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Abstract Air pollution models usually start from the computation of the velocity field of the
fluid. In this paper, we present a model for computing such a field based on the contribution of
the observed wind flow and the vertical buoyancy or momentum plume rise defined by a Gaussian
plume model. This initial velocity field is adjusted to verify incompressibility and impermeabil-
ity conditions by using a mass consistent model. In this environmental modelling that occur in
a three-dimensional domain defined over complex terrain, a mesh generator capable of adapting
itself to the topographical data and to the numerical solution is essential. Here, the unstructured
tetrahedral meshes are generated by combining the use of a refinement/derefinement algorithm for
two-dimensional domains and a tetrahedral mesh generator based on Delaunay triangulation. Occa-
sionally in this process, low quality or even inverted elements may appear. For this reason, we have
developed a simultaneous untangling and smoothing procedure to optimise the resulting meshes.
Once we have constructed the adapted mesh in accordance with the geometrical characteristics of
our domain, we use an adaptive local refinement in the plume trajectory and also for improving the
numerical solution. Finally, this model is applied in a test problem.

Key words: 3-D wind modelling and simulation, mass consistent models, Gaussian pollutant
plumes, finite element method, mesh refinement.

AUTOMATIC MESH GENERATION ADAPTED TO A SURFACE

In [1, 2] the authors propose a mesh generator for environmental problems which is applied in this
model and summarised in this section. The studied domain is limited in its lower part by the terrain
and in its upper part by a horizontal plane placed at a height at which the magnitudes under study
may be considered steady. The lateral walls are formed by four vertical planes. The generated
mesh could be used for numerical simulation of natural processes which have the main effect on
the proximities of the terrain surface. Thus node density increases in these areas accordingly. To
construct the Delaunay triangulation [3] we must define a set of points within the domain and on its
boundary. These nodes will be precisely the vertices of the tetrahedra that comprise the mesh. Point
generation on our domain will be done over several layers, real or fictitious, defined from the terrain
up to the upper boundary. Specifically, we propose the construction of a regular triangulation of
this upper boundary. Now, the refinement/derefinement algorithm [4, 5] is applied over this regular
mesh to define an adaptive node distribution of the layer corresponding to the terrain surface and
the functions which represent the chimneys. Once the node distribution is defined on the terrain
and the upper boundary, we begin to distribute the nodes located between both layers. A vertical



spacing function is involved in this process. This node distribution will be the input to a three-
dimensional mesh generator based on Delaunay triangulation [6]. To avoid conforming problems
between mesh and orography, the tetrahedral mesh will be designed with the aid of an auxiliary
parallelepiped. We start defining the set of points in the real domain and transforming them to
this auxiliary parallelepiped where the mesh is constructed. Next, the points are placed by the
appropriate inverse transformation in their real location, keeping the mesh topology.
In finite element simulation the mesh quality is a crucial aspect for good numerical behaviour of the
method. In a first stage, our automatic 3-D mesh generator constructs meshes with poor quality and,
in special cases, for example when node movement is required, inverted elements may appear. So, it
is necessary to develop a procedure that optimises the pre-existing mesh. This process must be able
to smooth and untangle the mesh. The most usual techniques to improve the quality of a valid mesh
are based upon local smoothing. In short, these techniques consist of finding the new positions that
the mesh nodes must hold, in such a way that they optimise an objective function. Such a function
is based on a certain measurement of the quality of the local submesh, N (v), formed by the set of
tetrahedra connected to the free node v. As it is a local optimisation process, we can not guarantee
that the final mesh is globally optimum. Nevertheless, after repeating this process several times
for all the nodes of the current mesh, quite satisfactory results can be achieved. Usually, objective
functions are appropriate to improve the quality of a valid mesh, but they do not work properly
when there are inverted elements. This is because they present singularities (barriers) when any
tetrahedron of N (v) changes the sign of its Jacobian determinant. In [7] we propose a procedure
for untangling and smoothing in the same stage. For this purpose, we use a suitable modification
of the objective function such that it is regular all over R

3. When a feasible region (subset of
R

3 where v could be placed, being N (v) a valid submesh) exists, the minima of the original and
modified objective functions are very close and, when this region does not exist, the minimum of
the modified objective function is located in such a way that it tends to untangle N (v). The latter
occurs, for example, when the fixed boundary of N (v) is tangled. With this approach, we can use
any standard and efficient unconstrained optimisation method to find the minimum of the modified
objective function, see for example [8]. We have applied the proposed modification to one objective
function derived from an algebraic mesh quality metric studied in [9].

LOCAL MESH REFINEMENT

We propose a local refinement algorithm [10] based on the 8-subtetrahedron subdivision developed
in [11]. Consider an initial triangulation τ1 of the domain given by a set of n1 tetrahedra t11, t12, ..., t

1
n1

.
Our goal is to build a sequence of m levels of nested meshes T = {τ1 < τ2 < ... < τm}, such that
the level τj+1 is obtained from a local refinement of the previous level τj. The error indicator εj

i will
be associated to the element tj

i ∈ τj. Once the error indicator εj
i is computed, such element must be

refined if εj
i ≥ θεj

max, being θ ∈ [0, 1] the refinement parameter and εj
max the maximum value of the

error indicators of the elements of τj. From a constructive point of view, initially we shall obtain τ2

from the initial mesh τ1, attending to the following fundamental considerations:
a) 8-subtetrahedron subdivision. A tetrahedron t1i ∈ τ1 is called of type I if ε1

i ≥ θε1
max. Later, this

set of tetrahedra will be subdivided into 8 subtetrahedra as Figure 1(a) shows; 6 new nodes are
introduced and its faces are subdivided as proposed by Bank [12].
Once the type I tetrahedral subdivision is defined, we can find neighbouring tetrahedra which may
have 6, 5, ..., 1 or 0 new nodes introduced in their edges that must be taken into account in order
to ensure the mesh conformity. We must remark that until the conformity of τ2 is not ensured by
marking edges, this new mesh will not be defined.
b) Tetrahedra with 6, 5 or 4 new nodes. Those tetrahedra are also considered as type I. Previously,
the edges without new node must be marked.
c) Tetrahedra with 3 new nodes. In this case, we distinguish two situations:



c.1) If the 3 marked edges are not located on the same face, then we mark the others and the
tetrahedron is introduced in the set of type I tetrahedra.
In the following cases, we shall not mark any edge, i.e., any new node will not be introduced in a
tetrahedron for conformity. We shall subdivide them creating subtetrahedra which will be called
transient subtetrahedra.

c.2) If the 3 marked edges are located on the same face of the tetrahedron, then 4 transient
subtetrahedra are created as Figure 1(b) shows. The tetrahedra of τ1 with these characteristics will
be inserted in the set of type II tetrahedra.
d) Tetrahedra with 2 new nodes. Also here, we distinguish two situations:

d.1) If marked edges are not located on the same face, we construct 4 transient subtetrahedra.
These tetrahedra are called type III.a; see Figure 1(c).

d.2) If the two marked edges are located on the same face, then 3 transient subtetrahedra are
generated as Figure 1(d) shows. The longest marked edge is fixed as reference in order to take
advantage in some cases of the properties of the bisection by the longest edge. These tetrahedra are
called type III.b.
e) Tetrahedra with 1 new node. Two transient subtetrahedra will be created as we can see in Figure
1(e). This set of tetrahedra is called type IV.
f) Tetrahedra without new node. These tetrahedra of τ1 are not divided and they will be inherit by
the refined mesh τ2. We call them type V ; see Figure 1(f).

(a) Type I (b) Type II (c) Type III.a

(d) Type III.b (e) Type IV (f) Type V

Fig. 1 Subdivision classification related to the new nodes (empty circles)

VELOCITY FIELD MODELLING

We consider a mass consistent model for wind field adjustment which are based on the continuity
equation and the impermeability conditions on the terrain Γb,

~∇ · ~u = 0 in Ω (1)

~n · ~u = 0 on Γb (2)



assuming that the air density is constant in the whole domain. We formulate a least-square problem
in the domain Ω with the wind ~u(ũ, ṽ, w̃) to be adjusted and the observed wind ~v0(u0, v0, w0).
Lagrange multiplier technique is used to solve this problem, whose minimum comes to form the
Euler-Lagrange equations and yields an elliptic equation and boundary conditions in the Lagrange
multiplier φ
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φ = 0 on Γa (4)

~n · T ~∇φ = −~n · ~v0 on Γb (5)

We have used a discretization with tetrahedral finite elements for solving the above problem. To
obtain the observed wind, horizontal interpolation of the station measures is carried out. Then, a log-
linear wind profile is built up to the surface layer taking into account the horizontal interpolation,
the effect of roughness on the wind velocity and air stability. Above the surface layer, a linear
interpolation is carried out using the geostrophic wind. For more details see [13, 14].

1. Vertical velocity correction along the plume trajectory The main idea is to add to the
interpolated wind field, which usually only consider the horizontal components of wind velocities, a
vertical velocity along the trajectory of a pollutant plume arising from a chimney. Thus, the velocity
field is origined by the wind and the vertical velocity of the pollutant. Gaussian plume models allow
to approximate the effective height of a plume zH and the horizontal distance df from the stack to
the point where the plume height reaches zH , depending on the emission characteristics, the wind
and the atmospheric stability. Gases rise from the stack if their density is lower than the air density
(buoyancy rise) or if they are at enough velocity which provides them a kinetic energy (momentum
rise). In order to compute the effective height of the plume, we use Briggs’ equations (see e.g. [15]).
The height zc of the chimney is replaced in practice by the height z′

c, which is slightly lower than zc

when the emission velocity of gases wc is less than 1.5 times the wind velocity (Stack Downwash),

z′c = zc if wc ≥ 1.5 |~v0 (xc, yc, zc)| (6)

z′c = zc + 2Dc [(wc/ |~v0 (xc, yc, zc)|) − 1.5] if wc < 1.5 |~v0 (xc, yc, zc)| (7)

being (xc, yc, zc) and Dc, the coordinates of the centre and the diameter of the emission surface,
respectively. In addition, it can be distiguished the following cases:

a) If the buoyancy rise is predominant, i.e.,
wc

|~v0 (xc, yc, zc)|
≤ 4, we define the buoyancy flow pa-

rameter as F = gwcD
2
c

Tc − T

4Tc
, where g is the gravitational acceleration, Tc the temperature of

stack gases in K and T the environmental temperature in K. For unstable or neutral atmospheric
conditions, zH and df may be approximated in m as,

zH = z′c + 21.425
F 3/4

|~v0 (xc, yc, zc)|
df = 49F 5/8 if F < 55 (8)

zH = z′c + 38.71
F 3/5

|~v0 (xc, yc, zc)|
df = 119F 2/5 if F ≥ 55 (9)

However, for stable conditions we define the stability parameter s =
g

T

∆θ

∆z
, where

∆θ

∆z
represents

the variation of the potential temperature θ with height. If |~v0 (xc, yc, zc)| ≥ 0.2746F 1/4s1/8, then
we compute

zH = z′c + 2.6

(
F

s |~v0 (xc, yc, zc)|

)1/3

df = 2.07 |~v0 (xc, yc, zc)| s
−1/2 (10)
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Fig. 2 Predominant buoyancy rise, except for stable conditions and calm wind

On the contrary, for low velocities of wind, i.e., |~v0 (xc, yc, zc)| < 0.2746F 1/4s1/8, it yields df = 0
and

zH = z′c + 4F 1/4s−3/8 (11)

Using the computed values of zH and df , except for stable conditions and calm wind, we propose
to adjust the vertical component of the velocity along the trajectory of the plume by a linearly
unaccelerated motion. In addition, the horizontal motion from the source to the distance df is
considered uniformly accelerated. Thus, the time tf corresponding to the distance df is,

tf =
1

ad

(
− |~v0(xc, yc, zc)| +

√
|~v0(xc, yc, zc)|

2 + 2addf

)
(12)

where df =
√

(xf − xc)
2 + (yf − yc)

2, with xf , yf being the horizontal coordinates of the point of

maximum rise of the plume and ad the horizontal acceleration with (adx, ady) in the same direction
that ~v0(xc, yc, zc). The vertical acceleration a0, the vertical velocity w0 and the trajectory of the
plume are then given by the following functions of the parameter t,

a0(t) =
−4wctf + 6(zH − z′c)

t2f
+

6wctf − 12(zH − z′c)

t3f
t (13)

w0(t) = wc +
−4wctf + 6(zH − z′c)

t2f
t +

3wctf − 6(zH − z′c)

t3f
t2 (14)
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1

2
adxt

2 (15)

y(t) = yc + v0(xc, yc, zc)t +
1

2
adyt

2 (16)

z(t) = z′c + wct +
−2wctf + 3(zH − z′c)

t2f
t2 +

wctf − 2(zH − z′c)

t3f
t3 (17)



If we suppose a0(t) ≤ 0 along the trajectory, we obtain between t = 0 and t = tf ,

3

2
(zH − z′c) ≤ wctf ≤ 3 (zH − z′c) (18)

This yields the following condition on ad,

ad = (1 + δ)
2wc

3(zH − z′c)

[
(1 + δ)

wc

3(zH − z′c)
df − |~v0(xc, yc, zc)|

]
(19)

being 0 ≤ δ ≤ 1. For δ = 0, the value of tf is related to the upper bound in (18) and, for δ = 1, to
the lower bound. The case δ = 1/2 corresponds to a value of tf which produces a constant vertical
acceleration, a linear vertical component of velocity and a quadratic z(t). If wctf−2(zH−z′c) 6= 0, for
a given value of z, the computation of the corresponding value of parameter t is carried out solving
the cubic polynomial equation related to equation (17). The vertical component of velocity ~v0 is
modified in any point of the domain Ω located inside a cylinder generated by the circular emission
surface of the gases (of diameter Dc) which is moving parallel to the horizontal plane, along the
parametric curve given by equations (15), (16) and (17) between t = 0 and t = tf . For this purpose,
we compute the distance from a given point (x0, y0, z0) to the curve, d2

0 = (x(t0) − x0)
2+(y(t0) − y0)

2.
If d0 ≤ Dc/2, then the vertical component of velocity in such point is fixed as w0(t0), being t0 the
value of t relative to z0 which is the solution of equation (17). Thus, constant vertical velocities are
generated in the cylinder for each horizontal disk (see Fig. 2).
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Fig. 3 Predominant momentum rise or buoyancy rise for stable conditions and calm wind

b) If
wc

|~v0 (xc, yc, zc)|
> 4, the predominant phenomenon is the momentum rise. In this case, df = 0

and z′c = zc. For unstable or neutral conditions we have,

zH = zc +
3Dcwc

|~v0 (xc, yc, zc)|
(20)



On the contrary, for stable conditions zH should be defined by the lower value of (20) and (21),

zH = zc + 1.5

[
D2

cw
2
cT

4Tc |~v0 (xc, yc, zc)|

]1/3

s−1/6 (21)

In both situations, momentum rise or buoyancy rise with stable condition and calm wind, the
horizontal motion of the plume until reaching the effective height is very small. Thus the trajectory
of the gases is nearly vertical (see Fig. 3). In this case, we consider a uniformly unaccelerated
motion. So, the value of parameter t related to the effective height of the plume zH is tf =
2 (zH − zc)

wc
and the acceleration, a0 =

−wc

tf
. Thus, the vertical velocity at a point of height z

is w0(z) = wc

√
1 −

2 (z − zc)

wctf
. Here, the vertical component of the velocity is modified inside a

standard cylinder of which base is the emission surface of the gases in the stack and its height is
zH − zc. So, we only attend to points (x0, y0, z0), with zc ≤ z0 ≤ zH , that verify the condition,√

(xc − x0)2 + (yc − y0)2 ≤ Dc/2. We add a vertical velocity w0(z0) at these points.

NUMERICAL EXPERIMENTS

For air pollution modelling of a test power plant located in the region of La Palma Island, we have
to add the chimney geometry to the topographical data and apply the 3-D mesh generator. Let
us consider a chimney with a height of 200 m over the terrain and diameter of 20 m at its top
and 40 m at its bottom. Since, the mesh must be able to detect the details of the chimney, if we
decide a size of elements about 2 × 2 m in the chimney, starting from the uniform 2-D mesh τ1 of
the rectangular area with a size of elements about 2× 2 km, we should make ten global refinement
steps using Rivara 4-T algorithm [16]. However, we only need five global refinement steps over τ1

and, after, five local refinement of the elements inside the chimney.

Fig. 4 Detail of 3-D adaptive mesh of La Palma Island



Fig. 5 Zoom in figure 4 including the chimney near the right bottom corner

Fig. 6 Detail of the mesh in the sourroundings of the chimney



In this case, we applied the derefinement algorithm with a parameter ε = 40 m considering that
nodes inside the chimney could not be eliminated. Finally, we have applied six local refinement
steps in the plume trajectory to previous resulting 3-D mesh in order to obtain a new mesh with
31555 nodes and 170784 tetrahedra. Figures 4-6 show three details of the mesh in different scales.
Figure 7 represents a detail of the adjusted velocity field ~u where the effect of chimney emission has
been introduced.

Fig. 7 Velocity field related to figure 6

CONCLUSIONS

We have presented an efficient technique for automatic and adaptive 3-D mesh generation in en-
vironmental problems. So, we can discretize domains defined over complex terrains which may
include several chimneys, with a minimal user intervention and low computational cost. The local
refinement of mesh in the pollutant plume allows to define a velocity field that takes into account
the observed wind and the velocity of emission of gases from the chimney. This velocity field could
be used for air pollution simulation.
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