Abstract

We consider the preconditioning of linear systems with matrices depending on a pa-
rameter, i.e.A.x. = b. with A, = M + N symmetric positive definite. Instead of
using extreme strategies as to apply the same preconditioner along the process, or on
the contrary, to compute a different preconditioner for each valuewé propose an
intermediate technique. It is based on the construction of one initial preconditioner
from an incomplete factorization @i/, which can be easily updated for each value of

¢ at a low computational cost.

Several numerical experiments are presented in order to show the efficiency of the
proposed preconditioner.
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1 Introduction

The resolution of several problems of science and engineering, such as parabolic par-
tial differential equations, mass consistent models for wind field adjustment [1, 2],
etc., with any discretization technique, yields linear systems of equations of the form,

(M +eN)x. = b, (1)

whereM andN are constant for a given discretization. In these problems, the system
(1) must be solved for different values af

Iterative solvers based on Krylov subspaces are the most efficient methods for such
large and sparse linear systems [3]. In our case, sihead/N are symmetric positive
definite matrices, the Conjugate Gradient (CG) provides the best results. In addition,
the use of suitable preconditioning techniques [4] allows a faster convergence of CG.



For preconditioning these systems, we can build a different preconditioner for each
value ofz. In general, this means to obtain good convergence behaviour but at a
high computational cost related to each preconditioner. On the contrary, we can use
a unique preconditioner, the first of the above list, for solving all the linear systems.
However, this second strategy may lead to convergences as slow as the valse of
far from the initial value=, chosen for building the preconditioner.

In this work, an intermediate procedure is proposed. It consists of a preconditioner
based on an incomplete Cholesky factorization that may be updated for each new sys-
tem at a low computational cost. Thus, it provides better convergence than the latter
strategy and is cheaper that the former. In a similar way, Meurant [5] proposes this pre-
conditioner for the special ca$é/ + D) x. = b., with D being a diagonal matrix.

In addition, Benzi [6] develops a preconditioner, based on a factorized approximate
inverse [7], for shifted linear systems of the fot + /) z. = b, with I being the
unit matrix. This preconditioner may be updated in function.of

The paper has been organized as follows. In section 2, the construction of the
preconditioner is set in terms of an incomplete Cholesky factorization for the matrix
A. = M + N, with the corresponding simplifications that allows its undating at a
reasonable cost. Section 3 is devoted to describe the selected numerical experiments
and the obtained results in order to show the performance of our updating procedure.
Finally, the conclusions and some related future works are presented in section 4.

2 Updating of the incomplete Cholesky factorization

We will generalize the incomplete factorization proposed by Meurant [5] for the case
of matricesA, = M + D, with D being diagonal, to matrices. = M + <N, with

M and N being twon x n symmetric positive definite matrices. We can writeas
follows,

_ » o [ mut+enn (fim + €f1N)T
Ae = (mig) + e (mij) = ( fin +efin My + Ny

wheref s, fiy representn — 1) x 1 column matrices and/,, No, (n — 1) x (n —1)
matrices.

A factorization of the first row and column of. is carried out,

A=
mi1 + Ny 0 (mll + 57111)71 0 mi1 + eng (llM + EllN)T _
llM -+ EllN I 0 CQ 0 |
L Z,LF

with l1y; = fiy andliy = fin.



Then, identifying term with term, we obtain for matiix,

1
CQ =My+eNy — ———— (llM + gllN) (llM + €l1N)T (2)

mi1 + Enq

If, in order to build the preconditioner, we consider only the diagonal entriéé a$
first approximation, equation (2) is simplified singg = 0,

1
Cy=eDy+ My — ——— 11,17,
2 2 2 m11+€n11 1IMUIp

An order( algorithm is derived from,
1 T
02 = €D2 + MQ — _llMllM
mi1

and the entries of’;, are computed by addingD, to what we would have obtained
for the incomplete decomposition &1 .

Another approximation consists of considering all the entrigg,iand neglecting the
products:zl; v in (2). So, the successive computations of matricedo not involves
and those may be obtained easily from fiedecompositions,

1
CQ = ENQ + M2 — _llMl{M
mi

and thus, in matrix form,

Cy =eNy + ( m%) fou ) — ( m%) +enge  (forr +€lon) )
fane M Jorr +eloy - M3 +eNs

Only the entries offy5; corresponding to non null entries 6f are computed in order
to avoid the fill-in, obtainind,,,. So the decomposition @f, results,

Cg ~
-1
( mg) +engy O ) (mg) + 5n22> 0 ( mg) +engy  (loy + 5l2N)T )
lory +eloy 1 0 Cs 0 I
where, identifying,
1
03 = M3 + €N3 — (2)— (l2M + 5[2]\[) (ZQM + SZQN)T

Similarly, with the same simplifications, we have,

1
Cg = M3 + €N3 — WhMlg‘M =

( mgs +engs  (fanr + elgN)T )
Moy

f3M+€l3N M4+€N4

that is constructed following the same proceduré'af



In this way, obtaining all the matriceS;, the incomplete decomposition of.
results,

Ao~ I Zy LT = L Ly Z, LY LT = (LyLy - -+ Ly) Zy (Ly Ly - - - L) (3)
beingZ the diagonal matrix,

(mn + 8”11)_1

-1

(mé%) + ETLQQ)
—1
<m:(;;) + 5”33)

-1

(mggl) + En,m>

The diagonal entries of the lower triangular matfixL, - - - L,, aremg) + eng. The
respective columns below the diagonal entries are defineghby i) x 1 matrices
le + Sle.

3 Numerical experiments

In this section we present the results obtained using CG with the proposed precondi-
tioners for solving the linear systems of equations arising from three PDE problems:
a parabolic equation related to a 2-D heat transfer test problem with variable thermal
conductivity, Vthcond, a convection-diffusion-reaction equation related to a 3-D active
carbon filter problem, LightTruck [9], and an elliptic equation related to a 3-D mass
consistent model for wind field adjustment, Windfield [1, 2]. All the experiments were
carried out in a DELL Precision M60 computer using double precision Fortran. In the
resolution, we always started from the null vector and stoppgel ff, < 10719 |||,

or if the number of iterations was greater tHz#00.

The results of different problems have been represented in several tables for a wide
range of values ot, including number of iterations and timings for reaching con-
vergence. In tables, ICHQL and ICHOLy represent the ICHOL preconditioners
obtained with the approaches developed in section 2. These preconditioners are com-
pared with Full-ICHOL of matrix4., that is, computing a new ICHOL decomposition
for eache, and with the use of unique preconditioner, ICHQL, ), along the whole
process.

In all the experiment we start from the incomplete factorization of maltfix.e.,
go = 0. Thus in the following we consider. In all the experiments, the results are
shown in several tables with the iterations and the computational cost of CG for dif-
ferent values of.



3.1 Example 1: Vthcond

This experiment involves a 2-D heat transfer problem modelled with a parabolic PDE,

ou

5 (c+dc)Au = f (4)
U = ug on T x (0,7T] (5)
u(z,0) = u° in (6)

whereu represents the temperaturas the thermal conductivityic is a perturbation
on the thermal conductivity anflis a constant source term.

We have solved this problem for a 2-D domain defined by vertio@s0), B(3,0,
C(3,3), D(2,3), E(2,2) and F'(0,2). We discretize in space with finite differences
with a stepsizé» and a time implicit scheme with a time stepThen we obtain

1 c ic u"
—I _ - n+1 - = n+1
(k +h2R—|—h2R)u k;+f
If we define
1 c 1
M=-1+— N =—
k + h? R, hQR’
the matrix of the problem is,
A(;C =M + ocN

So in this experiment is identified withdc.

The stepsize was = 0.02, the time stepgc = 0.001, the sourcef = 1 anduy =
u® = 0. We have work with a linear system corresponding to an intermediate time
step of the process withir201 unknowns, changing the perturbationcof 0.1 from
107 to 106.

We remark that in this type of matrices, with a few non zero entries (here we have
a maximum number of 5 non zero entries per row), the computational cost of the in-
complete Cholesky factorization with the same sparsity pattern as the system matrix
is very low. This effect is shown in table 1. In fact, all the strategies perform similarly
for ¢ < 1 since the number of iterations of CG are exactly the same independently
of the used preconditioner. Fer> 1, the Full-ICHOL preconditioner reaches con-
vergence faster. Only from = 1 toe = 10, CG-ICHOLy may compete with the
CG-Full-ICHOL computational cost.

Another remarkable result is that ICHQOworks the worst for: > 1. Even the
ICHOL(A,,) reaches convergence faster than it. In this problem, the explanation is
that adding= D with £ > 1 to the incomplete Cholesky factorization &f yields the
loss of the diagonal dominant property of the preconditioned matrix, and thus, the
quality of the preconditioning is decreased.



€ ICHOL(A,) ICHOLp ICHOL Ny Full-ICHOL
0 n°lter. - - - 6
t(s) — - - 0.03
10-6 nlter. 6 6 6 6
t(s) 0.03 0.03 0.03 0.03
10-5 n°lter. 6 6 6 6
t(s) 0.03 0.03 0.03 0.03
10-4 n°lter. 6 6 6 6
t(s) 0.03 0.03 0.03 0.03
10-3 n°lter. 6 6 6 6
t(s) 0.03 0.03 0.03 0.03
10-2 n°lter. 6 6 6 6
t(s) 0.03 0.03 0.03 0.03
10-1 n°lter. 7 7 7 7
t(s) 0.03 0.03 0.03 0.03
1 nlter. 11 15 9 8
t(s) 0.05 0.06 0.04 0.04
10 n°lter. 31 49 19 17
t(s) 0.11 0.16 0.06 0.07
102 nlter. 95 159 57 48
t(s) 0.32 0.57 0.19 0.18
10° nlter. 234 395 141 118
t(s) 0.78 1.31 0.48 0.40
104 n°lter. 302 512 181 152
t(s) 1.00 1.70 0.62 0.51
105 nlter. 313 529 188 158
t(s) 1.04 1.75 0.63 0.54
106 n°lter. 314 535 189 159
t(s) 1.04 1.78 0.64 0.54

Table 1. Example 1, 17201 equations: Number of iterations and computational cost
(in s.) of Conjugate Gradient with different preconditioners

3.2 Example 2: LightTruck

This problem corresponds to a numerical simulation of a 3-D active carbon filter [9],
which is formulated by the following convection-diffusion-reaction equation, of a 3-D
active carbon filter [9], which is formulated by the following convection-diffusion-
reaction equation,

%—FU-VU—VAU—FU(U)U = f(u) (7)
U = Unput on T', x (0,7 (8)
Vu-n = 0 on T, x (0,T] 9)

u(z,0) = u’ in € (10)



wherew is the concentration of hydrocarbons in the airs a constant non-uniform
velocity field of the air which is previously computed by solving a potential flow prob-
lem (for instance, porous media flow combined with potential flow for active-carbon
filters, see [9]), and’ > 0 is the diffusivity coefficient. The reaction term(u) u

and sourcef (u) are strongly nonlinearT is the final time of analysis. This PDE is
complemented with Dirichlet and Neumann boundary conditions (egs. 8, 9) and ini-
tial conditions (eq. 10). In these equations,..:(x, t) is the prescribed concentration

on the Dirichlet boundary',, n is the outward unit normal vector and(z) is the
prescribed initial concentration.

With a finite element discretization of this problem, we obtain a linear system of
17914 equations with the same SPD matrix for each time step of the transient process.
Among them, we have selected one system corresponding to an intermediate time.
In order to obtain a shifted linear system, a perturbation of the matrix was carried
out, such that, in our example was equal to the original matrix of the convection-
diffusion-reaction problem and was constructed such that it is also SPD,

rij=ry 0f iy

n
Tii > E Tij
Jj=1

J#i

N=MGOR with R

where® represents the Hadamard product [10] and eacks randomly generated
such thab < r;; < 1.

Table 2 shows the results obtained with CG for each preconditioning technique. In
this case, the cost of the incomplete Cholesky factorization is still low but it may be
appreciated in the timings (about 0.05 seconds). The first conclusion is that for small
values of:= all the preconditioners lead to the same number of CG iterations. In such
cases, ICHOLA,,) is preferable since it is the cheapest. Fromqual to10-2, the
updated preconditioners perform better. More precisely, ICKH@taches the faster
convergence. In addition, the number of CG iterations with ICRHQite lower than
those of Full-ICHOL. Thus, here we have an example where updating is more robust
that re-computing. The results obtained with ICH®&re also good but worse than
ICHOL . Finally, the use of ICHOLA,,) is not a good choice for high values af

3.3 Example 3: Windfield

This wind model [1] is based on the continuity equation for an incompressible flow
with constant air density in the domaih and no-flow-throughboundary conditions
on the terrail’,,

in O (11)
0 on I, (12)

3 <

L
Il
o

£



€ ICHOL(A,) ICHOLp ICHOL Ny Full-ICHOL
0 nlter. - - - 75
t(s) - - - 1.02
10-6 nlter. 77 77 77 77
t(s) 0.96 0.97 0.98 1.03
105 nlter. 82 82 82 82
t(s) 1.02 1.00 1.03 1.09
10-4 nlter. 80 81 80 81
t(s) 0.99 1.03 1.01 1.09
10-3 nlter. 62 62 62 62
t(s) 0.78 0.80 0.79 0.86
10-2 nlter. 34 33 33 33
t(s) 0.45 0.43 0.44 0.49
10-1 nlter. 40 15 15 15
t(s) 0.51 0.21 0.22 0.27
1 n°lter. 125 11 9 8
t(s) 1.54 0.16 0.14 0.18
10 n°lter. 362 11 6 7
t(s) 4.41 0.16 0.11 0.16
102 nlter. 546 11 6 8
t(s) 6.71 0.16 0.11 0.19
10° nlter. 566 11 6 8
t(s) 6.92 0.16 0.11 0.19
10t n°lter. 585 11 6 8
t(s) 7.13 0.17 0.11 0.18
10° n°lter. 560 13 6 8
t(s) 6.82 0.21 0.11 0.18
106 n°lter. 620 14 7 9
t(s) 7.54 0.22 0.12 0.19

Table 2: Example 2, 17914 equations: Number of iterations and computational cost
(in s.) of Conjugate Gradient with different preconditioners

The problem is formulated as a least-square approa€h imith «(w, v, w) to be
adjusted

B(#) = /Q 02 (@ —w)* + (7 —w)) + a2 (F—wo)?] d2  (13)

where the interpolated windy, = (ug, vy, wo) IS obtained from experimental mea-
surements and physical considerations, ancdy, are the Gauss precision moduli. In
practice, we use the so called stability parameter of the wind model,

ap

a=— (14)

(8%

since the minimum of the functional given by (13) is the same if we divide ithy



The variational approach results in the following elliptic problem,

82¢ 82¢ 9 02¢ 2 (9u0 61}0 8w0 .
= -2 — +—+ = Q 15
Ox? * dy? o 022 % (835 dy * 0z ) n (15)

We consider Dirichlet condition fdtow-throughboundaries and Neumann condition
for terrain and top

¢ = 0on I, (16)
n-TVuy = —n-vy on Ty 7)

with T = diag [ﬁ, ﬁ, ﬁ} . Note that in this experiment= o?.
This example is related to a wind simulation in a region of La Palma Island. Ma-

tricesM andN are given from a numerical modelling with the above mass consistent

model for wind field adjustment proposed in [2]. We have used three different meshes

to produce linear systems 97991, 43954 and98999 equations, respectively, with/

and N SPD matrices.

The results of the first set of linear system can be seen in table 3. Similar conclu-
sions that for the previous example may be reached. Frem10%toe = 1072,
the ICHOL(A.,) seems to be sufficient to reach convergence at a lowest cost. From
e = 107! to e = 1, the faster strategy is Full-ICHOL, but far > 1, ICHOLy get
the best results, since Full-ICHOL does not allow to reach convergence. This fact is
due to the special structure of the matrices which makes the incomplete factorization
algorithm not work properly. Also ICHO(A.,) leads to a slow convergence. So, for
high values ot, both preconditioners proposed here have the best performance, with
ICHOL y being preferable.

The results obtained fof3954 and 98999 equations are shown in tables 4 and 5.
The conclusions are the same again. For small values @ not necessary to update
the initial incomplete factorization since it reaches convergence at the lowest cost.
However, wherz is high, the ICHOLy preconditioner have the best behaviour. Only
in the surrounding of = 1, the re-computing of the incomplete factorization seems
to be advisable. In the case @999 equations, none of the preconditioners allowed
to reach convergence with CG, and thus these values have been eliminated in table 5.



€ ICHOL(A.,) ICHOLp ICHOLy Full-ICHOL
0 n°lter. — — — 155
t(s) - - - 2.00
10-6 n°lter. 155 157 157 155
t(s) 1.92 1.94 1.95 1.99
10-5 n°lter. 157 157 171 170
t(s) 1.93 1.94 2.13 2.17
10-4 n°lter. 157 155 155 157
t(s) 1.93 1.92 1.93 2.01
10-3 n°lter. 166 166 166 166
t(s) 2.04 2.05 2.08 2.10
10-2 n°lter. 127 128 127 127
t(s) 1.56 1.58 1.59 1.63
10-1 n°lter. 148 117 106 101
t(s) 1.81 1.46 1.34 1.33
1 nelter. 279 197 105 81
t(s) 3.43 2.43 1.32 1.09
10 n°lter. 676 475 200 272
t(s) 8.24 5.82 2.48 3.40
102 n°lter. 2004 1183 407 >5000
t(s) 24.53 15.51 5.03 -
10° n°lter. 3056 1794 604 >5000
t(s) 37.5 21.96 7.42 -
104 n°lter. 3337 1926 647 >5000
t(s) 40.91 23.63 7.96 -
105 n°lter. 3363 1990 655 >5000
t(s) 41.05 24.46 8.07 -
106 n°lter. 3473 1926 650 >5000
t(s) 42.42 23.71 7.99 -

Table 3: Example 3, 17991 equations: Number of iterations and computational cost
(in s.) of Conjugate Gradient with different preconditioners



€ ICHOL(A.,) ICHOLp ICHOLy Full-ICHOL
0 n°lter. — — — 184
t(s) - - - 6.21
10-6 n°lter. 184 184 184 184
t(s) 5.96 5.99 6.00 6.21
10-5 n°lter. 184 184 184 184
t(s) 5.96 5.99 6.00 6.23
10-4 n°lter. 184 184 184 184
t(s) 5.98 5.99 6.01 6.21
10-3 n°lter. 181 181 181 181
t(s) 5.89 5.90 5.91 6.12
10-2 n°lter. 170 170 170 169
t(s) 5.55 5.56 5.56 5.73
10-1 n°lter. 148 135 131 126
t(s) 4.81 4.43 4.29 4.35
1 nelter. 232 149 105 78
t(s) 7.50 4.88 3.46 2.79
10 n°lter. 454 303 145 76
t(s) 14.66 9.84 474 2.73
102 n°lter. 995 675 261 >5000
t(s) 32.09 22.03 8.46 -
10° n°lter. 1452 965 354 >5000
t(s) 46.58 31.29 11.50 -
104 n°lter. 1583 1049 384 >5000
t(s) 50.73 33.98 12.45 -
105 n°lter. 1604 1059 388 >5000
t(s) 51.40 34.25 12.57 -
106 n°lter. 1605 1060 388 >5000
t(s) 51.43 34.29 12.58 -

Table 4: Example 3, 43954 equations: Number of iterations and computational cost
(in s.) of Conjugate Gradient with different preconditioners



€ ICHOL(A.,) ICHOL p ICHOLy Full-ICHOL
0 n°lter. - - - 201
t(s) - - - 16.81
10-6 n°lter. 201 201 201 201
t(s) 16.14 16.16 16.19 16.82
105 n°lter. 201 201 201 201
t(s) 16.15 16.16 16.19 16.83
10-4 n°lter. 201 201 201 201
t(s) 16.15 16.16 16.19 16.83
10-3 n°lter. 201 201 200 200
t(s) 16.14 16.16 16.11 16.76
10-2 n°lter. 188 191 189 189
t(s) 15.22 15.35 15.24 15.87
10-1 n°lter. 225 157 155 151
t(s) 18.08 12.65 12.52 12.85
1 n°lter. 483 211 148 132
t(s) 38.63 16.94 11.97 11.33
10 n°lter. 1350 540 259 236
t(s) 107.71 43.14 20.91 19.64
102 n°lter. 3973 1466 593 >5000
t(s) 317.16 116.86 47.62 -
10° n°lter. >5000 3468 1269 >5000
t(s) - 277.11 101.60 -

Table 5: Example 3, 98999 equations: Number of iterations and computational cost
(in s.) of Conjugate Gradient with different preconditioners

4 Conclusions

The proposed updating of the incompleted Cholesky factorization seems to be an ef-
ficient tool for improving the convergence of conjugate gradient algorithm in the res-
olution of shifted linear systems of equations. At least, there is a wide range of the
parametee for which the proposed preconditioners lead to the fastest convergence in
front of the use of the initial incomplete factorization or even the re-computing of it
for eache. This was generally true for high values af However, where is very
small, the initial decomposition is enough to reach best results. This phenomenon
was expected since, in these situations, the perturbation on the matmay be ne-
glected. In the surrounding @f the experiments that we have carried out do not allow
to obtain a definitive conclusion about the best strategy. Probably, the re-computing
of the incomplete factorization is the most reliable choice in such cases.
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