
Local refinement of 3-D triangulations using
object-oriented methods

J.M. González-Yuste, R. Montenegro, J.M. Escobar, G. Montero ∗,
E. Rodrı́guez

University Institute of Intelligent Systems and Numerical Applications in Engineering,
University of Las Palmas de Gran Canaria,

Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria, Spain.

Abstract

The data structures used to model meshes for solving problems by finite element methods
is based on different arrays. In these arrays information is stored related to, among other
components, nodes, edges, faces, tetrahedra and connectivities. These structures provide
optimum results but, in many cases, they need additional programming to be maintained.
In adaptive simulation, the meshes undergo refinement/derefinement processes to improve
the numerical solution at each step. These processes produce new elements and eliminate
others, so the arrays should reflect the state of the mesh in each of these steps. Using tra-
ditional language, memory should be pre-assigned at the outset of the program, so it is
only required to estimate the changes taking place in the mesh. In the same respect, it was
necessary to compact the arrays to recover space from erased elements. With the advent
of languages such as C, memory can be assigned dynamically, resolving most of the prob-
lem. However, arrays are costly to maintain, as they require adapting the mesh treatment to
the data model, and not inversely. The object-oriented programming suggests a new focus
in implementing data structures to work with meshes. The classes create data types that
may be adjusted to the needs of each case, allowing each element to be modelled inde-
pendently. Inheritance and encapsulation enable us to simplify the programming tasks and
increase code reuse. We propose a data structure based on meshes-treating objects. Finally,
we present an implementation of a local refinement algorithm based on 8-subtetrahedron
subdivision and some experiments.

Key words: 3-D triangulations, unstructured grids, nested meshes, adaptive refinement,
object oriented methods, data structures, finite element method.

∗ Corresponding author.

Preprint submitted to Elsevier Science 26 June 2003



1 Introduction

Most programs currently using the finite element method rely on adaptive tech-
niques based on an error estimation of our numerical solution, or at least on reliable
error indicators that specify the elements that should be refined or derefined in the
mesh.

In adaptive mesh generation we may consider two different aspects: domain dis-
cretization in accordance with its geometry or its numerical solution. There are
many ways to approach these aspects. We first need to consider whether the meshes
are structured or unstructured. In this respect, the use of unstructured meshes clearly
provides more flexibility when meshing complex geometries using an optimum
number of nodes. In this case, the classic methods of obtaining three-dimensional
triangulations is based mainly on advancing front algorithms [1] or in those based
on Delaunay triangulation [2,3]. Once the domain geometry has been discretized,
the mesh should be adapted to the specific numerical solution. This process involves
the introduction (refinement) or elimination (derefinement) of nodes in the current
mesh. The changes may alter the current mesh locally or globally, depending on
the method of triangulation chosen. Different refinement strategies have been de-
veloped for 2-D triangulations, and they have been generalized to 3-D. If we choose
a refinement that affects the current mesh locally, another question is raised: nested
or unnested meshes? In this case the answer is not clear. We may obtain sequences
of nested meshes in a minimal CPU time. Furthermore, the multigrid method can be
more easily applied to solve the system of equations associated with the problem.
We may also automatically control the smoothness and degeneration of the mesh,
as well as maintaining the defined surfaces in the domain, according to the char-
acteristics of the initial mesh. If the domain has a complex geometry, a good way
to proceed involves obtaining the initial mesh with an unstructured mesh generator
and, subsequently, applying a nested local mesh refinement and derefinement tech-
nique using an error indicator appropriate to the problem. If we attempt to solve an
unsteady problem, we may automatically approximate any initial solution defined
in the domain. With the refinement and derefinement technique, we obtain optimum
piecewise interpolation capable of approximating this solution with a required ac-
curacy. In general, this technique can be applied to any discrete or analytic function
defined in the domain.

With these ideas, adaptive techniques were developed previously in 2-D and ob-
tained good results in different steady and unsteady problems, see for example
[4–6]. In these studies Rivara’s 4-T local refinement algorithm was used. All tri-
angles which must be refined, bearing in mind the error indicator, are divided into
four sub-triangles introducing a new node in the centres of its sides and connecting
the node introduced in the longest side with the opposite vertex and the other two
new nodes. Choosing the particular refinement algorithm is very important, since
the derefinement algorithm may be understood as the inverse of the refinement al-



gorithm. Rivara’s 4-T refinement algorithm has good properties in terms of mesh
smoothness and degeneration. In addition, the number of possibilities that appear in
the relation between a father element and sons is less than with other refinement al-
gorithms in 2-D, after ensuring mesh conformity. Thus, it would be more complex
to develop a derefinement algorithm, coupled with the local refinement algorithm
as proposed in [7]. Here, all the triangles that must be refined, taking into account
the error indicator, are divided into four subtriangles by introducing a new node in
the centres of the sides and joining them to each other.

In 3-D, we have a different problem. Paradoxically, the extension of an adaptive
algorithm that may be simpler than another in 2-D, may not be simpler in 3-D. In
the refinement algorithms developed in 3-D, we note those based on the tetrahedron
bisection [8–10] and those that use the 8-subtetrahedron subdivision [11–13]. The
algorithm developed in [10] may be understood as the generalization to 3-D of
Rivara’s 4-T algorithm, which is based on the bisection of the triangle by its longest
side. The problem in this extension to 3-D is the high number of possible cases
in which a tetrahedron may be divided, maintaining the different possibilities of
the 4-T division in its four faces, during the process of conformity of the mesh.
However, the algorithms analysed in [11–13], which generalize to 3-D the partition
into four subtriangles as proposed in [7], are simpler due to the number of possible
partitions in a tetrahedron is much less than the case of the generalization of the
4-T algorithm.

All these local refinement algorithms have linear complexity in the number of tetra-
hedra chosen for refinement, since the mesh conformity is ensured in a local level
using the neighbourhood among tetrahedra by an expansion process starting from
the refined tetrahedra; see e.g. [10]. In general, only the refinement algorithms that
allow the construction of transient tetrahedra are truly local; see e.g. [12]. So, the
amount of additional refinement due to conformity for the 8-subtetrahedron sub-
division is lower than that for the generalization to 3-D of Rivara’s 4-T algorithm.
Furthermore, as mesh quality is ensured in all these cases, we have chosen to im-
plement a version of the algorithm which uses the subdivision in 8-subtetrahedra.
This algorithm will be considered in section 3 of this paper and section 4 is devoted
to its implementation.

In section 5, applications of the refinement algorithm on three-dimensional meshes,
generated by a version of Delaunay triangulation method presented in [3], are car-
ried out. This triangulation method is widely accepted due to the quality of the
meshes produced. However, it presents serious problems, particularly in 3-D, be-
cause of the rounding errors which occur in the computer due to problems inherent
in this method of triangulation. In [3] a procedure is presented for constructing a
three dimensional triangulation similar to Delaunay technique which solves these
problems. As Delaunay triangulation is constructed on a set of points located on the
boundary and inside the domain, it may be that the resulting mesh does not contain
all the main edges and faces defined in the boundary or inside the domain. This as-



pect constitutes an open problem and has been studied by several authors, although
the proposed solutions are complex. The size of the mesh will depend on the com-
plexity of the problem and accuracy of the numerical solution. When the meshes
are fine we are faced with two problems: on the one hand, the space required to
store the mesh; on the other, the time needed to process the information.

These problems are generally dealt with in everyday use. However large the data
stored, more swift the process, whilst for greater economy of information, the pro-
cessing will be more complex. One possible solution that satisfies these require-
ments would entail an appropriate organization of the information, thus minimizing
the storage space and also information processing.

The data structures commonly used in mesh problems are based on different arrays
that contain mesh information: nodes, edges, faces, tetrahedra, connectivity, ge-
nealogy, etc. In some traditional languages it is necessary to oversize these arrays
to anticipate mesh changes. When refinements are applied, the increase in the num-
ber of elements must be estimated. Furthermore, when derefinements are carried
out, the space of the eliminated elements should be recovered by compacting the
arrays. All this memory work may lead to significant programming time wastage.
Recovering memory space also takes time, depending on programming efficiency.

Some problems are solved through the development of languages such as C, For-
tran 90, Fortran 95, etc., where memory may be used dynamically: when memory
is needed, it is obtained from the system, and it may be returned when it is not
needed and thus used again. The recovery and compacting of memory is left to the
operating system, so the programming efforts may be concentrated on other aspects
of the problem.

Structures are another advantage of C. They allow a clearer organization of infor-
mation, thus facilitating the programming. In the structures, information for each
element is grouped, independently of the type of data being treated. This does not
save used memory space for storage, but does provide more program clarity.

The pointers are another tool. In C, objects can be named indirectly using references
to their memory positions. We will see that this provides considerable savings when
passing information between modules and increases the efficiency of information
organization.

Considerable progress has been made with C++ that extends the concept of struc-
ture to class. A class contains all the operations which can be carried out with it
and also element information. In other words, a type of data based on the element
is established.

Furthermore, the object oriented programming introduces the concept of inheri-
tance. A class may be inherited from another, so that it will get all the properties
of its predecessor, plus the new ones that are its own. This permits us to develop



Point Element

Node Edge Face

Vector

VecIter

Auxiliary Classes

Mesh

Problem

Solution Oriented Classes

MyLower

Tetrahedron

Divisible

MyUpper

Fig. 1. Hierarchy of classes

hierarchies of classes, and continue creating increasingly complex modules from
simpler ones.

Another interesting concept is encapsulation. In each class we may define what
parts are accessible externally and which are restricted.

With these characteristics a class may be considered as a black box which provides
interfaces with the remaining modules, whilst its inner workings are absolutely
private. The number of programming errors is reduced, as only class-authorized
operations may be carried out. Meanwhile code reuse increases.

C++ has serious issues with software maintenance. In order to avoid problems with
portability of libraries between systems and compilers, the implementation of the
refinement algorithm has been carried out using standard C++. Actually, although
some usable modules exist in most compilers, we have written them to guarantee
portability.

2 Hierarchy of Classes

Based on the classes and C++, a hierarchy has been defined for modelling the dif-
ferent elements that make up a mesh, and gather together the characteristics of
a refinement/derefinement process when solving adaptive problems. The general
structure may be seen in figure 1.

We begin by providing a detailed description of the auxiliary classes used by the rest
of the modules for their internal tasks. Then we will consider the classes used for



modelling the mesh elements. Finally we present the classes oriented to resolution
of problems.

a) Auxiliary classes. A so-called Vector class has been defined, which is an array
with certain peculiarities. The most striking is that it does not contain duplicate
elements and its elements are always pointers or references to objects. There are
operations programmed for addition and extraction of elements, addition of con-
tents of one array over another, and accesses to the array elements by index.

Dynamic memory is also carried out in this class, by borrowing and returning to the
system. The rest of the classes use this class to maintain references to other objects.

From Vector class we can also define the VecIter class. It inherits all the Vector
characteristics, and introduces operations that allow us to carry out revisions of the
array elements, as well as simpler recovery methods.

b) Point. In this class the basic properties of a point in space are defined and some
operations that may be carried out with it. It contains the point coordinates (x,y,z),
and the operations for addition and subtraction of coordinates, multiplication by a
constant and the distance between two points.

c) Element. This will be the basic class for all the elements of the mesh. It is very
simple, only containing a single property called Reference, used in all the objects
that make up the mesh.

d) Divisible. This class is inherited from Element and is the antecedent to all those
that model objects which may be divided. It contains genealogical references of the
elements. The sons are the elements into which the parent is divided. In the marked
process to mesh element division, this class ensures that elements are not marked
twice erroneously, and provides information on the current state of each.

e) MyUpper. For each given element, this class maintains the object references
that compose it. For example, in the case of a node, this class indicates the edges
connected to it.

f) MyLower. Contrary to the previous example, the object references that make up
a given element are stored.

g) Node. This class is inherited from Point, Element and MyUpper. It contains the
data necessary for modelling a mesh node. At any time, and through the data con-
tained in the parent classes, it is possible to access to the rest of the elements that
contain a certain node.

h) Edge. This class is inherited from MyLower, Divisible and MyUpper. Here, ref-
erences to elements (faces) containing the edge are stored. In addition, Edge class
allows us to reference the nodes that form an edge of the mesh. The reference to the



possible node that divides the edge is also stored in the refinement process. Another
implemented procedure returns the edge length.

i) Face. This has the same inheritance as Edge. Note that references to possible
inner edges, which may result from the division of the face, are stored.

j) Tetrahedron. This class is inherited from MyLower and Divisible. It contains ref-
erences to the faces that form it. Furthermore, some indicators are stored for tetra-
hedra depending on the problem under consideration (refinement flags, information
about the numerical solution, etc.).

k) Classes oriented to solutions. Two classes have been defined, directly related
to the resolution of problems by using refinement and derefinement techniques.
One is the Mesh class, which contains a list of references to node, edges, faces
and tetrahedra, all related to each other, that form the mesh. Our version of the
8-subtetrahedron subdivision has been implemented in this module. To carry out
this refinement, different processes have been programmed to reach the conformity
of the mesh. The algorithm will be described in detail in the next section. The
other class is Problem, that contains the procedures of information exchange with
other modules for problem resolution. These procedures include reading and writ-
ing in files of several formats and generating mesh information in data structures
used by other programs. In the Problem class there are lists of references to node,
edges, faces and tetrahedra. These lists are not merely for reference purposes, but
objects in their own right. From these lists an object is formed of the Mesh class
copying references, so that the objects are only found once in memory, but may be
referenced from many elements. The data transfers which are carried out between
modules are references, that is, pointers, thus considerable time and memory con-
sumption are saved. Refinement and derefinement processes are controlled in this
class, as well as the transfer of information from problem resolution to the mesh in
order to carry out a new refinement.

3 Refinement Algorithm

We propose a refinement algorithm based on the 8-subtetrahedron subdivision de-
veloped in [13]. Consider an initial triangulation τ1 of the domain given by a set
of n1 tetrahedra t11, t12, ..., t

1
n1

. Our goal is to build a sequence of m levels of nested
meshes T = {τ1 < τ2 < ... < τm}, such that the level τj+1 is obtained from a
local refinement of the previous level τj . The error indicator εj

i will be associated to
the element tji ∈ τj . Once the error indicator εj

i is computed, such element must be
refined if εj

i ≥ θεj
max, being θ ∈ [0, 1] the refinement parameter, and εj

max the maxi-
mal value of the error indicators of the elements of τj . From a constructive point of
view, initially we shall obtain τ2 from τ1, attending to the following considerations:



a) 8-subtetrahedron subdivision. A tetrahedron t1i ∈ τ1 is called of type I if ε1
i ≥

θε1
max. Later, this set of tetrahedra will be subdivided into 8 subtetrahedra as figure

2(a) shows; 6 new nodes are introduced in the middle point of its edges and each one
of its faces are subdivided into four subtriangles following the division proposed by
Bank [7]. Thus, four subtetrahedra are determined from the four vertices of t1

i and
the new edges. The other four subtetrahedra are obtained by joining the two nearest
opposite vertices of the octahedron which results inside t1i . This simple strategy
is that proposed in [13] or in [11], in contrast to others based on affine maps to
a reference tetrahedron, as that analysed in [12] which ensures the quality of the
resulting tetrahedra. Similar results were obtained by Bornemann et al [11] with
both strategies in their numerical experiments. On the other hand, for Lohner and
Baum [13], this choice produces the lowest number of distorted tetrahedra in the
refined mesh. Evidently, the best of the three existing options for the subdivision
of the inner octahedron may be determined by analysing the quality of its four
subtetrahedra, but this would augment the computational cost of the algorithm.

Once the subdivision of type I tetrahedra is defined, we can find neighbouring tetra-
hedra which may have 6, 5, ..., 1 or 0 new nodes introduced in their edges that must
be taken into account in order to ensure mesh conformity. In the following we anal-
yse each one of these cases. We must remark that in this process we only mark the
edges of the tetrahedra of τ1 in which a new node has been introduced. The cor-
responding tetrahedron is classified depending on the number of marked edges. In
other words, until the conformity of τ2 is not ensured by marking edges, this new
mesh will not be defined.

b) Tetrahedra with 6 new nodes. Those tetrahedra that have marked their 6 edges
for conformity reason, are included in the set of type I tetrahedra.

c) Tetrahedra with 5 new nodes. Those tetrahedra with 5 marked edges are also
included in the set of type I tetrahedra. Previously, the edge without new node must
be marked.

d) Tetrahedra with 4 new nodes. In this case, we mark the two free edges and it is
considered as type I.

Proceeding as in (b), (c) and (d), we improve the mesh quality and simplify the
algorithm considerably regarding other possible strategies. One may think that this
procedure can augment the refined region, but we must take into account that only
1 or 2 new nodes are introduced from a total of 6. Note that this ratio is less or equal
to that arising in the 2-D refinement with the Rivara’s 4-T algorithm, in which the
probability of finding a new node introduced in the longest edge of a triangle is
1/3. This fact is accentuated in the generalization of this algorithm in 3-D.

e) Tetrahedra with 3 new nodes. In this case, we must distinguish two situations:

e.1) If the 3 marked edges are not located on the same face, then we mark the



others and the tetrahedron is introduced in the set of type I tetrahedra. Here, we can
make the previous consideration too, if we compare this step with other algorithms
based on the bisection by the longest edge.

In the following cases, we shall not mark any edge, i.e., any new node will not
be introduced in a tetrahedron for conformity. We shall subdivide them creating
subtetrahedra which will be called transient subtetrahedra.

e.2) If the 3 marked edges are located on the same face of the tetrahedron, then
4 transient subtetrahedra are created as figure 2(b) shows. New edges are created
by connecting the 3 new nodes to one another and these with the vertex opposite
to the face containing them. The tetrahedra of τ1 with these characteristics will be
inserted in the set of type II tetrahedra.

f) Tetrahedra with 2 new nodes. Also here, we shall distinguish two situations:

f.1) If the two marked edges are not located on the same face, then 4 transient
subtetrahedra will be constructed from the edges connecting both new nodes and
these with the vertices opposite to the two faces which contain each one of them.
This tetrahedra are called type III.a; see figure 2(c).

f.2) If the two marked edges are located on the same face, then 3 transient subte-
trahedra are generated as figure 2(d) shows. The face defined by both marked edges
is divided into 3 subtriangles, connecting the new node located in the longest edge
with the opposite vertex and with the another new node, such that these three sub-
triangles and the vertex opposite to the face which contains them define three new
subtetrahedra. We remark that from the two possible choices, the longest marked
edge is fixed as reference in order to take advantage in some cases of the properties
of the bisection by the longest edge. These tetrahedra are called type III.b.

g) Tetrahedra with 1 new node. Two transient subtetrahedra will be created as we
can see in figure 2(e). The new node is connected to the other two which are not
located in the marked edge. This set of tetrahedra is called type IV.

h) Tetrahedra without new node. These tetrahedra of τ1 are not divided and they
will be inherited by the refined mesh τ2. We call them type V tetrahedra; see figure
2(f).

This classification process of the tetrahedra of τ1 is carried out by marking their
edges simply. The mesh conformity is ensured in a local level analysing the neigh-
bourhood among the tetrahedra which contain a marked edge by an expansion pro-
cess that starts in the type I tetrahedra of paragraph (a). Thus, when the run along
this set of type I tetrahedra is over, the resulting mesh is conformed and locally
refined.



(a) Type I (b) Type II

(c) Type III.a (d) Type III.b

(e) Type IV (f) Type V

Fig. 2. Subdivision classification of a tetrahedron in function of the new nodes (white cir-
cles).



Moreover, this is a low computational cost process, since the local expansion stops
when we find tetrahedra whose edges must not be marked. Implementation details
will be discussed in the next section.

Generally, when we want to refine the level τj in which there already exist transient
tetrahedra, we shall perform it in the same way as from τ1 to τ2, except for the
following variation: if an edge of any transient tetrahedron must be marked, due to
the error indicator or even to conformity reasons, then all the transient tetrahedra
are eliminated from their parent (deleting process), all the parent edges are marked
and this tetrahedron is introduced into the set of type I tetrahedra. We must remark
that it will be only necessary to define a variable which determines if a tetrahedron
is transient or not.

4 Algorithm Implementation

Algorithm development will basically contain two sequential revisions of the mesh.
In the first, transient tetrahedra are studied. In the second, marked non-transient
tetrahedra are considered.

In the first step two types of tetrahedra will be selected:

• Transient tetrahedra marked for refinement.

• The rest of transient tetrahedra with a neighbouring tetrahedron by any of its
edges which is non-transient and up for refining. Note that the case of neighbour-
ing tetrahedron, which were transient and up for refining, would be included in
the previous item.

In both cases, the selected parent tetrahedron will be called type I to proceed to its
division. The first point is based on the definition of the algorithm. In the second
case there is an anticipation of what the algorithm is going to produce. As there is a
marked, non-transient neighbour, it will be type I, so all its edges should be marked,
and at least one of these marks should be on the tetrahedron under consideration,
which is transient, so it should be divided by conformity, which is not allowed, but
rather it will be the father of the divided. This is what is selected in the second case.

Once the tetrahedra are marked, an expansion to conform the mesh is generated. A
recursive process takes place in which each step is studied; first, as to whether the
tetrahedron is type I, or whether it should be converted to type I. If this is the case,
for each edge which is still unmarked, a list of neighbouring tetrahedra is created by
the edge. This edge is marked and for each tetrahedron a similar process is carried
out. The following is a pseudo-code:



Main Process
for every tetrahedron marked to be refined do
Study (tetrahedron)

Study(Tetrahedron t)
Drop_Inner_Division(t)
if t have 6 marks return;
if t is marked to be refined then
Mark_All_Edges(t)

else if t have 4 or 5 marks
Mark_All_Edges(t)

else if t have 3 marks not in the same face then
Mark_All_Edges(t)

Mark_All_Edges(Tetrahedron t)
for every edge of t do
if edge is not marked then

Mark_Edge(edge)

Mark_Edge(Edge a)
for every tetrahedron of a do
Drop_Inner_Division(tetrahedron)

Make one mark in a
for every tetrahedra of a do
Study(tetrahedron)

Drop_Inner_Division(Tetrahedron t)
if t is divided into 8 tetrahedra or not divided then
return

Remove inner tetrahedra of t
for every face of t do
Drop_Face_Division(face)

Drop_Face_Division(Face f)
if f is divided into 4 faces or not divided then
return

For every tetrahedron of f do
Drop_Inner_Division(tetrahedron)

Remove division of f

As we can see, there are two stop criteria: the first is the Study process, when no
marks should be made in a tetrahedron because it is adjusted to one of the types
specified in the algorithm. The second is carried out after studying all the edges
of a tetrahedron in the Mark All Edges process. The expansion process involves
eliminating transient elements. Each time we study an element, and this is divided,



its subdivision is eliminated, and all the divisions of those neighbouring by its faces.
Carrying out a new marking will lead to different internal partitions from those
already existing. The elimination process takes place with another revision of the
tetrahedron under study toward all its neighbours, stopping when we have non-
divided tetrahedra, or divided permanently in 8 sub-tetrahedra.

Once the expansion process is completed, we have a conformed mesh, and can
begin to partition marked elements. The mesh tetrahedra are revised, the division
of their edges and faces is carried out and new elements joined.

The second mesh revision will only study the tetrahedra that should be refined due
to the numerical solution of the problem. All these tetrahedra will be non-transient,
as marked transient ones have already been eliminated. This revision is similar to
the process of the transient ones: tetrahedra are studied and marked, then divided
and joined. The difference is that it is not necessary to eliminate internal tetrahedral
division (as we are not working with the parent of any element).

The algorithm and partition processes are programmed in the Mesh class. Objects
created in the original mesh belong to the Problem class, while in each step of the
refinement process, references to the original objects are used. When an object is
divided by Mesh class, its reference is eliminated, but not the object itself which
does not belong to this class. The objects created are internal to others, they belong
to the parent, and pass their references on to the Mesh class. As we can see, this
class works by inserting and erasing references to objects in its lists, but it never
creates or destroys any object, since that would be utilized in a subsequent step.
When a satisfactory solution is obtained, the Mesh class will be responsible for
eliminating all the objects and returning memory to the system.

5 Numerical Experiments

The first experiment is related to a mesh which consists of 5072 tetrahedra and 1140
nodes. Here the refinement criteria is based on the distance from the tetrahedron’s
gravity centre to a corner of the domain.

In figure 3 we present the resulting meshes after two steps of the refinement al-
gorithm. The first one contains 5386 tetrahedra and 1201 nodes, while the second
refinement yields a mesh with 6270 tetrahedra and 1433 nodes.

Figure 4 represents another mesh refined using our algorithm. We have begun with
a mesh of 5272 tetrahedra and 1229 nodes, obtained by the mesh generator devel-
oped by the authors in [14]; see figure 4(a). It has been refined according to an
error indicator related to a wind field modelling using the finite element method.
Two refinements has been computed. The first refined mesh, which contains 5408



tetrahedra and 1256 nodes, is shown in figure 4(b). The last one corresponds to fig-
ure 4(c) with 6696 tetrahedra and 1520 nodes. In this figure, only the lower surface
and two vertical walls have been drawn in order to observe the local refinement
around the mountain.

(a) τ1 (b) τ2 (c) τ3

Fig. 3. First experiment of the refinement algorithm; (a) initial mesh, (b) and (c) resulting
meshes after 1 and 2 refinement steps, respectively.

Finally, a 45600 × 31200 × 9000 m3 domain with real data of the topography is
discretized using the code developed in [14]. The maximum height in this zone of
the La Palma Island is 2279 m. We start from a grid τ0 containing p0 = 11416
nodes and n0 = 55003 tetrahedra; see figure 5(a). After a global refinement of τ0,
it results a new mesh τ1 with p1 = 83040 nodes and n1 = 440024 tetrahedra; see
figure 5(b). Then, we consider Nr tetrahedra to be refined in τ1. So, the total num-
ber of tetrahedra in the local refined mesh τ2 is n2 = n1 + ∆r + ∆c, where ∆r is
the increment in the number of tetrahedra arising from the 8-subtetrahedron subdi-
vision of the Nr tetrahedra, i.e. ∆r = 7Nr, and ∆c the increment in the number of
tetrahedra to obtain conformity.

In order to compare timing data of different adaptive strategies, we have considered
Nr = 10000k, being k = 1, 2, ..., 44. figure 6(a) shows the evolution of ∆c and n2

versus Nr. Obviously, n2 is an increasing function of Nr. However, ∆c is linear at
first (really local refinement), next it reaches a stable value and, finally, it tends to
zero as Nr tends to n1 (global refinement). For these strategies, in figure 6(b), we
present CPU time in seconds on a XEON taken by the code proposed in section 4.
This figure illustrates a linear complexity of the algorithm when the refinement is
local. On the other hand, as the refinement tends to be global, CPU time decreases
due to the cost for conforming the mesh is lower.



(a) τ1

(b) τ2

(c) τ3

Fig. 4. Second experiment; (a) initial mesh, (b) and (c) refined meshes.



(a) τ0

(b) τ1

Fig. 5. Third experiment; (a) starting mesh and (b) global refined mesh.



500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

0 50000 100000 150000 200000 250000 300000 350000 400000 450000

N
u
m

be
r

o
f

te
tr

a
h
e
d
r
a

Nr

n2

∆c

(a)

0

5

10

15

20

25

0 50000 100000 150000 200000 250000 300000 350000 400000 450000

C
P

U
ti

m
e

(s
)

Nr

(b)

Fig. 6. Third experiment; (a) evolution of ∆c and n2 versus the number of tetrahedra to be
refined Nr and (b) CPU time for these adaptive strategies.



6 Conclusions

In this paper, some aspects of a 3-D mesh refinement algorithm have been pre-
sented. The class hierarchy is a robust tool for implementing the structure of meshes.
New properties for elements were directly added when they were needed. Due to
programming requirements, we consider from simpler characteristics to more com-
plex ones. The implementation of the algorithm using class hierarchy has reached
the proposal aims: low computational cost and minimal memory requirements.

On the other hand, the refinement algorithm has interesting properties about qual-
ity and degeneration of meshes after many refinement steps. It has been properly
applied in 3D-meshes generated by the version of Delaunay triangulation proposed
in [3].

Finally, in future research we will develop the derefinement algorithm associated
to the refinement one presented in this paper.

Acknowledgements

This work has been partially supported by the MCYT of Spanish Government and
FEDER, grant contract REN2001-0925-C03-02/CLI. The authors acknowledge Dr.
David Shea for editorial assistance.

References

[1] Lohner R, Parikh P. Three-dimensional grid generation by advancing front method. Int
J Numer Meth Fluids 1988;8:1135-1149.

[2] George PL, Hecht F, Saltel E. Automatic mesh generation with specified boundary.
Comp Meth in Appl Mech and Engng 1991;92:269-88.

[3] Escobar JM, Montenegro R. Several aspects of three-dimensional Delaunay
triangulation. Advances in Engineering Software 1996;27(1/2):27-39.

[4] Ferragut L, Montenegro R, Plaza A. Efficient refinement/derefinement algorithm of
nested meshes to solve evolution problems. Comm Num Meth Engng 1994;10:403-
12.

[5] Montenegro R, Plaza A, Ferragut L, Asensio I. Application of a nonlinear evolution
model to fire propagation. Nonlinear Analysis, Theor, Meth & Appl 1997;30(5):2873-
82.



[6] Winter G, Montero G, Ferragut L, Montenegro R. Adaptative strategies using standard
and mixed finite elements for wind field adjustment. Solar Energy 1992;54(1):49-56.

[7] Bank RE, Sherman AH, Weiser A. Refinement algorithms and data structures for
regular local mesh refinement. Scientific Computing IMACS. Amsterdam: North-
Holland; 1983. p. 3-17.

[8] Arnold DN, Mukherjee A, Pouly L. Locally adapted tetrahedral meshes using
bisection. SIAM J Sci Comput 2000;22(2):431-48.

[9] Rivara MC, Levin C. A 3-d refinement algorithm suitable for adaptive multigrid
techniques. J Comm Appl Numer Meth 1992;8:281-90.

[10] Plaza A, Carey GF. Local refinement of simplicial grids based on the skeleton. Appl
Numer Math 2000;32:195-218.

[11] Bornemann F, Erdmann B, Kornhuber R. Adaptive multilevel methods in three space
dimensions. Int J Numer Meth Engng 1993;36:3187-203.

[12] Liu A, Joe B. Quality local refinement of tetrahedral meshes based on 8-subtetrahedron
subdivision. Mathematics of Comput 1996;65(215):1183-200.

[13] Lohner R, Baum JD. Adaptive h-refinement on 3D unstructured grids for transient
problems. Int J Numer Meth Fluids 1992;14:1407-19.

[14] Montenegro R, Montero G, Escobar JM, Rodrı́guez E, González-Yuste JM.
Tetrahedral mesh generation for environmental problems over complex terrains.
Lecture Notes in Computer Science 2002;2329:335-344.


