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An over view of advanced techniques for solving large sparse linear systems of
equations is presented. We are interested in the resolution of,

Ax = b (1)

where A is a sparse, large and non-singular matrix. The first question is if it is better
a direct or an iterative resolution. The main disadvantage of direct methods compared
with iterative ones is that the rounding errors are accumulated along the process of
direct solving. Besides they require more memory requirements due to the fill-in
effect. On the other hand, in non steady problems where there must be solved many
similar systems of equations, iterative solvers may use the solution obtained in the
previous time step as initial guess. So, nowadays it is preferred to use iterative methods
in front of direct ones for large scale sparse linear systems of equations.

The reordering techniques based on graph theory, that were initially applied in the
resolution by using direct methods, provide matrices with smaller band width or a
sparsity pattern with a lower number of nonzero inner entries. However, this reduc-
tion may be used in order to improve the effect of incomplete factorisation precondi-
tioners on the rate of convergence of iterative methods. The effect several reordering
techniques on different Krylov subspace methods may be seen in [1, 2, 3, 4, 5].

Preconditioning techniques improve the convergence of iterative methods. Here,
we study some standard preconditioners, in particular, Jacobi, SSOR, ILU and sparse
approximate inverse.

On the other hand, some Krylov subspace methods for solving linear systems of
equations are considered. For symmetric problems, the Conjugate Gradient method is
proposed [6]. However, for non-symmetric linear systems there exist several alterna-
tives that may be classified into three family of methods: orthogonalisation, biorthog-
onalisation and normal equation methods (see [7, 8]). Among orthogonalisation meth-
ods for nonsymmetric linear systems that apply the Arnoldi algorithm [9], we study
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the Generalised Minimum Residual method (GMRES) [10]. On the other hand, we
study the Biconjugate Gradient Stabilised method (Bi-CGSTAB) [11] and its quasi-
minimal residual variant, the QMRCGSTAB algorithm [12]. Besides, we consider the
use of the Least-square QR method (LSQR) [13] based on the normal equation.
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[7] G. Montero, G. Winter, A. Suárez, M. Galán, D. Garcı́a, “Contribution to Itera-
tive Methods for Nonsymmetric Linear Systems: GMRES, BCG and QMR Type
Methods”, in Computational Methods and Neural Networks. Part Two: Compu-
tational Methods, M. Sambandhamy & M.P. Bekakos, Eds., Dynamic Publishers,
Inc., 97-128, 1999.

[8] N.M. Nachttigal, S.C. Reddy, L.N. Trefethen, “How Fast Are Nonsymmetric
Matrix Iterations?”, SIAM J. Matr. Anal. Appl., 13, 3, 796-825, 1992.

[9] W.E. Arnoldi, “The Principle of Minimized Iteration in the Solution of the Matrix
Eingenvalue Problem”, Quart. Appl. Math., 9, 17-29, 1951.

[10] Y. Saad, M. Schultz, “GMRES: A Generalized Minimal Residual Algorithm for
Solving Nonsymmetric Linear Systems”, SIAM J. Sci. Statist. Comput., 7, 856-
869, 1986.

[11] H.A. van der Vorst, “Bi-CGSTAB: A Fast and Smoothly Converging Variant of
Bi-CG for the Solution of Nonsymmetric Linear Systems”, SIAM J. Sci. Com-
put., 13, 631-644, 1992.

[12] T.F. Chan, E. Gallopoulos, V. Simoncini, T. Szeto, C.H. Tong, “A Quasi-Minimal
Residual Variant of the Bi-CGSTAB Algorithm for Nonsymmetric Systems”,
SIAM J. Sci. Statist. Comput., 15, 338-247, 1994.

[13] C.C. Paige, M.A. Saunders, “LSQR: An Algorithm for Sparse Linear Equations
and Sparse Least Squares”, ACM Trans. Math. Soft., 8, 1, 43-71, 1982.

2


