
Abstract

The quasi-minimal residual methods, these are QMR (Freund and Nachtigal [4]),

TFQMR (Freund [5]) and QMRCGSTAB (Chan et al [1]), are biorthogonalization

methods for solving nonsymmetric linear systems of equations which improve the ir-

regular behaviour of BiCG, CGS and BiCGSTAB algorithms [8], respectively. They

are based on the quasi-minimization of the residual using the standard Givens rotations

that lead to methods with short term recurrences.

In this paper, the quasi-minimization problem is solved using a similar procedure

to that developed in [6] for the minimization problem arising in GMRES method.

It consists of a direct solver which provides new versions of QMR-type methods,

the so called modified QMR methods (MQMR). MQMR algorithms have different

convergence behaviour in finite arithmetic although are equivalent to the standard ones

in exact arithmetic. The new implementations not only reduce the number of iterations

but also reach convergence in some cases where the standard algorithms do not work

well.

On the other hand, we study the effect of preconditioning, for example with Jacobi,

ILU, SSOR or sparse approximate inverse [9], and reordering [2] on the performance

of these algorithms is studied.

Finally, some numerical experiments are solved in order to compare the results

obtained by standard and modified algorithms.

Keywords: nonsymmetric linear systems, sparse matrices, Krylov subspace methods,

quasi-minimal residual methods, preconditioning, reordering.
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1 Introduction

The approximate solution using QMR method for the Krylov subspace of order k is,

xk = x0 + Vk u (1)

where u minimizes the norm, ∥∥γe1 − T k u
∥∥

2
(2)

which is a simplification of the residual norm,

‖ r‖2 =
∥∥Vk+1

(
γe1 − T k u

)∥∥
2

(3)

where Vk is the matrix which columns are the vectors vi, i = 1, ..., k, obtained by

Lanczos biorthogonalization procedure, γ = ‖r0‖2, and matrix T k is,

T k =

(
Tk

δk+1e
t
k

)
(4)

with,

Tk =




α1 β2 .
δ2 α2 β3 .

δ3 α3 .
. . . . . . .

. αk−2 βk−1

. δk−1 αk−1 βk

. δk αk




(5)

αi, i = 1, ..., k; βj , j = 2, ..., k; δl, l = 2, ..., k + 1, are the parameters obtained during

Lanczos process (see 2.2.1).

In this paper we will directly solve the minimum square problem arising from the

minimization of the quadratic functional (2), instead of using the QR factorization of

matrix T k; see e.g. [7].

2 Modified QMR method

Consider the orthogonal projection on the subspace of solutions of the quasi-minimization

problem (2) multiplying by T
T

k we obtain,

T
T

k T k u=T
T

k γe1 (6)

where the structure of the (k + 1) × k matrix T k is,

T k =




dT
k

Uk

0
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the first row of T k is a k dimension vector dt
k, and the rest is an upper triangular matrix

Uk,

dk =
(

α1 β2 0 . . . 0
)

Uk =




δ2 α2 β3 .
δ3 α3 β4

.
. . . . . . .

. δk−1 αk−1 βk

(0) . δk αk

. δk+1




where,

{dk}i = di =
{
T

}
1i

i = 1, ..., k (7)

{Uk}ij = uij =

{ {
T

}
i+1, j

1 ≤ i ≤ j ≤ k

0 in the rest
(8)

then, the decomposition of the product T
T

k T k in (6) becomes in a sum,

{
T

T

k T k

}
ij

= didj +
k∑

m=1

umiumj (9)

Taking into account the descomposition of T
T

k T k, the equation (6), can be written

as, (
dkd

T
k + UT

k Uk

)
u = T

T

k γe1 (10)

and, from T
T

k e1 = dk, we obtain,

(
dkd

T
k + UT

k Uk

)
u=γdk (11)

Using the associative and distributive properties of matrix product, the equation

above can be written as,

UT
k Uku=dk (γ − 〈dk, u〉) (12)

from,

λi = γ − 〈dk, u〉 (13)

u = λipk (14)

we obtain,

UT
k Ukpk=dk (15)

Which is a double triangular system, where U T
k y Uk are triangular matrices and

only two substitution process are required for the solution.
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Once we solve (15), we compute λi to obtain u from equation (14),

λi = γ − 〈dk, u〉 = γ − λi 〈dk, pk〉 (16)

thus,

λi =
γ

1 + 〈dk, pk〉
(17)

Note that 1 + 〈dk, pk〉 6= 0, because,

〈dk, pk〉 =
〈
UT

k Ukpk, pk

〉
= ‖Ukpk‖2

2 ≥ 0 (18)

therefore λi never degenerates.

The proposed method requires:

1. Given dk and Uk defined in (7) and (8), solve in a double triangular system given

in (15) ,

UT
k p̄k = dk (19)

Ukpk = p̄k (20)

2. Compute λi in equation (17).

3. Obtain u solving equation (14)

The residual vector whose norm is given in (3) can be obtained from,

ri = Vk+1r̂i (21)

where r̂i is the (k + 1)-vector,

r̂i = γe1 − T k u (22)

and its entries can be computed as follow,

{r̂i}j =

{
λi if j = 1
−λip̄k if j = 2, ..., k + 1

(23)

Since, from partition of T k, the first entrie from (k + 1)-vector (T k u) is 〈dk, u〉,
and the rest of the entries are given by k-vector (Uku). Then the first entry of r̂i is λi,

and the rest are,

−Uku = −λiUkpk = −λip̄k (24)

where p̄k can be kept in the resolution of the first triangular system given in (19).

Note that the residuals are not equivalent (as in GMRES), because vectors vi are

not orthonormal, ‖ri‖2 6= ‖r̂i‖2

The MQMR algorithm obtained with direct solving of the quasi-minimization prob-

lem results as follows,
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MQMR algorithm

Initial guess x0. r0 = b − Ax0

β1 = δ1 = 0

v0 = w0 = 0

γ = ‖r0‖

v1 = w1 =
1

γ
r0

Do while
√

k + 1 ‖ r̂k−1 ‖ / ‖ r0 ‖≥ ε (k = 1, 2, 3, ...),

αk = 〈Avk, wk〉
v̂k+1 = Avk − αkvk − βkvk−1

ŵk+1 = AT wk − αkwk − δkwk−1

δk+1 = |〈v̂k+1, ŵk+1〉|1/2

βk+1 = 〈v̂k+1, ŵk+1〉 /δk+1

vk+1 = v̂k+1/δk+1

wk+1 = ŵk+1/βk+1

Solve UT
k p̄=dk and Ukp = p̄

where

{ {dk}m =
{
T

}
1m

{Uk}lm =
{
T

}
l+1m

l,m = 1, ..., k

λk =
γ

1 + 〈dk, p〉
uk = λk p

xk = x0 + Vkuk ; being Vk = [v1, v2, ..., vk]

rk = Vk+1r̂k ; being Vk+1 = [v1, v2, ..., vk+1]

where

{
{r̂k}1 = λk

{r̂k}l+1 = −λk {p̄}l

l = 1, ..., k

End

We must take into account that the convergence criterion depends on r̂k, which is

the residual computed from Modified QMR.

3 Modified TFQMR Method

The approximation obtained using TFQMR method in a Krylov subespace of dimen-

sion k, is,

x0 + Ykuk (25)

where Yk = [y1, y2, ..., yk], yk = ti−1 si k = 2i−1 is odd, and yk = qi if k = 2i is even,

and uk minimizes the norm
∥∥(

δ1e1 − T̄k u
)∥∥

2
, which represents a quasi-minimum of

the residual la norm (see Saad [10]),

‖ rk‖2 =
∥∥Wk+1∆

−1
k+1

(
δ1e1 − ∆k+1Bkuk

)∥∥
2

(26)
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being,

T̄ k = ∆k+1Bk (27)

Where Wk+1 is the matrix whose columns are the vectors,

Wk+1 = [w1, w2, ..., wk+1] (28)

and ∆k+1 is a diagonal matrix, such that Wk+1 is scaled up (δk = ‖ ri‖, if k = 2i + 1
is odd, or δk =

√
‖ ri−1‖ ‖ ri‖, if k = 2i is even),

∆k+1 =




δ1 .
δ2 .

. . . . .
. δk

. δk+1




(29)

and Bk is the (k + 1) × k matrix,

Bk =




α−1
0 .

−α−1
0 α−1

0 .
−α−1

0 α−1
1 .

. . . . . .
. α−1

(k−1)/2

. −α−1
(k−1)/2 α−1

(k−1)/2

. −α−1
(k−1)/2




(30)

The MTFQMR algorithm obtained with direct solving of the quasi-minimization

problem is as follows.

MTFQMR algorithm

Initial guess x0. r0 = b − Ax0

r∗0 is arbitrary, such that 〈r0, r
∗

0〉 6= 0

s0 = t0 = r0

v0 = As0

ρ0 = 〈r0, r
∗

0〉
δ1 = ‖ r0‖
Do while

√
i + 1 ‖ r̂i−1 ‖ / ‖ r0 ‖≥ ε (i = 1, 2, 3, ...)

σi−1 = 〈vi−1, r
∗

0〉
αi−1 = ρi−1/σi−1

qi = ti−1 − αi−1vi−1

ri = ri−1 − αi−1A (ti−1 + qi)

From k = 2i − 1, 2i do

If k is odd do
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δk+1 =
√

‖ ri−1‖ ‖ ri‖; yk = ti−1

Else

δk+1 = ‖ ri‖; yk = qi

End

End

Solve UT
k p̄ = dk and Ukp = p̄

where





{dk}m =
{

T̄
}

1m

{Uk}lm =
{

T̄
}

l+1m

l,m = 1, ..., k

λk =
δ1

1 + 〈dk, p〉
uk = λk p

xk = x0 + Ykuk ; with Yk = [y1, y2, ..., yk]{
{r̂i}1 = λ2i

{r̂i}l+1 = −λ2i {p̄}l

l = 1, ..., 2i

ρi = 〈ri, r
∗

0〉
βi = ρi/ρi−1

ti = ri + βiqi

si = ti + βi(qi + βisi−1)

vi = Asi

End

Now the convergence criterion depends on r̂k, which represents the residual, com-

puted from Modified TFQMR.

4 Modified QMRCGSTAB Method

The QMRCGSTAB algorithm proposed by Chan et al [1], makes two quasi-minimi-

zations per iterations. If we define Yk = [y1, y2, ..., yk], being y2l−1 = gl for l =
1, ..., [(k + 1)/2] ([(k + 1)/2] the integer part of (k + 1)/2) and y2l = sl for l =
1, ..., [k/2]([k/2] the integer part of k/2). The approximate solution of the system

Ax = b, starting from the k-th Krylov subspace, is built as x0 + Ykuk, where uk min-

imizes the norm
∥∥(

δ1e1 − T̄k u
)∥∥

2
, which is again a quasi-minimum of the residual

norm,

‖ rk‖2 =
∥∥Wk+1∆

−1
k+1

(
δ1e1 − ∆k+1Bk uk

)∥∥
2

(31)

being,

T̄ k = ∆k+1Bk (32)

Wk+1 is the matrix whose columns are the residual vectors,

Wk+1 = [w1, w2, ..., wk+1] (33)
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with w2l−1 = sl for l = 1, ..., [(k + 1)/2] and w2l = rl for l = 1, ..., [k/2]; and ∆k+1

is a diagonal matrix, such that Wk+1 is scaled up (δi = ‖wi‖),

∆k+1 =




δ1 .
δ2 .

. . . . .
. δk

. δk+1




(34)

Bk is the (k + 1) × k matrix,

Bk =




σ−1
1 .

−σ−1
1 σ−1

2 .
−σ−1

2 σ−1
3 .

. . . . . .
. σ−1

k−1

. −σ−1
k−1 σ−1

k

. −σ−1
k




(35)

with σ2l = ωl for l = 1, ..., [(k + 1)/2], and σ2l−1 = αl for l = 1, ..., [(k + 1)/2].

The MQMRCGSTAB algorithm obtained with direct solving of the quasi-minimi-

zation problem is written below.

MQMRCGSTAB algorithm

Initial guess x0, r0 = b − Ax0

r∗0 is arbitrary, such that 〈r0, r
∗

0〉 6= 0

ρ0 = α0 = ω0 = 1

g0 = v0 = 0

Do while
√

2i + 1 ‖ r̂i−1 ‖ / ‖ r0 ‖≥ ε (i = 1, 2, 3, ...)

ρi = 〈r∗0, ri−1〉
βi = (ρi/ρi−1)(αi−1/ωi−1)

gi = ri−1 + βi(gi−1 − ωi−1vi−1)

vi = Agi

αi =
ρi

〈vi, r∗0〉
si = ri−1 − αivi

δ2i−1 = ‖si‖ , y2i−1 = gi

ti = Asi

ωi =
〈ti, si〉
〈ti, ti〉

ri = si − ωiti

δ2i = ‖ri‖ , y2i = si

Solve U t
2ip̄ = d2i and U2ip = p̄
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where

{ {d2i}m =
{
T

}
1m

{U2i}lm =
{
T

}
l+1m

l,m = 1, ..., 2i

λ2i =
δ1

1 + 〈d2i, p〉
u2i = λ2i p

xi = x0 + Y2iu2i with Y2i = [y1, y2, ..., y2i]{
{r̂i}1 = λ2i

{r̂i}l+1 = −λ2i {p̄}l

l = 1, ..., 2i

End

Here, the convergence criterion is depends on r̂k, which represents the residual

computed from Modified QMRCGSTAB.

5 Numerical experiments

The first nonsymmetric linear system that has been selected is orsreg1 matrix corre-

sponding to an oil reservoir problem from the Harwell-Boeing Sparse Matrix Collec-

tion, which yields a system of 2205 equations with 14133 non zero entries.
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Figure 1: Convergence of stabilized biortogonalization methods for orsreg1

The convergence behaviour of non preconditioned BiCGSTAB, QMRCGSTAB

and MQMRCGSTAB algorithms is represented in figure 1. We can see the smoother
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convergence of QMR type methods compared to that of BiCGSTAB. In addition, the

modified version of QMRCGSTAB reduces the number of iterations required by the

standard algorithm for reaching convergence.

The second example has been selected from the Harwell-Boeing Sparse Matrix

Collection too. In this case, watt1 matrix arises from an oil reservoir engineering

problem and has 1856 equations with 11360 non zero entries.
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QMR+diagopt

TFQMR+diagopt
QMRCGSTAB+diagopt

Figure 2: Convergence of modified and standard QMR algorithms with diagonal ap-

proximate inverse preconditioning for watt1

Figure 2 shows the performance of modified and standard QMR type methods using

an approximate inverse preconditioner with diagonal pattern. In this case, although the

modified versions of QMR and TFQMR reach convergence before the standard ones,

however the QMRCGSTAB is faster than MQMRCGSTAB.

The third numerical experiment (cuaref ) is related to the convection-diffusion equa-

tion in a square Ω = (0, 1) × (0, 1)

v1
∂u

∂x
+ v2

∂u

∂y
− K

(
∂2u

∂x2
+

∂2u

∂y2

)
= 0

with velocity field,

v1 = C (y − 1/2)
(
x − x2

)
, v2 = C (1/2 − x)

(
y − y2

)

An adaptive finite element discretization leads to a nonsymmetric linear system of

7520 equations.
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Figure 3: Performance of several Krylov subspace methods with SSOR precondition-

ing for cuaref (7520 equations)

In figure 3 we represent the convergence of some Krylov subspace methods with

SSOR preconditioning. Note that MQMRCGSTAB reaches convergence at a lower

number of iterations than BiCGSTAB, QMRCGSTAB and VGMRES. At first, MQM-

RCGSTAB curve is close to VGMRES one, while at the end it has the same behaviour

than QMRCGSTAB. This phenomenon has been repeated in many others experiments

not included here.

The last linear system arise from a two-dimensional convection-diffusion problem

(convdifhor) defined in a square Ω,

v1
∂u

∂x
− K

(
∂2u

∂x2
+

∂2u

∂y2

)
= F

with a velocity field given by,

v1 = 104 (y − 1/2)
(
x − x2

)
(1/2 − x)

Again, an adaptive finite element discretization yields a nonsymmetric system of 3423
equations. Figure 4 illustrates the effect of ordering on the convergence of Precondi-

tioned MTFQMR when we use ILU(0). In this example Minimun Degree, Minimun

Neighbouring and Reverse Cuthill-McKee reordering algorithms have been applied

(see e.g. [3]). The results show that some reordering techniques may reduce about

50% the number of iterations.
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Figure 4: Effect of ordering on the convergence of MTFQMR with ILU(0) precondi-

tioning convdifhor (3423 equations)

6 Conclusion

The modified versions of QMR methods generally lead to smoother convergence

curves than the standard ones. The studied numerical experiments shows that the

modified algorithms are closer to GMRES at the beginning of the convergence pro-

cess but at lower computational cost, and work like the standard QMR methods at the

last iterations. This robust behaviour of the modified versions has allowed to reach

convergence even when the standard QMR methods could not.

We have verified that ordering techniques improve the rate of convergence and the

computational cost of the modified algorithms, specially with ILU and SSOR precon-

ditioning.

Acknowledgements

This work has been partially supported by the MCYT of Spanish Government and

FEDER, grant contract REN2001-0925-C03-02/CLI.

12



References

[1] T.F. Chan, E. Gallopoulos, V. Simoncini, T. Szeto, C.H. Tong, “A Quasi-Minimal

Residual Variant of the Bi-CGSTAB Algorithm for Nonsymmetric Systems”,

SIAM J. Sci. Statist. Comput., 15, 338-247, 1994.
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