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The problem

To solve a linear system of equations

Ax = b

where matrix A is large, sparse and non singular (symmetric or nonsymmetric).

Direct or iterative solvers?

Rounding errors affect to direct methods

More memory requirement due to the fill-in related to the factorization

In time-dependent problems, iterative methods can take advantage of the
solution obtained in the previous time step, using it as initial guess
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Reordering

Based on Graph Theory

Firstly, they were applied with direct solvers

? Reduce the fill-in ⇒ less memory requirement and computational cost

Nowadays, they are used with iterative solvers

? Improve the effect of preconditioning on the convergence

I.S. Duff and G.A. Meurant, L. Dutto, M. Benzi et al, E. Flórez et al

References

Based on the location of the entries Based also on the magnitude of the entries

? Reverse Cuthill McKee ? Minimum discarded fill (E.F. D’Azevedo et al)

? Minimum Degree ? TPABLO (H. Choi and D.B. Szyld)

? Minimum Neighbouring ? Simulated Annealing (R.R. Lewis)

? Minimum Fill-in ? Genetic Algorithms (D. Greiner et al)

? Spiral

? Red black

? Nested dissection
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References

Based on the location of the entries Based also on the magnitude of the entries

? Reverse Cuthill McKee ? Minimum discarded fill (E.F. D’Azevedo et al)

? Minimum Degree ? TPABLO (H. Choi and D.B. Szyld)

? Minimum Neighbouring ? Simulated Annealing (R.R. Lewis)

? Minimum Fill-in ? Genetic Algorithms (D. Greiner et al)

? Spiral

? Red black

? Nested dissection



Introduction
Reordering

Preconditioning
Krylov subspace methods

Final ideas

The problem
Reordering techniques
Preconditioning techniques
Krylov subspace methods

Reordering techniques
Reordering

Based on Graph Theory

Firstly, they were applied with direct solvers

? Reduce the fill-in ⇒ less memory requirement and computational cost

Nowadays, they are used with iterative solvers

? Improve the effect of preconditioning on the convergence

I.S. Duff and G.A. Meurant, L. Dutto, M. Benzi et al, E. Flórez et al
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References

Based on the location of the entries Based also on the magnitude of the entries

? Reverse Cuthill McKee ? Minimum discarded fill (E.F. D’Azevedo et al)

? Minimum Degree ? TPABLO (H. Choi and D.B. Szyld)

? Minimum Neighbouring ? Simulated Annealing (R.R. Lewis)

? Minimum Fill-in ? Genetic Algorithms (D. Greiner et al)

? Spiral

? Red black

? Nested dissection



Introduction
Reordering

Preconditioning
Krylov subspace methods

Final ideas

The problem
Reordering techniques
Preconditioning techniques
Krylov subspace methods

Preconditioning techniques

Preconditioning patterns

? Left MAx = Mb
? Right AMM−1x = b
? Both side M1AM2M

−1
2 x = M1b

Preconditioners

Implicit Preconditioners Explicit Preconditioners
? SSOR ? Jacobi
? ILUT ? Sparse Approximate Inverses
? ILU(m) • SPAI, Grote et al

• AINV, Benzi et al
• Generalization of SPAI (Montero et al)

? Optimum Diagonal
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Krylov subspace methods

Orthogonalisation Biorthogonalisation Normal equation

ORTHOMIN BiCG CGN
(Vinsome ’76) (Fletcher ’76) (Hestenes & Stiefel ’52)

ORTHORES CGS CGNE
(Young & Jea ’80) (Sonneveld ’89) (Craig ’55)

ORTHODIR BiCGSTAB LSQR
(Young & Jea ’80) (Van der Vorst ’90) (Paige & Saunders ’82)

FOM QMR
(Saad ’81) (Freund & Nachtigal ’90)
GMRES TFQMR Multigrid method
(Saad & Schultz ’86) (Freund ’93)
FGMRES QMRCGSTAB Domain decomposition
(Saad ’93) (Chan et al ’94)
VGMRES
(Galán et al ’94)
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Sparsity pattern of a 7520 FEM convection-diffusion matrix with initial ordering
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Pseudo-peripheral node searching algorithm

1. Choose any node r in V .
2. Generate a nested level structure in r ,

{L0(r), L1(r), . . . , Lε(r)(r)}.
being Li (r) = {x/d(x , r) = i}

3. Choose a minimum degree node x in
Lε(r)(r).

4. Generate a nested level structure in x ,
{L0(x), L1(x), . . . , Lε(x)(x)}

5. If ε(x) > ε(r), establish x → r
and go to step 3

6. Otherwise, select x as initial node
7. End

? d(x , y): distance between two
nodes x and y in a graph
? g(x) = 〈V , E〉: length of the
shortest trajectory that joins
both nodes
? ε(x) = max {d(x , y)/x , y ∈ V }:
eccentricity of node x
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Reverse Cuthill-Mckee algorithm

1 - Build the graph associated to matrix A,
g(x) = 〈V , E〉, being V the set of nodes
and E = {{a, b} : a 6= b / a, b ∈ V }

2 - Find an initial node (pseudo-peripheral) and
order it as x1

3 - Order the nodes connected to xi in increasing
degree order

4 - Carry out the inverse ordering.
5 - End
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Minimum Degree algorithm

1 - Build the graph associated to matrix A,
g(x) = 〈V , E〉, being V the set of nodes
and E = {{a, b} : a 6= b / a, b ∈ V }

2 - While V 6= ∅:
2.1- Choose a minimum degree node v in

g(x) = 〈V , E〉 and order it as next node
2.2 - Define:

Vv = V − {v} ,
Ev = {{a, b} ∈ E / a, b ∈ Vv}∪
{{a, b} a 6= b / a, b ∈ Adjg (v)},
being Adjg (v) the set of nodes connected
to v in the graph g(x) and do
V = Vv , E = Ev , g(x) = 〈V , E〉

3 - End
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Minimum Neighbouring algorithm

1 - Build the graph associated to matrix A,
g(x) = 〈V , E〉, being V the set of nodes and
E = {{a, b} : a 6= b / a, b ∈ V }

2 - While V 6= ∅:
2.1- Choose a minimum degree node v in

g(x) = 〈V , E〉 and order it as next node
2.2 - Define:
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Ev = {{a, b} ∈ E a, b ∈ Vv} and do
V = Vv , E = Ev , g(x) = 〈V , E〉

3 - End
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Genetic algorithms
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Sparsity patterns with different GAs strategies (RCM)
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Preconditioning
Quality indicators

Closeness of the condition number to 1,

K2(MA) ≤ 1+‖MA−I‖2
1−‖MA−I‖2

Departure from normality ({λk}n
k=1 , {σk}n

k=1 the eigen and singular values)

1
n

nP
k=1

(|λk | − σk )2 ≤ 2
n
‖MA‖2

F (1− σn)

Clustering of eigenvalues,

nX
k=1

(1− λk )2 ≤ ‖MA− I‖2
F

Clustering of singular values

nX
k=1

(1− σk )2 ≤ ‖MA− I‖2
F
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Standard preconditioners

M−1xi+1 = M−1xi + (b− Axi )

Jacobi

Dxi+1 = Dxi + (b− Axi )

M−1 = D = diag(A)

Optimum diagonal

M = diag( a11

‖eT
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2

, a22

‖eT
2 A‖2
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, . . . , ann

‖eT
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2
)

‖MA− I‖2
F = n −

nX
i=1

aii

‖eT
i A‖2
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SSOR(ω)
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ω (2− ω)
(D−ωE)D−1 (D−ωF) xi+1

=
1

ω (2− ω)
(D−ωE)D−1 (D−ωF) xi + (b− Axi )

M−1 =
�
I−ωED−1
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�
In the case of symmetric matrices,
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ω(2−ω)

�T



Introduction
Reordering

Preconditioning
Krylov subspace methods

Final ideas

Quality indicators
Standard preconditioners
Incomplete factorizations after reordering
Approximate inverses
Approximate inverse after reordering

Standard preconditioners

M−1xi+1 = M−1xi + (b− Axi )

Jacobi

Dxi+1 = Dxi + (b− Axi )

M−1 = D = diag(A)

Optimum diagonal

M = diag( a11

‖eT
1 A‖2

2

, a22

‖eT
2 A‖2

2

, . . . , ann

‖eT
n A‖2

2
)

‖MA− I‖2
F = n −

nX
i=1

aii

‖eT
i A‖2

2

SSOR(ω)

1

ω (2− ω)
(D−ωE)D−1 (D−ωF) xi+1

=
1

ω (2− ω)
(D−ωE)D−1 (D−ωF) xi + (b− Axi )

M−1 =
�
I−ωED−1

� � D−ωF
ω(2−ω)

�
In the case of symmetric matrices,

M−1 =

�
(D−ωE)D−1/2
√

ω(2−ω)

��
(D−ωE)D−1/2
√

ω(2−ω)

�T



Introduction
Reordering

Preconditioning
Krylov subspace methods

Final ideas

Quality indicators
Standard preconditioners
Incomplete factorizations after reordering
Approximate inverses
Approximate inverse after reordering

Standard preconditioners

M−1xi+1 = M−1xi + (b− Axi )

Jacobi

Dxi+1 = Dxi + (b− Axi )

M−1 = D = diag(A)

Optimum diagonal

M = diag( a11

‖eT
1 A‖2

2

, a22

‖eT
2 A‖2

2

, . . . , ann

‖eT
n A‖2

2
)

‖MA− I‖2
F = n −

nX
i=1

aii

‖eT
i A‖2

2

SSOR(ω)

1

ω (2− ω)
(D−ωE)D−1 (D−ωF) xi+1

=
1

ω (2− ω)
(D−ωE)D−1 (D−ωF) xi + (b− Axi )

M−1 =
�
I−ωED−1

� � D−ωF
ω(2−ω)

�
In the case of symmetric matrices,

M−1 =

�
(D−ωE)D−1/2
√

ω(2−ω)

��
(D−ωE)D−1/2
√

ω(2−ω)

�T



Introduction
Reordering

Preconditioning
Krylov subspace methods

Final ideas

Quality indicators
Standard preconditioners
Incomplete factorizations after reordering
Approximate inverses
Approximate inverse after reordering

Standard preconditioners

M−1xi+1 = M−1xi + (b− Axi )

Jacobi

Dxi+1 = Dxi + (b− Axi )

M−1 = D = diag(A)

Optimum diagonal

M = diag( a11

‖eT
1 A‖2

2

, a22

‖eT
2 A‖2

2

, . . . , ann

‖eT
n A‖2

2
)

‖MA− I‖2
F = n −

nX
i=1

aii

‖eT
i A‖2

2

SSOR(ω)

1

ω (2− ω)
(D−ωE)D−1 (D−ωF) xi+1

=
1

ω (2− ω)
(D−ωE)D−1 (D−ωF) xi + (b− Axi )

M−1 =
�
I−ωED−1

� � D−ωF
ω(2−ω)

�
In the case of symmetric matrices,

M−1 =

�
(D−ωE)D−1/2
√
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��
(D−ωE)D−1/2
√

ω(2−ω)
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Standard preconditioners

ILUT

For i = 1, ..., n, do
w = ai∗
For k = 1, ..., i − 1, if wk 6= 0 do

wk = wk/akk

If wk 6= 0 then w = w − wk∗uk∗
End

End
li,j = wj for j = 1, ..., i − 1
ui,j = wj for j = i , ..., n
w = 0

End

ILU(0)

A = LU ≈ ILU(0) = M−1

where mij are the entries of M−1 such that,
mij = 0 if aij = 0
{A− LU}ij = 0 if aij 6= 0
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Incomplete factorizations after reordering

The number of CG iterations is not related to the number of fill-ins we are
dropping, but is almost directly related to the norm of the residual matrix
MA− I

In general, local reorderings (RCM) give the best results (sufficient condition)

However, local reorderings are more affected by the choice of the initial node
and by the ordering of nodes within level sets

The harder is the problem (non regular and unstructure meshes, discontinuous
coefficients, anisotropy, strong nonsymmetry, ...), the more important is the
reordering

Many of the reorderings which are better suited for parallel computations do not
give very good results. An alternative is to use domain decomposition
techniques and within each local subdomain a local reordering of the nodes

The effect of reordering is much more important in nonsymmetric problems than
in symmetric ones
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SPAI

Find M ∈ S such that
M = arg min

M′∈S
‖AM′ − I‖F

rk = Amk − ek , Ik = {i ∈ {1, 2, ..., n}rik 6= 0}, Lk = {l ∈ {1, 2, ..., n} / mlk 6= 0}
a new entry is searched in Jk = {j ∈ Lc

k / aij 6= 0, ∀i ∈ Ik}
Lk ∪ {j} = {ik1 , ik2 , ..., ikpk

} is not empty, being pk the current number of nonzero entries in mk , and ikpk
= j,

∀j ∈ Jk . For each j , compute,

||Amk − ek||
2
2 = 1 −

pkX
l=1

[det(Dk
l )]2

det(Gk
l−1

) det(Gk
l
)

where, ∀k, det(Gk
0 ) = 1 and Gk

l is the Gram matrix of columns ik1 , ik2 , ..., ikl of matrix A, Dk
l results from

replacing the last row of Gk
l by a

k ik
1

, a
k ik

2
, ..., a

k ik
l

, with 1 ≤ l ≤ pk . We select the index jk that minimises

‖Amk − ek‖2. Thus, mk is searched in the set Sk = {mk ∈ Rn/mik = 0; ∀i /∈ Lk ∪ {jk}}

mk =

pkX
l=1

det(Dk
l )

det(Gk
l−1

) det(Gk
l
)
m̃l

where m̃l is the vector with nonzero entries ikh (1 ≤ h ≤ l), obtained from replacing the las row of det(Gk
l ) by et

h ,
with 1 ≤ l ≤ pk .
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Initial Ordering Reverse Cuthill McKee

Minimum Degree Minimum Neighbouring
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Approximate inverse after reordering

Let P be the permutation matrix related to a reordering algorithm
(PTAP)−1 = PTA−1P ⇒ The inverse of a reordered matrix = the reordered inverse
Let ε be the tolerance in subspace S ⊂ Mn(R),

min
M∈S

‖MA− I‖F = ‖NA− I‖F < ε

min
M′∈PTSP

‖M′PT AP− I‖F = min
M′∈PTSP

‖PM′PT A− I‖F = min
M∈S

‖MA− I‖ < ε

Let S′ be a subspace of Mn(R) with the same amount of non null entries as S, related
to a reordering algorithm. If the reordering verifies,

‖N′PT AP− I‖F = min
M′∈S′

‖M′PT AP− I‖F ≤ min
M′∈PTSP

‖M′PT AP− I‖F < ε

In such cases we can reduce the number of nonzero entries in the inverse of the
reordered matrix (for a similar quality to that without reordering)
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Wind field simulation

Preconditioned Conjugate Gradient Algorithm

Initial guess x0, r0 = b − Ax0;

z0 = Mr0, p0 = z0;

While ‖ rj ‖ / ‖ r0 ‖≥ ε (j = 0, 1, 2, 3, ...), do

αj =



rj , zj

�
〈Apj , pj 〉

;

xj+1 = xj + αjpj ;

rj+1 = rj − αjApj ;

zj+1 = Mrj+1;

βj =



rj+1, zj+1

�


rj , zj

� ;

pj+1 = zj+1 + βjpj ;

End
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Wind farm location

Wind maps

Definition of a measure grid

Computation of a velocity field within a more
complex problem
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Wind field simulation

Gran Canaria simulation

A 3-D complex terrain problem

Unstructured mesh with elements of very
different sizes

Large linear system of equations with positive
definite matrix

One simulation for each set of measurements
(often given every ten minutes)

With the same parameters, the matrix does
not change along the simulation
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Wind field simulation
A mass consistent model

Based on the continuity equation,

~∇ · ~u = 0 in Ω

No-flow-through conditions on the terrain

~n · ~u = 0 on Γb

Adjust ~u(eu, ev , ew) to ~v0(u0, v0, w0)

E(eu,ev, ew) =R
Ω

h
α2

1

�
(eu − u0)2 + (ev − v0)2

�
+ α2

2 (ew − w0)2
i

dΩ

Equivalent to find the saddle point (~v(u, v , w), φ) of

F (~u, λ) = E (~u) +
R
Ω λ~∇ · ~u dΩ
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Wind field simulation

Elliptic problem

Lagrange multiplier leads to
the Euler-Lagrange equations

~v = ~v0 + T ~∇φ

T =

�
1

2α2
1

, 1
2α2

1

, 1
2α2

2

�

which yield the following elliptic problem

~∇ · T ~∇φ = −~∇ · ~v0 in Ω

φ = 0 on Γa

~n · T ~∇φ = −~n · ~v0 on Γb
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Nonsymmetric linear systems

Preconditioned VGMRES algorithm

Initial guess x0. r0 = b − Ax0;

Choose kinit , ktop , δ ∈ [0, 1], k = kinit

While ‖ bri−1 ‖ / ‖ r0 ‖≥ ε (i = 1, 2, 3, ...), do

βi−1 = ‖ ri−1 ‖, vi = ri−1/βi−1;

If ‖ ri−1 ‖ / ‖ r0 ‖≥ δ and k < ktop then k = k + 1;

For j = 1, ..., k

zj = Mvj ; w = Azj ;

For n = 1, ..., j

{H}nj = 〈w, vn〉;

w = w − {H}nj vn ;

End

{H}j+1,j =‖ w ‖;

vj+1 = w/ {H}j+1,j ;

End

Solve Ut
k p̄ = dk and Ukp = p̄;

with
{dk}m = {H}1m
{Uk}lm = {H}l+1,m

l, m = 1, ..., k;

λi =
βi−1

1 + dt
k

p
; uk = λi p;

xi = xi−1 + Zkuk ;

being Zk = [z1, z2, ..., zk ];

ri = Zk+1 r̂i ;

with
{r̂i}1 = λi
{r̂i}l+1 = −λi {p̄}l

l = 1, ..., k;

End
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Nonsymmetric linear systems

Preconditioned Bi-CGSTAB algorithm

Initial guess x0. r0 = b − Ax0;

Choose any r∗0 such that r0, r∗0 6= 0;

z0 = Mr0;

p0 = z0;

While ‖ rj−1 ‖ / ‖ r0 ‖≥ ε (j = 1, 2, 3, ...), do

zj = Mrj ;

yj = Apj ;

vj = Myj ;

αj =
〈zj , r∗0 〉
〈vj , r∗0 〉

;

sj = rj − αj yj ;

uj = Asj ;

tj = Muj ;

ω̃j =
〈tj , sj 〉

〈tj , tj 〉
;

xj+1 = xj + αjpj + ω̃juj ;

zj+1 = sj − ω̃j tj ;

βj =
〈zj+1, r∗0 〉
〈zj , r∗0 〉

αj

ω̃j

;

pj+1 = zj+1 + βj
�
pj − ω̃j vj

�
;

End
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Nonsymmetric linear systems

Preconditioned QMRCGSTAB algorithm

Initial guess x0. r0 = b − Ax0;

z0 = Mr0;

Choose r̃0 such that 〈z0, r̃0〉 6= 0

p0 = v0 = d0 = 0, ρ0 = α0 = ω̃0 = 1;

τ0 = ‖z0‖, θ0 = 0, η0 = 0;

While
√

j + 1 |τ̃ | / ‖r0‖ ≥ ε(j = 1, 2, ...), do:

ρj =


zj−1 ,̃r0

�
;

βj = (ρj /ρj−1)(αj−1/ω̃j−1);

pj = zj−1 + βj (pj−1 − ω̃j−1vj−1);

yj = Apj ; vj = Myj ;

αj = ρj /


vj , r̃0

�
; sj = zj−1 − αj vj ;

θ̃j =


sj



 /τ ; c =
1q

1 + θ̃2
j

;

τ̃ = τθ̃j c; η̃j = c2
j αj ;

d̃j = pj +
θ2

j−1ηj−1

αj

dj−1;

x̃j = xj−1 + η̃j d̃j ;

uj = Asj ; tj = Muj ;

ω̃j =



sj , tj

�


tj , tj

� ;

zj = sj − ω̃j tj ;

θj =


zj



 /τ̃ , c =
1q

1 + θ2
j

;

τ = τ̃θj c; ηj = c2ω̃j ;

dj = sj +
θ̃2

j η̃j

ω̃j

d̃j ;

xj = x̃j + ηjdj ;

End
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Sea pollution modelling facilities

Evaluation of environmental impacts

Location of pollutant sources

Actuation in case of a pollutant
disaster
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Convection-diffusion simulation

Simulation in the sea of Gran Canaria

A 2-D problem

The velocity field is computed with a
mass consistent model

A convection-diffusion problem
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Convection-diffusion simulation

A convection-diffusion model

~v · ~∇c − ~∇ · (K ~∇c) = f in Ω

~n·
h
~vc − K ~∇c

i
= ~n·~vcΓa0 on Γa0 (~n·~v ≤ 0)

−~n · K ~∇c = 0 on Γa1 (~n · ~v > 0)

c = ce(x , y , z, t) on Γb0
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Sparsity patterns of a 12666 matrix

Initial Ordering Reverse Cuthill McKee Minimum Degree
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Performance of SPAI with Effect of reordering on BiCGSTAB

several levels of fill-in preconditioned with SPAI(0.2)
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Conclusions

Krylov subspace methods provides a wide set of possibilities for solving linear
systems of equations. Although, in the symmetric case the selection is clear
(CG), for nonsymmetric problems the choice depends on several factors:
time-dependent or non-linear problems, available computer memory, parallel
computation, very ill-conditioned problems, ...

The available algorithms for computing a sparse approximate inverse M of a
sparse nonsymmetric matrix A, may be implemented in parallel since the
columns (or rows) of M are obtained independently. The sparsity pattern of
these preconditioners are dynamically built. Evidently, this type of
preconditioner may compete with implicit ones in a parallel environment.

The reordering techniques slightly affect the convergence of conjugate gradient
method preconditioned with an incomplete factorization. However, in
nonsymmetric linear systems, the reordering improves the effect of
preconditioning on the convergence of Krylov subspace methods. On the other
hand, in most of the cases, the usual reorderings does not change the
convergence behaviour of Krylov methods with SPAI, except for rounding errors.
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these preconditioners are dynamically built. Evidently, this type of
preconditioner may compete with implicit ones in a parallel environment.

The reordering techniques slightly affect the convergence of conjugate gradient
method preconditioned with an incomplete factorization. However, in
nonsymmetric linear systems, the reordering improves the effect of
preconditioning on the convergence of Krylov subspace methods. On the other
hand, in most of the cases, the usual reorderings does not change the
convergence behaviour of Krylov methods with SPAI, except for rounding errors.
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Future research

More research must be carried out on the effect of other reordering techniques which take into account the
values of the entries in A and not only their positions. Although these techniques are expensive, in the case
of unsteady problems that yield a linear system with multiple right hand side, this techniques may compete
in parallel machines.

We have preliminary results of a SSPAI for symmetric problems, where some difficulties about parallel
computation and dynamical sparsity pattern have been found.

In our wind model we obtain in each step i a linear system of equations as Ai xi = bi , where
Ai = A1 + αi A2. Since A1 and A2 are the same along the whole process, it would be interesting to
construct a preconditioner that could be updated as a function of αi .

Finally, we are now solving time-dependent (convection-diffusion-reaction) problems which lead to
thousand of linear systems of equations. These equations must be solved in an efficient, fast and accurate
way. Here, we shall have to use one suitable RPK strategy.
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