optimize triatignkdefined on sur-
faces. Its main characteristic is that the original problerransformed into a fully
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Figure 7: Region defined in the surrounding of Arucas Moun(&ran Canaria Is-
land). Contour is defined as an spiral line around the mountaimhich the initial
mesh must be adapted.
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Figure 8: Region defined in the surrounding of Arucas Mount&antour plots and
adapted mesh.
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Figure 9: A detail of the not adapted mesh to the spiral in Asuglountain.

Figure 10: A detail of the adapted mesh to the spiral in Arddasntain.

two-dimensional sequence of approximate problems on thenpetric space. This



characteristic allows the optimization algorithm to deaith surfaces that only need
to be continuous. Moreover, the barrier exhibited by theecije function in the
parametric space prevents the algorithm to construct empaable meshes.

We have also introduced a procedure to find an optimal piojeplane (our para-
metric space) based on the minimization of a suitable abgdtinction. We have
observed that correct choice of this plane plays a relevdat r

We have shown how the technique of surface mesh smoothingecased to match
an arbitrary curve. This last application requires the mest be projected in a a
unique projection plane. We propose the generalizatiohexd ideas to avoid the this
restriction. Also, we think that the this procedure couldel&apolated for matching
surfaces defined in 3-D meshes.

Figure 11: Original mesh of a screwdriver frdmip://www.cyberware.conv.

Figure 12: Optimized mesh of the screwdriver after fouratiemns.



The optimization process includes a control on the gap batilee optimized mesh

and the reference surface that avoids to lose details ofrigaal geometry. In this

work we have used a piecewise linear interpolation to defigeréference surface
when the true surface is not known, but it would be also ptessiduse a more regu-

lar interpolation, for example, the proposed in [6]. Likew it would be possible to
introduce a more sophisticated criterion for the gap cédnby using a local refine-
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ment/derefinement techniques, that takes into accountiivatare of the surface [5],
Figure 13: Detail of the original mesh of the screwdriver.end
Figure 14: Detail of the optimized mesh of the screwdrivéerafour iterations.

[6], [7], [8].
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Figure 15: Quality curves for the initial (dashed line) anatimized (solid line)
meshes for the screwdriver.

In the present work we have only considered a sole objectinetion obtained
from an isotropic and area independent algebraic qualitiricneNevertheless, the
framework that establishes tlaégebraic quality measures [1] provides us the possi-
bility to construct anisotropic and area sensitive objecliinctions by using a suitable
metric.

In future works we will use the present smoothing techniqureirhproving the
mesh quality of the boundary of 3-D domain triangulationrael over complex ter-
rains [15]. A simultaneous smoothing and untangling pracedL4] could be applied
to inner nodes of the domain after. Authors have developedtétrahedral mesh
generator for wind field simulation in realistic problem$]1
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