
Abstract

We consider the preconditioning of linear systems with matrices depending on a pa-
rameter, i.e.,Aεxε = bε with Aε = M + εN symmetric positive definite. Instead of
using extreme strategies as to apply the same preconditioner along the process, or on
the contrary, to compute a different preconditioner for each value ofε, we propose an
intermediate technique. It is based on the construction of one initial preconditioner
from an incomplete factorization ofM , which can be easily updated for each value of
ε at a low computational cost.

Several numerical experiments are presented in order to show the efficiency of the
proposed preconditioner.

Keywords: Incomplete Factorization, Shifted Linear Systems, Preconditioning, Con-
jugate Gradient, Iterative Methods, Wind Modelling.

1 Introduction

The resolution of several problems of science and engineering, such as parabolic par-
tial differential equations, mass consistent models for wind field adjustment [1, 2],
etc., with any discretization technique, yields linear systems of equations of the form,

(M + εN) xε = bε (1)

whereM andN are constant for a given discretization. In these problems, the system
(1) must be solved for different values ofε.
Iterative solvers based on Krylov subspaces are the most efficient methods for such
large and sparse linear systems [3]. In our case, sinceM andN are symmetric positive
definite matrices, the Conjugate Gradient (CG) provides the best results. In addition,
the use of suitable preconditioning techniques [4] allows a faster convergence of CG.



For preconditioning these systems, we can build a different preconditioner for each
value of ε. In general, this means to obtain good convergence behaviour but at a
high computational cost related to each preconditioner. On the contrary, we can use
a unique preconditioner, the first of the above list, for solving all the linear systems.
However, this second strategy may lead to convergences as slow as the value ofε is
far from the initial valueε0 chosen for building the preconditioner.

In this work, an intermediate procedure is proposed. It consists of a preconditioner
based on an incomplete Cholesky factorization that may be updated for each new sys-
tem at a low computational cost. Thus, it provides better convergence than the latter
strategy and is cheaper that the former. In a similar way, Meurant [5] proposes this pre-
conditioner for the special case(M + εD) xε = bε, with D being a diagonal matrix.
In addition, Benzi [6] develops a preconditioner, based on a factorized approximate
inverse [7], for shifted linear systems of the form(M + εI) xε = bε, with I being the
unit matrix. This preconditioner may be updated in function ofε.

The paper has been organized as follows. In section 2, the construction of the
preconditioner is set in terms of an incomplete Cholesky factorization for the matrix
Aε = M + εN , with the corresponding simplifications that allows its undating at a
reasonable cost. Section 3 is devoted to describe the selected numerical experiments
and the obtained results in order to show the performance of our updating procedure.
Finally, the conclusions and some related future works are presented in section 4.

2 Updating of the incomplete Cholesky factorization

We will generalize the incomplete factorization proposed by Meurant [5] for the case
of matricesAε = M + εD, with D being diagonal, to matricesAε = M + εN , with
M andN being twon × n symmetric positive definite matrices. We can writeAε as
follows,

Aε = (mij) + ε (nij) =

(
m11 + εn11 (f1M + εf1N)T

f1M + εf1N M2 + εN2

)
wheref1M , f1N represent(n− 1)× 1 column matrices andM2, N2, (n− 1)× (n− 1)
matrices.

A factorization of the first row and column ofAε is carried out,

Aε =(
m11 + εn11 0
l1M + εl1N I

)(
(m11 + εn11)

−1 0
0 C2

)(
m11 + εn11 (l1M + εl1N)T

0 I

)
=

L1Z1L
T
1

with l1M = f1M andl1N = f1N .



Then, identifying term with term, we obtain for matrixC2,

C2 = M2 + εN2 −
1

m11 + εn11

(l1M + εl1N) (l1M + εl1N)T (2)

If, in order to build the preconditioner, we consider only the diagonal entries ofN as
first approximation, equation (2) is simplified sincel1N = 0,

C2 = εD2 + M2 −
1

m11 + εn11

l1M lT1M ,

An order0 algorithm is derived from,

C2 = εD2 + M2 −
1

m11

l1M lT1M

and the entries ofC2 are computed by addingεD2 to what we would have obtained
for the incomplete decomposition ofM .
Another approximation consists of considering all the entries inN2 and neglecting the
productsεl1N in (2). So, the successive computations of matricesCi do not involveε
and those may be obtained easily from theM decompositions,

C2 = εN2 + M2 −
1

m11

l1M lT1M

and thus, in matrix form,

C2 = εN2 +

(
m

(2)
22 fT

2M

f2M M3

)
=

(
m

(2)
22 + εn22 (f2M + εl2N)

f2M + εl2N M3 + εN3

)
Only the entries off2M corresponding to non null entries ofM are computed in order
to avoid the fill-in, obtainingl2M . So the decomposition ofC2 results,

C2 ≈(
m

(2)
22 + εn22 0

l2M + εl2N I

)( (
m

(2)
22 + εn22

)−1

0

0 C3

)(
m

(2)
22 + εn22 (l2M + εl2N)T

0 I

)
where, identifying,

C3 = M3 + εN3 −
1

m
(2)
22 + εn22

(l2M + εl2N) (l2M + εl2N)T

Similarly, with the same simplifications, we have,

C3 = M3 + εN3 −
1

m
(2)
22

l2M lT2M =

(
m33 + εn33 (f3M + εl3N)T

f3M + εl3N M4 + εN4

)
that is constructed following the same procedure ofC2.



In this way, obtaining all the matricesCi, the incomplete decomposition ofAε

results,

Aε ≈ L1Z1L
T
1 = L1L2Z2L

T
2 LT

1 = (L1L2 · · ·Ln) Zn (L1L2 · · ·Ln)T (3)

beingZ the diagonal matrix,

(m11 + εn11)
−1 .(

m
(2)
22 + εn22

)−1

.(
m

(3)
33 + εn33

)−1

.

. . . . .

.
(
m

(n)
nn + εnnn

)−1


The diagonal entries of the lower triangular matrixL1L2 · · ·Ln arem

(i)
ii + εnii. The

respective columns below the diagonal entries are defined by(n − i) × 1 matrices
ljM + εljN .

3 Numerical experiments

In this section we present the results obtained using CG with the proposed precondi-
tioners for solving the linear systems of equations arising from three PDE problems:
a parabolic equation related to a 2-D heat transfer test problem with variable thermal
conductivity, Vthcond, a convection-diffusion-reaction equation related to a 3-D active
carbon filter problem, LightTruck [9], and an elliptic equation related to a 3-D mass
consistent model for wind field adjustment, Windfield [1, 2]. All the experiments were
carried out in a DELL Precision M60 computer using double precision Fortran. In the
resolution, we always started from the null vector and stopped if‖rk‖2 ≤ 10−10 ‖r0‖2

or if the number of iterations was greater than5000.

The results of different problems have been represented in several tables for a wide
range of values ofε, including number of iterations and timings for reaching con-
vergence. In tables, ICHOLD and ICHOLN represent the ICHOL preconditioners
obtained with the approaches developed in section 2. These preconditioners are com-
pared with Full-ICHOL of matrixAε, that is, computing a new ICHOL decomposition
for eachε, and with the use of unique preconditioner, ICHOL(Aε0), along the whole
process.

In all the experiment we start from the incomplete factorization of matrixM , i.e.,
ε0 = 0. Thus in the following we consider. In all the experiments, the results are
shown in several tables with the iterations and the computational cost of CG for dif-
ferent values ofε.



3.1 Example 1: Vthcond

This experiment involves a 2-D heat transfer problem modelled with a parabolic PDE,

∂u

∂t
− (c + δc)∆u = f (4)

u = ud on Γ× (0, T ] (5)

u(x, 0) = u0 in Ω (6)

whereu represents the temperature,c is the thermal conductivity,δc is a perturbation
on the thermal conductivity andf is a constant source term.

We have solved this problem for a 2-D domain defined by verticesA(0, 0), B(3, 0,
C(3, 3), D(2, 3), E(2, 2) andF (0, 2). We discretize in space with finite differences
with a stepsizeh and a time implicit scheme with a time stepk. Then we obtain

(
1

k
I +

c

h2
R +

δc

h2
R

)
un+1 =

un

k
+ fn+1

If we define

M =
1

k
I +

c

h2
R, N =

1

h2
R,

the matrix of the problem is,

Aδc = M + δcN

So in this experimentε is identified withδc.

The stepsize wash = 0.02, the time stepk = 0.001, the sourcef = 1 andud =
u0 = 0. We have work with a linear system corresponding to an intermediate time
step of the process with17201 unknowns, changing the perturbation ofc = 0.1 from
10−6 to 106.

We remark that in this type of matrices, with a few non zero entries (here we have
a maximum number of 5 non zero entries per row), the computational cost of the in-
complete Cholesky factorization with the same sparsity pattern as the system matrix
is very low. This effect is shown in table 1. In fact, all the strategies perform similarly
for ε < 1 since the number of iterations of CG are exactly the same independently
of the used preconditioner. Forε ≥ 1, the Full-ICHOL preconditioner reaches con-
vergence faster. Only fromε = 1 to ε = 10, CG-ICHOLN may compete with the
CG-Full-ICHOL computational cost.

Another remarkable result is that ICHOD works the worst forε ≥ 1. Even the
ICHOL(Aε0) reaches convergence faster than it. In this problem, the explanation is
that addingεD with ε ≥ 1 to the incomplete Cholesky factorization ofM yields the
loss of the diagonal dominant property of the preconditioned matrix, and thus, the
quality of the preconditioning is decreased.



ε ICHOL(Aε0) ICHOLD ICHOLN Full-ICHOL

0
noIter.
t(s)

–
–

–
–

–
–

6
0.03

10−6 noIter.
t(s)

6
0.03

6
0.03

6
0.03

6
0.03

10−5 noIter.
t(s)

6
0.03

6
0.03

6
0.03

6
0.03

10−4 noIter.
t(s)

6
0.03

6
0.03

6
0.03

6
0.03

10−3 noIter.
t(s)

6
0.03

6
0.03

6
0.03

6
0.03

10−2 noIter.
t(s)

6
0.03

6
0.03

6
0.03

6
0.03

10−1 noIter.
t(s)

7
0.03

7
0.03

7
0.03

7
0.03

1
noIter.
t(s)

11
0.05

15
0.06

9
0.04

8
0.04

10
noIter.
t(s)

31
0.11

49
0.16

19
0.06

17
0.07

102 noIter.
t(s)

95
0.32

159
0.57

57
0.19

48
0.18

103 noIter.
t(s)

234
0.78

395
1.31

141
0.48

118
0.40

104 noIter.
t(s)

302
1.00

512
1.70

181
0.62

152
0.51

105 noIter.
t(s)

313
1.04

529
1.75

188
0.63

158
0.54

106 noIter.
t(s)

314
1.04

535
1.78

189
0.64

159
0.54

Table 1: Example 1, 17201 equations: Number of iterations and computational cost
(in s.) of Conjugate Gradient with different preconditioners

3.2 Example 2: LightTruck

This problem corresponds to a numerical simulation of a 3-D active carbon filter [9],
which is formulated by the following convection-diffusion-reaction equation, of a 3-D
active carbon filter [9], which is formulated by the following convection-diffusion-
reaction equation,

∂u

∂t
+ v · ∇u− ν∆u + σ (u) u = f (u) (7)

u = uinput on Γa × (0, T ] (8)

∇u · n = 0 on Γb × (0, T ] (9)

u(x, 0) = u0 in Ω (10)



whereu is the concentration of hydrocarbons in the air,v is a constant non-uniform
velocity field of the air which is previously computed by solving a potential flow prob-
lem (for instance, porous media flow combined with potential flow for active-carbon
filters, see [9]), andν > 0 is the diffusivity coefficient. The reaction termσ (u) u
and sourcef (u) are strongly nonlinear.T is the final time of analysis. This PDE is
complemented with Dirichlet and Neumann boundary conditions (eqs. 8, 9) and ini-
tial conditions (eq. 10). In these equations,cinput(x, t) is the prescribed concentration
on the Dirichlet boundaryΓa, n is the outward unit normal vector andu0(x) is the
prescribed initial concentration.

With a finite element discretization of this problem, we obtain a linear system of
17914 equations with the same SPD matrix for each time step of the transient process.
Among them, we have selected one system corresponding to an intermediate time.
In order to obtain a shifted linear system, a perturbation of the matrix was carried
out, such that, in our exampleM was equal to the original matrix of the convection-
diffusion-reaction problem andN was constructed such that it is also SPD,

N = M �R with R


rij = rji if i 6= j

rii >
n∑

j=1
j 6=i

rij

where� represents the Hadamard product [10] and eachrij is randomly generated
such that0 < rij < 1.

Table 2 shows the results obtained with CG for each preconditioning technique. In
this case, the cost of the incomplete Cholesky factorization is still low but it may be
appreciated in the timings (about 0.05 seconds). The first conclusion is that for small
values ofε all the preconditioners lead to the same number of CG iterations. In such
cases, ICHOL(Aε0) is preferable since it is the cheapest. Fromε equal to10−2, the
updated preconditioners perform better. More precisely, ICHOLN reaches the faster
convergence. In addition, the number of CG iterations with ICHOLN are lower than
those of Full-ICHOL. Thus, here we have an example where updating is more robust
that re-computing. The results obtained with ICHOLD are also good but worse than
ICHOLN . Finally, the use of ICHOL(Aε0) is not a good choice for high values ofε.

3.3 Example 3: Windfield

This wind model [1] is based on the continuity equation for an incompressible flow
with constant air density in the domainΩ andno-flow-throughboundary conditions
on the terrainΓb,

~∇ · ~u = 0 in Ω (11)

~n · ~u = 0 on Γb (12)



ε ICHOL(Aε0) ICHOLD ICHOLN Full-ICHOL

0
noIter.
t(s)

–
–

–
–

–
–

75
1.02

10−6 noIter.
t(s)

77
0.96

77
0.97

77
0.98

77
1.03

10−5 noIter.
t(s)

82
1.02

82
1.00

82
1.03

82
1.09

10−4 noIter.
t(s)

80
0.99

81
1.03

80
1.01

81
1.09

10−3 noIter.
t(s)

62
0.78

62
0.80

62
0.79

62
0.86

10−2 noIter.
t(s)

34
0.45

33
0.43

33
0.44

33
0.49

10−1 noIter.
t(s)

40
0.51

15
0.21

15
0.22

15
0.27

1
noIter.
t(s)

125
1.54

11
0.16

9
0.14

8
0.18

10
noIter.
t(s)

362
4.41

11
0.16

6
0.11

7
0.16

102 noIter.
t(s)

546
6.71

11
0.16

6
0.11

8
0.19

103 noIter.
t(s)

566
6.92

11
0.16

6
0.11

8
0.19

104 noIter.
t(s)

585
7.13

11
0.17

6
0.11

8
0.18

105 noIter.
t(s)

560
6.82

13
0.21

6
0.11

8
0.18

106 noIter.
t(s)

620
7.54

14
0.22

7
0.12

9
0.19

Table 2: Example 2, 17914 equations: Number of iterations and computational cost
(in s.) of Conjugate Gradient with different preconditioners

The problem is formulated as a least-square approach inΩ, with ~u(ũ, ṽ, w̃) to be
adjusted

E(~u) =

∫
Ω

[
α2

1

(
(ũ− u0)

2 + (ṽ − v0)
2)+ α2

2 (w̃ − w0)
2] dΩ (13)

where the interpolated wind~v0 = (u0, v0, w0) is obtained from experimental mea-
surements and physical considerations, andα1, α2 are the Gauss precision moduli. In
practice, we use the so called stability parameter of the wind model,

α =
α1

α2

(14)

since the minimum of the functional given by (13) is the same if we divide it byα2
2.



The variational approach results in the following elliptic problem,

∂2φ

∂x2
+

∂2φ

∂y2
+ α2∂2φ

∂z2
= −2α2

1

(
∂u0

∂x
+

∂v0

∂y
+

∂w0

∂z

)
in Ω (15)

We consider Dirichlet condition forflow-throughboundaries and Neumann condition
for terrain and top

φ = 0 on Γa (16)

~n · T ~∇µ = −~n · ~v0 on Γb (17)

with T = diag
[

1
2α2

1
, 1

2α2
1
, 1

2α2
2

]
. Note that in this experimentε = α2.

This example is related to a wind simulation in a region of La Palma Island. Ma-
tricesM andN are given from a numerical modelling with the above mass consistent
model for wind field adjustment proposed in [2]. We have used three different meshes
to produce linear systems of17991, 43954 and98999 equations, respectively, withM
andN SPD matrices.

The results of the first set of linear system can be seen in table 3. Similar conclu-
sions that for the previous example may be reached. Fromε = 10−6 to ε = 10−2,
the ICHOL(Aε0) seems to be sufficient to reach convergence at a lowest cost. From
ε = 10−1 to ε = 1, the faster strategy is Full-ICHOL, but forε > 1, ICHOLN get
the best results, since Full-ICHOL does not allow to reach convergence. This fact is
due to the special structure of the matrices which makes the incomplete factorization
algorithm not work properly. Also ICHOL(Aε0) leads to a slow convergence. So, for
high values ofε, both preconditioners proposed here have the best performance, with
ICHOLN being preferable.

The results obtained for43954 and98999 equations are shown in tables 4 and 5.
The conclusions are the same again. For small values ofε it is not necessary to update
the initial incomplete factorization since it reaches convergence at the lowest cost.
However, whenε is high, the ICHOLN preconditioner have the best behaviour. Only
in the surrounding ofε = 1, the re-computing of the incomplete factorization seems
to be advisable. In the case of98999 equations, none of the preconditioners allowed
to reach convergence with CG, and thus these values have been eliminated in table 5.



ε ICHOL(Aε0) ICHOLD ICHOLN Full-ICHOL

0
noIter.
t(s)

–
–

–
–

–
–

155
2.00

10−6 noIter.
t(s)

155
1.92

157
1.94

157
1.95

155
1.99

10−5 noIter.
t(s)

157
1.93

157
1.94

171
2.13

170
2.17

10−4 noIter.
t(s)

157
1.93

155
1.92

155
1.93

157
2.01

10−3 noIter.
t(s)

166
2.04

166
2.05

166
2.08

166
2.10

10−2 noIter.
t(s)

127
1.56

128
1.58

127
1.59

127
1.63

10−1 noIter.
t(s)

148
1.81

117
1.46

106
1.34

101
1.33

1
noIter.
t(s)

279
3.43

197
2.43

105
1.32

81
1.09

10
noIter.
t(s)

676
8.24

475
5.82

200
2.48

272
3.40

102 noIter.
t(s)

2004
24.53

1183
15.51

407
5.03

>5000
–

103 noIter.
t(s)

3056
37.5

1794
21.96

604
7.42

>5000
–

104 noIter.
t(s)

3337
40.91

1926
23.63

647
7.96

>5000
–

105 noIter.
t(s)

3363
41.05

1990
24.46

655
8.07

>5000
–

106 noIter.
t(s)

3473
42.42

1926
23.71

650
7.99

>5000
–

Table 3: Example 3, 17991 equations: Number of iterations and computational cost
(in s.) of Conjugate Gradient with different preconditioners



ε ICHOL(Aε0) ICHOLD ICHOLN Full-ICHOL

0
noIter.
t(s)

–
–

–
–

–
–

184
6.21

10−6 noIter.
t(s)

184
5.96

184
5.99

184
6.00

184
6.21

10−5 noIter.
t(s)

184
5.96

184
5.99

184
6.00

184
6.23

10−4 noIter.
t(s)

184
5.98

184
5.99

184
6.01

184
6.21

10−3 noIter.
t(s)

181
5.89

181
5.90

181
5.91

181
6.12

10−2 noIter.
t(s)

170
5.55

170
5.56

170
5.56

169
5.73

10−1 noIter.
t(s)

148
4.81

135
4.43

131
4.29

126
4.35

1
noIter.
t(s)

232
7.50

149
4.88

105
3.46

78
2.79

10
noIter.
t(s)

454
14.66

303
9.84

145
4.74

76
2.73

102 noIter.
t(s)

995
32.09

675
22.03

261
8.46

>5000
–

103 noIter.
t(s)

1452
46.58

965
31.29

354
11.50

>5000
–

104 noIter.
t(s)

1583
50.73

1049
33.98

384
12.45

>5000
–

105 noIter.
t(s)

1604
51.40

1059
34.25

388
12.57

>5000
–

106 noIter.
t(s)

1605
51.43

1060
34.29

388
12.58

>5000
–

Table 4: Example 3, 43954 equations: Number of iterations and computational cost
(in s.) of Conjugate Gradient with different preconditioners



ε ICHOL(Aε0) ICHOLD ICHOLN Full-ICHOL

0
noIter.
t(s)

–
–

–
–

–
–

201
16.81

10−6 noIter.
t(s)

201
16.14

201
16.16

201
16.19

201
16.82

10−5 noIter.
t(s)

201
16.15

201
16.16

201
16.19

201
16.83

10−4 noIter.
t(s)

201
16.15

201
16.16

201
16.19

201
16.83

10−3 noIter.
t(s)

201
16.14

201
16.16

200
16.11

200
16.76

10−2 noIter.
t(s)

188
15.22

191
15.35

189
15.24

189
15.87

10−1 noIter.
t(s)

225
18.08

157
12.65

155
12.52

151
12.85

1
noIter.
t(s)

483
38.63

211
16.94

148
11.97

132
11.33

10
noIter.
t(s)

1350
107.71

540
43.14

259
20.91

236
19.64

102 noIter.
t(s)

3973
317.16

1466
116.86

593
47.62

>5000
–

103 noIter.
t(s)

>5000
–

3468
277.11

1269
101.60

>5000
–

Table 5: Example 3, 98999 equations: Number of iterations and computational cost
(in s.) of Conjugate Gradient with different preconditioners

4 Conclusions

The proposed updating of the incompleted Cholesky factorization seems to be an ef-
ficient tool for improving the convergence of conjugate gradient algorithm in the res-
olution of shifted linear systems of equations. At least, there is a wide range of the
parameterε for which the proposed preconditioners lead to the fastest convergence in
front of the use of the initial incomplete factorization or even the re-computing of it
for eachε. This was generally true for high values ofε. However, whenε is very
small, the initial decomposition is enough to reach best results. This phenomenon
was expected since, in these situations, the perturbation on the matrixM may be ne-
glected. In the surrounding of1, the experiments that we have carried out do not allow
to obtain a definitive conclusion about the best strategy. Probably, the re-computing
of the incomplete factorization is the most reliable choice in such cases.
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