Abstract

This paper presents a new procedure to improve the qualityasigular meshes de-
fined on surfaces. The improvement is obtained by an itergtigcess in which each
node of the mesh is moved to a new position that minimizesitedbjective func-
tion. This objective function is derived from an algebrai@atity measures of the local
mesh (the set of triangles connected to the adjustalfie@nodg. The optimization
is done in thgoparametric meshwhere the presence of barriers in the objective function
maintains the free node inside theasible region In this way, the original problem
on the surface is transformed into a two-dimensional ondneparametric spaceln
our case, the parametric space is a plane, chosen in terme lofdal mesh, in such a
way that this mesh can be optimally projected performivgled mesh, that is, with-
outinvertedelements. Several examples and applications presenteid iwark show
how this technique is capable to improve the quality of gialar surface meshes.

Keywords. mesh generation, mesh smoothing, surface meshes, surtste opti-
mization, adaptive meshes.

1 Introduction

For 2-D or 3-D meshes the quality improvement [1] can be olethiby an iterative
process in which each node of the mesh is moved to a new positad minimizes
an objective function [2]. This function is derived from aadjty measure of the local
mesh. We have chosen, as a starting point in section 2, a Jdatae function that
presents a barrier in the boundary of teasible regior(set of points where the free
node could be placed to getvalid local mesh, that is, withoutverted elemenjs
This barrier has an important role because it avoids tharigdition algorithm to
create a tangled mesh when it starts with a valid one. Nestedh, objective functions



constructed by algebraic quality measures are only dyregiplicable to inner nodes
of 2-D or 3-D meshes, but not to its boundary nodes. To oveectins problem, the
local mesh,M (p), sited on a surfac, is orthogonally projected on a plare (the
existence and search of this plane will be discuss in se@&jan such a way that it
performs a valid local mesN (¢). Therefore, it can be said thaf (p) is geometrically
conformingwith respect taP [3]. Herep is the free node ok andg is its projection on
P. The optimization of\/ (p) is got by the appropriated optimization df(¢). To do
this we try to geideal triangles inN(¢) that become equilateral i/ (p). In general,
when the local mesh/(p) is on a surface, each triangle is placed on a different plane
and it is not possible to define a feasible region>an Nevertheless, this region is
perfectly defined inV(q) as it is analyzed in section 2.1.

To construct the objective function iN(q), it is first necessary to define the ob-
jective function inM (p) and, afterward, to establish the connection between them. A
crucial aspect for this construction is to keep the barrfethe 2-D objective func-
tion. This is done with a suitable approximation in the psscthat transforms the
original problem on¥ into an entirely two-dimensional one dA We develop this
approximation in section 2.2.

The optimization ofN(¢) becomes a two-dimensional iterative process. The op-
timal solutions of each two-dimensional problem form a muue{x’“} of points
belonging toP. We have checked in many numerical test t{lﬂ’f} is always a con-
vergent sequence. It is important to underline that thisitee process only takes
into account the position of the free node in a discrete sebofts, the points o
corresponding tc{x’“ } and, therefore, it is not necessary that the surface is $moot
Indeed, the surface determined by the piecewise lineanpiol&tion of the initial mesh
is used as a reference to define the geometry of the domain.

If the node movement only responds to an improvement of tladitguwf the mesh,
it can happen that the optimized mesh loses details of tlygnatisurface. To avoid
this problem, every time the free nogés moved on:, the optimization process only
allows a small distance between the centroid of the triangfé/(p) and the under-
laying surface (the true surface, if it is known, or the pi@gse linear interpolation,
if it is not).

There are several alternatives to the previous method.Xaongle, Garimella et al.
[4] develop a method to optimize meshes in which the nodekebptimized mesh
are kept close to the original positions by imposing the Baot of the current and
original meshes to be also close. Frey et al. [5] get a confrtle gap between the
mesh and the surface by modifying the element-size (sutidiyithe longest edges
and collapsing the shortest ones) in terms of an approxamaii the smallest princi-
pal curvatures radius associated to the nodes. Rassinelux@tadso use the smallest
principal curvatures radius to estimate the element-sinepatible with a prescribed
gap error. They construct a geometrical model by using thenide diffuse interpola-
tion in which local operations like edge swapping, node rént edge splitting, etc.
are made to adapt the mesh size and shape. More accurateamspthat have into
account the directional behavior of the surface, have beasidered in by Vigo [7]



and, recently, by Frey in [8].
Application of our proposed optimization technique is shawsection 4.

2 Construction of the objective function

Asitis shown in [2], [9], and [10] we can derive optimizatifumctions fromalgebraic
guality measuresf the elements belonging to a local mesh. Let us considéatragiu-

lar mesh defined iiR? and lett be an triangle in the physical space whose vertices are
given byx, = (zx,yx)" € R% k = 0,1,2. First, we are going to introduce an alge-
braic quality measure fdr Letty be the reference triangle with vertices = (0, 0)7,

u; = (1,0)7, andu, = (0,1)7. If we choosex, as the translation vector, the affine
map that takesy to ¢ is x =Au + x(, where A is the Jacobian matrix of the affine
map referenced to node, given by A = (x; — x¢,x2 — x0). We will denote this

type of affine maps a&:; A4 Let nowt; be anideal triangle (not necessarily equi-
lateral) whose vertices ase;, € R?, (k = 0,1,2) and letlW; = (w; — wg, wy — W)

be the Jacobian matrix, referenced to nedg of the affine magy il t; ; then, we

defineS = AW{1 as the weighted Jacobian matrix of the affine mlapse t. Inthe
particular case that; was the equilateral trianglg;, the Jacobian matrik/; = Wy
will be defined byw, = (0,0)7, w; = (1,0)” andw, = (1/2,v/3/2)".

We can use matrix norms, determinant or tracé ad construct algebraic quality
measures of. For example, the Frobenius norm$fdefined by|.S| = \/tr (ST.5),
is specially indicated because it is easily computable. sTitus shown in [1] that
¢y = l% is an algebraic quality measuretgfwheres = det (.S). We use this quality

measure to construct an objective function. ket (z, y)T be the position vector of
the free node, and l&f,, be the weighted Jacobian matrix of theth triangle of a
valid local mesh of\/ triangles. The objective function associatedtdh triangle is
N = I5n and the corresponding objective function for the locallmeghen-norm
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This objective function presents a barrier in the bounddrhe feasible region that
avoids the optimization algorithm to create a tangled mesénat starts with a valid
one.

Previous considerations and definitions are only direqtiyliaable for 2-D (or 3-
D) meshes, but some of them must be properly adapted whendslees are located
on an arbitrary surface. For example, the concept of validhme not clear in this
situation because neither the concept of inverted elenseiwe will deal with these
guestions in next subsections.



2.1 Similarity Transfor mation for Surfaceand Parametric M eshes

Suppose that for each local mesh(p) placed on the surfacg, that is, with all its
nodes ort;, itis possible to find a plang such that the orthogonal projectionf(p)
on P is a valid meshV(q). Moreover, suppose that we define the axes in such a way
that thez, y-plane coincide withP. If, in the feasible region ofV(q), it is possible
to define the surfac& by the parametrization(z,y) = (z,v, f(x,y)), wheref is

a continuous function, then, we can optimix&p) by an appropriate optimization
of N(q). We will refer to N(q) as theparametric mesh The basic idea consists on
finding the positiory in the feasible region aiV(g) that makes\V/ (p) be an optimum
local mesh. To do this, we seardleal elements inN(¢) that become equilateral
in M(p). LetT € M(p) be a triangular element ori whose vertices are given by
ve = (Tk, Yk, zk)T, (k = 0,1,2) andtg be the reference triangle i (see Figure 1).

If we choosey, as the translation vector, the affine niapii TiSy = A;u+y,,
whereA, is its Jacobian matrix, given by

T — o T2 — To
Ar=1| v1—%  Y2— (2)
21 — 20 29 — 20
Now, consider that € N (q) is the orthogonal projection afon P. Then, the vertices
of t arex;, = Ily; = (zk,yk)T, (k = 0,1,2), wherell = (el,eg)T is 2 x 3 matrix

of the affine map- LS being{ey, e;, e3} the canonical basis iR? (the associated
projector fromR3 to P, considered as a subspaceRf, is I171I). Takingx, as

translation vector, the affine map A8 tisx = Apu + xo, WwhereAp = IIA, is its

Jacobian matrix
Tr1 — X To — X
Ap = 3
r (yl—yo yz—yo) ®)

Therefore, the x 2 matrix of the affine map L ris
T = AWAJ_DI (4)

Let V.. be the subspace spanned by the column vectors. aind letr be the plane
defined byV,, and the poinfy,. Our goal is to find thédeal trianglet; C P, moving
g on P, such that; is mapped byl" into an equilateral one;z C «. In general, the
strict fulfillment of this requirement is only possible X (q) is formed by a unique
triangle.

DuetorankA,) =rank(Ap) = 2, it exists a unique factorizatiod, = Q R, where
() is an orthogonal matrix an® is an upper triangular one witl&],, > 0 (i = 1, 2).
The columns of th8 x 2 matrix @) define an orthonormal basfsg; , q»} that spans/,
sSo we can se€ as the matrix of the affine map A Tr and R as the2 x 2 Jacobian
matrix of the affine mapy £ - (see Figure 1). Asr Wy tg and@ is an orthogonal

matrix that keeps the angles and norms of the vectors,ttf\e% 75 and, therefore

QWg = A:R~'Wg (5)



is the3 x 2 Jacobian matrix of affine mafp; W 7. On the other hand, we define
on the planer
S =RW;! (6)

as the2 x 2 weighted Jacobian matrix of the affine map that transforragtjuilateral
triangle into the physical one, that is; 5o

We have chosen as ideal trianglesinthe equilateral oner{ = 7), then, the
Jacobian matrix¥’; of the affine mapp s t; is calculated by imposing the condition
TW; = QWg, becauser W 7 andty W 7. Taking into account (5), it yields

TW; = A,R™'Wg (7)

and, from (4), we obtain
Wi =ApR'Wpg (8)

so we define onP the ideal-weightedJacobian matrix of the affine map %1t as
Sy = ApW;'. From (8) it results

S; = ApW;'RAL! 9)
and, from (6)
Sy = ApW5' SWeAp! = ApWi'S (ApW5') ™" = SpSS5! (10)

whereS; = ApW' is theequilateral-weightedlacobian matrix of the affine map
lg 55 ¢, Finally, from (10), we obtain the next similarity trangfioation.

S =S8;'5:Sg (11)

Therefore, it can be said that the matri¢eandS; aresimilar.

2.2 Optimization on the Parametric Space

It might be used, as it is defined in (6), to construct the objective functiod ahen,
solve the optimization problem. Nevertheless, this pracetias important disadvan-
tages. First, the optimization @f/ (p), working on the true surface, would require the
imposition of the constraint € X. It would complicate the resolution of the problem
because, in many cases,is not defined by a smooth function. Moreover, when the
local mesh) (p) is on a curved surface, each triangle is sited on a differiamepand
the objective function, constructed fraff) lacks barriers. It is impossible to define a
feasible region in the same way as it was done at the begimfithgs section. Indeed,
all the positions of the free node, except those that miakes) = 0 for any triangle,
produce correct triangulations éf (p). However, for many purposes as, for exam-
ple, to construct a 3-D mesh from the surface triangulatibare are unacceptable
positions of the free node.



Figure 1: Local surface mest (p) and its associated parametric més(y)

To overcome these difficulties we propose to carry out thevapation of M (p) in
an indirect way, working oV (¢). With this approach the movement of the free node
will be restricted to the feasible region 6f(q), which avoids to construct unaccept-
able surface triangulations. It all will be carried out gsam approximate version of
the similarity transformation given in (11).

Let us consider that = (z, y)T Is the position vector of the free nodesited on
the planeP. If we suppose thal is parametrized by(x,y) = (z,y, f(x,y)), then,
the position of the free node on the surface is given by = (z,y, f(z,y))T =
(x, f(x)".

Note thatSy = APW51 only depends ox becausdVy is constant andip is a
function ofx. BesidesS; = APVV[1 depends oy, due tolW; = ApR~'Wg, andR
is a function ofy. Thus, we haveéSs (x) andsS; (y). We shall optimize the local mesh
M (p) by an iterative procedure maintaining constdnit(y) in each step. To do this,
at the first step, we fi¥V’; (y) to its initial value,W? = W;(y°), wherey? is given by
the initial position ofp. So, if we defineS? (x) = Ap (x) (W)™, we approximate
the similarity transformation (11) as

S (x) = Sg' (x) 7 (%) Sp (%) (12)

Now, the construction of the objective function is carriad m a standard way, but
usingS? instead ofS. So, we obtain the objective function for a given triangle =
[S° (x)|”

1’ (x) = 200 (x) (13)



wheres? (x) = det(S° (x)).

With this approach the optimization of the local meghp) is transformed into a
two-dimensional problem without constraints, defined\ofy), and, therefore, it can
be solved with low computational cost. Furthermore, if wéew’? asA%(R%) ' Wg,
where A}, = Ap (x°) andR® = R (y°), it is straightforward to show that’ can be
simplified as

S (x) = R (A}) ' S (x) (14)

and our objective function for the local mesh is

M

K9], () = [z o) <x>] as)

m=1

Let now analyze the behavior of the objective function whes free node crosses
the boundary of the feasible region. If we denate = det (Ap), a% = det (4%),
p® = det (R%), wg = det (Wg) and taking into account (14), we can writ€ =
2° (%)~ apwy'. Note that?, a%, andwy are constants, sg has a singularity when
ap = 0, that is, wheny is placed on the boundary of the feasible regiowVgf). This
singularity determines a barrier in the objective functioait prevents the optimization
algorithm to take the free node outside this region. Thisibadoes not appear if we
use the exact weighted Jacobian maftjgiven in (6), due telet (R) = Ry3 Ry > 0.

Suppose that! = x° is the minimizing point of (15). As this objective function
has been constructed by keepinin its initial position,y?, thenx! is only the first ap-
proximation to our problem. This result is improved updatine objective function at
y! = (x!, f(x'))" and, then, computing the new minimizing positia,= x'. This
local optimization process is repeated, obtaining a saqu{zm’f} of optimal points,
until a convergence criteria is verified. We have experimgnterified in numer-
ous tests, involving continuous functions to define theaa@&E, that this algorithm
converges.

Let us considel” as an optimal projection plane (this aspect will be discdisse
next section). In order to prevent a loss of the details ofahginal geometry, our
optimization algorithm evaluates the difference of hesghh z]) between the centroid
of the triangles of\/ (p) and the reference surface, every time a new positiois
calculated. If this distance exceeds a threshdldy), the movement of the node
is aborted and the previous position is stored. This thidsAdgp) is established
attending to the size of the elementsid{p). In concrete, the algorithm evaluates the
average distance between the free node and the nodes cemhteit and takes\ (p)
as percentage of this distance.

3 Search of the optimal projection plane

The former procedure needs a plane in which the local mesh), is projected con-
forming a valid mesh/N(q). If this plane exists it is not unique, because a small



rotation of the coordinate system produces another vabgeption plane, that is, an-
other plane in whichV(q) is valid. We have observed that the number of iterations
required by our procedure depends on the chosen plane. énajetinis number is less

if the plane is wellfacedto A/ (p). We have to find the rotation of reference system
x,y, z such that the new’, y/-plane,P’, is optimal with respect to a suitable criterion.

We will denote N (¢') as the projection of/(p) onto P’ andt’ the projection of
the physical triangle € M(p) onto P'. Let A}, = (x} — xp, x5, — x() be the matrix
associated to the affine map that takes the reference elelefmeéd onP’ to ¢/, then,
the area of' is given bys |a/,| wherea/, = det (A}).

M
Our goal is to find a coordinate system rotation such t@ty’ IS maximum

m=

satisfying the constraints’, = det (A’ ) > 0 for all the trlangles ofNV(¢'), that
is,m=1,..,M. In[11] a method to determine a projection plane is considéaut
without the enforcement of these constraints.

According to Euler’s rotation theorem, any rotation may kesatibed using three
angles. The so-called-conventioris the most common definition. In this convention,
the rotation is given by Euler anglé€s, 0, ¢)), where the first rotation is by an angle
¢ € |0, 27] about thez-axis, the second is by an andle [0, 7] about ther-axis, and
the third is by an angle € [0, 27] about thez-axis (again).

Let ®(¢, 0, 1) be the Euler’s rotation matrix such thgt= ®y, then, the Jacobian
matrix A, = (y1—yo,y2—Yyo) associated to the triangteofM( ), defined in (2), can
be spanned on the rotated coordinate systerias (y| —y;, y5—yg,) = ®PA,. Thus,
the Jacobian matri¥’, is written asA’, = 1A, = 1P A,.. With these considerations
it is easy to proof that the value af is

ap = det(IIPA;) = my sin (¢) sin(f) + mgsin (0) cos (¢) + mzcos (f)  (16)

wherem; is the minor obtained by deleting tli¢h row of A,.. Note that equation (16)
only depends ow andf angles, as was to be expected.

Although the above maximization problem can be solved takenaccount the
constraints, we propose an unconstrained approach.

Let us consider, as a first attempt, the objective funct@t(ap )Y, 0). The

minimization of this function tends to maximize the valuém and, due to the
barrier that appears wher}, = 0 for some triangle ofV(q'), the values ob', are
maintained positive if the minimization algorithm startsaa interior point, that is,
a point(¢o, 6p) belonging to the se¥ of angles(¢, ) such thato, (¢,0) > 0 for
(m = 1,..., M). On the other hand, if any), < 0 the barrier prevents to reach the
required minimum. In next paragraph we propose a method dodiminterior point
(¢, bp) of ¥ to be used as a starting point in the minimization algorithm.

Let G = [g,,] be the3 x M matrix formed by the vectorsg,,, normal to the
triangles of M (p). A solution of the inequality system (if it exist&f’'g > 0 provides
a direction, defined by vect@;, such that all the triangles df/ (p) can be projected
on a plane, normal to the unitary vectoﬁu 7» SO thato, > 0for(m =1,...,M).



Then, it only remains to find the anglesandd, in which the coordinate system needs
to be rotated to get th€ axis to point in the direction afi. More precisely, the angles
$o andd, are the solution of the equatidn (¢, 6y, 0) es = n, wherees = (0,0, 1)T.

If the inequality system has not solution, then, there isamyt valid projection plane
for this local mesh, against the premise done in section lhis case, the local
optimization procedure maintains the free ngda its initial position.

We have observed that the previous objective function haspaotational difficul-
ties as the optimization algorithms use discrete stepsamckehe optimal point. A
step leading outside the regidnmay indicate a decrease in the value of the objective
function and take to a false solution. To overcome this pablve propose a modifi-
cation of the objective function in such a way that it will gular all oveiR? and its
barrier will be "smoothed”. The modification consists of stitutinga’, by h(ap,,),
whereh(«) is the positive and increasing function given by

h(a) = %(oz +Va? +44?) (17)

being the parameter = h(0). The behavior ofi(«) in function of § parameter is
such that,(lsin(l)h(a) =a,Va >0 and(lsin(l)h(a) = 0, Ya < 0. The characteristics of

h function and its application in the context of mesh untamgnd smoothing have
been studied in [12], [13]. Thus, the proposed objectivecfiom for searching the
projection plane is

= 1
0= 2 i 6. “

A crucial property is that the angles that minimize the oragiand modified objec-
tive functions are nearly identical whéns small Details about the determination of
0 value for 3-D triangulations can be found in [13].

4 Applications

In this section, the proposed technique is applied to smttwimesh of a scanned
object. In particular, we have applied the optimizatiorhtgque to a mesh of a rocker
arm obtained fromhttp://www.cyberware.com/This mesh (see Figure 2) hag354
triangles andl0177 nodes. The value of the average qualityi$41 (measured with
the quality metric based on the condition number [2]). Thénoiged mesh is shown
in Figure 4. The projection plane is chosen in terms of thallatesh to be analyzed
and the norm chosen for the objective function (1) in thidiggppon have been = 2.
Note the poor quality of the original mesh in several parthefdevice. The algorithm
increases the mean quality @23 in four iterations, but only needs one iteration to
reach a mean quality #907. Another significant data is that average quality of the
worst 1000 triangles. It increases fro.247 to 0.697. Details of the original and
optimized meshes are shown in Figure 3 and Figure 4.

Optimized mesh of the rocker arm after four iterations of puacedure
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Figure 3: Detail of the original mesh
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In Figure 5 it is shown the quality curves for the initial angtimized meshes.
These curves are obtained by sorting the elements in iringeasder of its quality.
The number of events such that the threshdlth) is been exceeded, takiny(p) as
10% of average distance between the free node and the nodesctedit@it, has been
259 in the first iteration 379 in the second one&395 in the third one and08 in the

fourth one.

5 Conclusionsand futureresearch

We have developed an algebraic method to optimize triatigng defined on sur-
faces. Its main characteristic is that the original problertransformed into a fully
two-dimensional sequence of approximate problems on thenpetric space. This
characteristic allows the optimization algorithm to deaith surfaces that only need
to be continuous. Moreover, the barrier exhibited by theedlbye function in the
parametric space prevents the algorithm to construct @paable meshes.

We have also introduced a procedure to find an optimal piojeplane (our para-
metric space) based on the minimization of a suitable olbgdétunction. We have
observed that correct choice of this plane plays a relea@t r

The optimization process includes a control on the gap batilee optimized mesh
and the reference surface that avoids to lose details ofrigaal geometry. In this
work we have used a piecewise linear interpolation to defageréference surface
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when the true surface is not known, but it would be also péssibuse a more regular
interpolation, for example, the proposed in [6]. Likewiseywould be possible to
introduce a more sophisticated stopping criterion for tap gontrol that takes into
account the curvature of the surface [5], [6], [7], [8]-

In the present work we have only considered a sole objectiwetion obtained
from an isotropic and area independent algebraic qualitiricneNevertheless, the
framework that establishes tladgebraic quality measurgd] provides us the possi-
bility to construct anisotropic and area sensitive obyectiinctions by using a suitable
metric.
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