
Abstract

The efficiency of a mass consistent model for wind field adjustment depends on sev-
eral parameters that arise in various stages of the process. On one hand, those involved
in the construction of the initial wind field using horizontal interpolation and vertical
extrapolation of the wind measures registered at meteorological stations. On the other
hand, the stability parameter which allow from a strictly horizontal wind adjustment
to a pure vertical one. In general, the values of all of these parameters are based on
empirical laws. The main goal of this work is the estimation of these parameters using
genetic algorithms, such that some of the wind velocities observed at the measurement
station are regenerated as accurately as possible by the model. In addition, we study
the effect of the mesh refinement on the parameter estimation in several numerical
experiments.

Keywords: Parameter estimation, genetic algorithms, wind field modelling, mass
consistent models, adaptive mesh refinement, finite element method.

1 Introduction

A three-dimensional finite element model for wind field adjustment is developed. In
general, these problems are defined over regions with complex terrain, therefore a
suitable discretization of the studied zone will be necessary. Here, we have used a
technique for constructing tetrahedral meshes which are adapted to the terrain orogra-
phy and have a higher density of nodes near the terrain surface [1]. In section 2, our
mass consistent model is presented. It generates a velocity field for an incompressible
fluid which adjusts to an initial one obtained from experimental measures and physical
considerations. The construction of the initial field is developed in section 3. The first
step is to carry out an horizontal interpolation at the height of the measurement stations
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over the terrain. From these data, vertical profiles are constructed taking into account
the atmospheric stability, the roughness of the terrain, the geostrophic wind and the
atmospheric stratification. Once the initial field is computed, we formulate the mass
continuity equation of an incompressible fluid with non-flow-through boundary con-
dition on the terrain surface. The adjustment is carried out by a least square function.
The Lagrange multipliers technique leads to an elliptic problem which is solved by
using the finite elements method. However, there may exist some zones of the domain
where more accuracy of the numerical solution is required due to the irregularity of the
terrain as well as to strong variations of the solution. In order to improve the solution,
an adaptable refinement of the three-dimensional mesh is proposed in section 4. First,
for each element of the mesh to be refined, an error indicator is computed attending to
the current numerical solution. These point out what elements must be refined. The
proposed refinement technique, based on the subdivision in 8-subtetrahedra, allows
a higher discretization of the selected zones without excessive propagation along the
mesh. This process may be repeated until the error indicators of the numerical solu-
tion satisfy the imposed tolerance. In section 5, we remark the parameters of the wind
model to be estimated which lead us to construct the fitness function. Genetic algo-
rithms are used to solve this parameter estimation problem and their properties and
possibilities are briefly described in section 6. Section 7 is devoted to solve the same
numerical experiments presented in [2] in order to show the improvements obtained
with the mesh refinement. Finally, our conclusions are presented in section 8.

2 Mass Consistent Model in 3-D

This model [3] is based on the continuity equation for an incompressible flow where
the air density is constant in the domain Ω and no-flow-through conditions on Γb (ter-
rain and top) are considered

~∇ · ~u = 0 in Ω (1)

~n · ~u = 0 on Γb (2)

We formulate a least-square problem in Ω with ~u(ũ, ṽ, w̃) to be adjusted

E(~u) =

∫

Ω

[
α2

1

(
(ũ− u0)

2 + (ṽ − v0)
2
)

+ α2
2 (w̃ − w0)

2
]

dΩ (3)

where the interpolated wind ~v0 = (u0, v0, w0) is obtained from experimental measure-
ments, and α1, α2 are the Gauss precision moduli. This problem is equivalent to find
a saddle point (~v, φ) of the Lagrangian (see [4])

E (~v) = min
~u∈K

[
E (~u) +

∫

Ω

φ~∇ · ~u dΩ

]
(4)

being ~v = (u, v, w), φ the Lagrange multiplier and K the set of admissible func-
tions. The Lagrange multipliers technique is used to minimise the problem (4), whose
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minimum comes to form the Euler-Lagrange equations

u = u0 + Th
∂φ

∂x
, v = v0 + Th

∂φ

∂y
, w = w0 + Tv

∂φ

∂z
(5)

where T = (Th, Th, Tv) is the diagonal transmissivity tensor, with Th = 1

2α2

1

and

Tv = 1

2α2

2

. Since α1 and α2 are constant in Ω, the variational approach results in an
elliptic problem substituting (5) in (1)

∂2φ

∂x2
+

∂2φ

∂y2
+

Tv

Th

∂2φ

∂z2
= −

1

Th

(
∂u0

∂x
+

∂v0

∂y
+

∂w0

∂z

)
in Ω (6)

We consider Dirichlet condition for open or flow-through boundaries and Neumann
condition for terrain and top

φ = 0 on Γa (7)

~n · T ~∇µ = −~n · ~v0 on Γb (8)

The problem given by (6)-(8), is solved using tetrahedral finite elements (see [1])
that leads to a set of 4 × 4 elemental matrices and 4 × 1 elemental vectors. These
are assembled to form a symmetric linear system of equations which is solved by a
preconditioned conjugate gradient method.

3 Interpolated Wind

The first step for constructing the interpolated wind is the so-called horizontal inter-
polation. The wind speeds measured are interpolated at station height zm using the
distance and the height difference between each point and the station [3]

~v0(zm) = ε

N∑
n=1

~vn

d2
n

N∑
n=1

1

d2
n

+ (1− ε)

N∑
n=1

~vn

|∆hn|

N∑
n=1

1

|∆hn|

(9)

where ~vn is the velocity observed at station n, N is the number of stations considered
in the interpolation, dn is the horizontal distance from station n to the point where we
are computing the wind velocity, |∆hn| is the height difference between station n and
the studied point, and ε is a weighting parameter (0 ≤ ε ≤ 1), which allows to give
more importance to one of these interpolation criteria.

In the vertical profile of wind, we assume that this model does not take into account
the turbulence phenomena near the terrain due to its roughness. Thus, we establish

~v0(z) = 0 z ≤ z0 (10)
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We have considered a logarithmic profile in the surface layer, which takes into account
the previous horizontal interpolation, as well as the effect of roughness and the air sta-
bility (neutral, stable or unstable atmosphere, according to the Pasquill stability class)
on the wind intensity and direction. Above the surface layer, a linear interpolation is
carried out using the geostrophic wind. The logarithmic profile is given by

~v0(z) =
~v∗

k
(log

z

z0

− Φm) z0 < z ≤ zsl (11)

where ~v∗ is the friction velocity, k is von Karman constant, z0 is the roughness length
and zsl is the height of the surface layer. The value of Φm depends on the air stability

Φm = 0 (neutral)

Φm = −5
z

L
(stable)

Φm = log

[(
θ2 + 1

2

) (
θ + 1

2

)2
]
− 2 arctan θ +

π

2
(unstable)

(12)

where θ = (1 − 16 z
L
)1/4 and 1

L
= azb

0, with a, b, depending on the Pasquill stability
class. L is the so called Monin-Obukhov length. The friction velocity is obtained at
each point from the interpolated measurements at the height of the stations (horizontal
interpolation)

~v∗ =
k ~v0(zm)

log
zm

z0

− Φm

(13)

The height of the planetary boundary layer zpbl above the ground is chosen such
that the wind intensity and direction are constant at that height

zpbl =
γ |~v∗|

f
(14)

where f = 2ω sin ϕ is the Coriolis parameter (ω is the earth rotation and ϕ the lati-
tude), and γ is a parameter depending on the atmospheric stability. The mixing height
h coincides with zpbl in neutral and unstable conditions. In stable conditions, Zilitinke-
vich suggests (see [5])

h = γ′

√
|~v∗| L

f
(15)

where γ′ is another constant of proportionality. The height of the surface layer is
zsl = h

10
. From zsl to zpbl, a linear interpolation with geostrophic wind ~vg is carried

out

~v0(z) = ρ(z)~v0(zsl) + [1− ρ(z)]~vg zsl < z ≤ zpbl (16)

ρ(z) = 1−

(
z − zsl

zpbl − zsl

)2 (
3− 2

z − zsl

zpbl − zsl

)
(17)

Finally, this model assumes

~v0(z) = ~vgz > zpbl (18)
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4 Adaptive Mesh Refinement

Nowadays, most of the codes which use the finite element methods consider adaptive
techniques. In the generation of adaptive meshes, the local refinement of the domain
is necessary due, on one hand, to the geometry and, on the other hand, to the numer-
ical solution. It is carried out the computation of error estimators or at least suitable
error indicators of the numerical solution for determining the elements to be refined
or derefined in a mesh. Here we propose one error indicator which takes into ac-
count the gradient of the solution in each element. We obtain the initial mesh using a
non-structured mesh generator [1, 6] and then apply a refinement technique of nested
meshes based on this error indicator.

Some adaptive techniques in 2-D had been developed in the past which obtained
good results in several steady and non-steady problems (see, i.e., [7, 8, 9, 4]). In these
works, a version of Rivara 4-T local refinement algorithm [10] was used. In 3-D,
the problem is substantially different. Among the refinement algorithms developed
in 3-D, we can consider those based on the bisection of tetrahedra [11, 12, 13] and
those which use the 8-subtetrahedron subdivision [14, 15, 16]. In fact, the algorithm
developed in [13] may be understood as the generalisation in 3-D of the 4-T Rivara al-
gorithm. This last one is also based on the bisection of the triangle by its bigger edge.
The disadvantage of this method is the high number of possible cases in which a tetra-
hedron may be divided, considering the different possibilities of the 4-T subdivision
on its four faces, during the process of mesh conformity. However, the algorithms
proposed in [14, 15, 16], which generalise the subdivision in 4 subtriangles of Bank et
al [17] in 3-D, are simpler due to a lower number of possible subdivisions of a tetrahe-
dron. We propose a refinement algorithm based on the 8-subtetrahedron subdivision
developed in [16]. Consider an initial triangulation τ1 of the domain given by a set
of n1 tetrahedra t11, t12, ..., t

1
n1

. Our goal is to build a sequence of m levels of nested
meshes T = {τ1 < τ2 < ... < τm}, such that the level τj+1 is obtained from a local
refinement of the previous level τj . The error indicator εj

i associated to the element
tji ∈ τj which has been used is gradient type and it is defined as follows,

εj
i = dp

i

∣∣∣~∇φh

∣∣∣ (19)

where the parameter p is generally assumed to be 1 or 2, and di, the length of the
longest edge of tetrahedron tj

i . Note that if p = 1, then εj
i represents the maximal

variation of φh in the element tji . Once the error indicator εj
i is computed, such element

must be refined if εj
i ≥ θεj

max, being θ ∈ [0, 1] the refinement parameter and εj
max, the

maximal value of the error indicators of the elements of τj . From a constructive point
of view, initially we shall obtain τ2 from the initial mesh τ1, attending to the following
considerations:

a) 8-subtetrahedron subdivision. A tetrahedron t1i ∈ τ1 is called of type I if ε1
i ≥

γε1
max. Later, this set of tetrahedra will be subdivided into 8 subtetrahedra as Figure

1(a) shows; 6 new nodes are introduced in the middle point of its edges and each one
of its faces are subdivided into four subtriangles following the division proposed by
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Bank [17]. Thus, four subtetrahedra are determined from the four vertices of t1
i and

the new edges. The other four subtetrahedra are obtained by joining the two nearest
opposite vertices of the octahedron which result inside t1i .

Once the type I tetrahedral subdivision is defined, we can find neighbouring tetra-
hedra which may have 6, 5, ..., 1 or 0 new nodes introduced in their edges that must
be taken into account in order to ensure the mesh conformity. In the following we
analyse each one of these cases.

b) Tetrahedra with 6 new nodes. Those tetrahedra that have marked their 6 edges
for conformity reason, are included in the set of type I tetrahedra.

c) Tetrahedra with 5 new nodes. Those tetrahedra with 5 marked edges are also
included in the set of type I tetrahedra. Previously, the edge without new node must
be marked.

d) Tetrahedra with 4 new nodes. In this case, we mark the two free edges and it is
considered as type I.

e) Tetrahedra with 3 new nodes. In this case, we must distinguish two situations:

e.1. If the 3 marked edges are not located on the same face, then we mark the
others and the tetrahedron is introduced in the set of type I tetrahedra. Here, we can
make the previous consideration too, if we compare this step with other algorithms
based on the bisection by the longer edge.

In the following cases, we shall not mark any edge, i.e., any new node will not be
introduced in a tetrahedron for conformity. We shall subdivide them creating subte-
trahedra which will be called transient subtetrahedra.

e.2. If the 3 marked edges are located on the same face of the tetrahedron, then
4 transient subtetrahedra are created as Figure 1(b) shows. New edges are created by
connecting the 3 new nodes one another and these with the vertex opposite to the face
containing them. The tetrahedra of τ1 with these characteristics will be inserted in the
set of type II tetrahedra.

f) Tetrahedra with 2 new nodes. Also in this case, we shall distinguish two situa-
tions:

f.1. If the two marked edges are not located on the same face, then 4 transient
subtetrahedra will be constructed from the edges connecting both new nodes and these
with the vertices opposite to the two faces which contain each one of them. This
tetrahedra are called type III.a; see Figure 1(c).

f.2. If the two marked edges are located on the same face, then 3 transient sub-
tetrahedra are generated as Figure 1(d) shows. The face determined by both marked
edges is divided into 3 subtriangles, connecting the new node located in the longest
edge with the vertex opposite and with the another new node, such that these three
subtriangles and the vertex opposite to the face which contains them define three new
subtetrahedra. We remark that from the two possible choices, the longest marked edge
is fixed as reference in order to take advantage in some cases of the properties of the
bisection by the longest edge. These tetrahedra are called type III.b.
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(a) Type I (b) Type II

(c) Type III.a (d) Type III.b

(e) Type IV (f) Type V

Figure 1: Subdivision classification of a tetrahedron in function of the new nodes
(white circles).
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g) Tetrahedra with 1 new node. Two transient subtetrahedra will be created as we
can see in Figure 1(e). The new node is connected to the other two which are not
located in the marked edge. This set of tetrahedra is called type IV.

h) Tetrahedra without new node. These tetrahedra of τ1 are not divided and they
will be inherit by the refined mesh τ2. We call them type V tetrahedra; see Figure 1(f).

Generally, when we want to refine the level τj in which there already exist tran-
sient tetrahedra, we shall perform it in the same way as from τ1 to τ2, except for the
following variation: if an edge of any transient tetrahedron must be marked, due to
the error indicator or even to conformity reasons, then all the transient tetrahedra are
eliminated from their parent (deleting process), all the parent edges are marked and
this tetrahedron is introduced into the set of type I tetrahedra.

5 Discussion on the Parameters to Be Estimated

In the following we define and discuss the four parameter of the wind model that we
are interested in estimating. First, we will consider the so called stability parameter

α =
α1

α2

=

√
Tv

Th
(20)

since the minimum of the functional given by (3) is the same if we divide it by α2
2.

On the other hand, for α >> 1 flow adjustment in the vertical direction predominates,
while for α << 1 flow adjustment occurs primarily in the horizontal plane. Thus, the
selection of α allows the air to go over a terrain barrier or around it, respectively [18].
Moreover, the behaviour of mass consistent models in many numerical experiments
has shown that they are very sensitive to the values chosen for α. Therefore, we shall
give particular attention to this problem. In the past, many authors have studied the
parametrisation of stability, since the difficulty in determining the correct values of
α have limited the possible wide use of mass-consistent models in complex terrain.
Sherman [19], Kitada et al. [20] and Davis et al. [21], proposed to take α = 10−2,
i.e., proportional to the magnitude of w/u. Other authors such as Ross et al. [22]
and Moussiopoulos et al. [23] related α to the Froude number. Geai [24], Lalas et
al. [25] and Tombrou et al. [26], make the α parameter vary in the vertical direction.
Finally, Barnard et al. [27] proposed a procedure to obtain α for each single wind field
simulation. The main idea is to use N observed wind speeds to obtain the wind field
and to keep the rest, Nr, as a reference. Then, several simulations are performed with
different values of α. The value which gives the best agreement with the reference
observations is taken to be the final magnitude of the stability parameter. Since this
method provides values of α that are only reliable for each particular case, it cannot
provide an a priori value suitable for other simulations. Here, we follow a version
of the method proposed in [27], using genetic algorithms as optimisation technique
which lead to an automatic selection of α.

The second parameter to be estimate is the weighting coefficient ε (0 ≤ ε ≤ 1)
of (9). Note that ε → 1 signifies more importance of the horizontal distance from
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each point to the measurement stations, while ε → 0 signifies more importance of
the height difference between each point and the measurement stations [3]. In gen-
eral, the second approach has been used for complex terrains. On the other hand,
the first approach has been widely used for problems with regular topography or in
2-D horizontal analysis. In realistic applications, the possibility of existing zones with
complex orography and others with regular one, suggests that an intermediate value
of ε should be more useful.

The next parameter to discuss is γ, given in (14) and related to the height of the
planetary boundary layer. There exist different versions of where to search this param-
eter. Panofsky et al. [28] proposed the interval [0.15,0.25]. On the other hand, Ratto
[29] directly suggested γ = 0.3 in the WINDS code, while γ is located in [0.3,0.4] by
de Baas [30]. Therefore, in our simulations, the search space for γ must include all
these possibilities.

Finally, we are interested in obtaining suitable values of the parameter γ ′ involved
in the computation of the mixing height for stable atmosphere, see (15). Garratt [31]
proposed γ′ = 0.4. Also in the WINDS code one may find bounds of γ ′ around 0.4.
Thus, the value of γ ′ will be searched in the surroundings of 0.4.

6 Genetic Algorithms

Genetic algorithms (GAs) are optimisation tools based on the natural evolution mech-
anism. They produce successive trials that have an increasing probability to obtain
a global optimum. This work is based on the model developed by Levine [32]. The
most important aspects of GAs are the construction of an initial population, the evalu-
ation of each individual in the fitness function, the selection of the parents of the next
generation, the crossover of those parents to create the children, and the mutation to
increase diversity.

Two population replacements are commonly used. The first, the generational re-
placement, replaces the entire population each generation [33]. The second, known
as steady-state, only replaces a few individuals each generation [34, 35, 36]. Stop-
ping criteria are iteration limit exceeded, population too similar, and no change in the
best solution found in a given number of iterations. Initial population is randomly
generated.

The selection phase allocates an intermediate population on the basis of the evalu-
ation of the fitness function. We have considered four selection schemes [32]: propor-
tional selection (P), stochastic universal selection (SU), binary tournament selection
(BT) and probabilistic binary tournament selection (PBT).

The crossover operator takes bits from each parent and combines them to create a
child. One-point (OP) and uniform (U) crossover operators are used here. The first
one selects randomly the place where each of the parents strings are broken in two
substrings. Children will be the union of first substring of one parent and the second
of the other. Uniform crossover depends on the probability of exchange between two
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bits of the parents [37].

The mutation operator is better used after crossover [38]. It allows to reach indi-
viduals on the search space that could not be evaluated otherwise. When part of a
chromosome has been randomly selected to be mutated, the corresponding genes be-
longing to that part are changed. This happens with probability p. This work deals
with four mutation operators. Three of them are of the form ν ← ν ± p× ν, where ν
is the existing allele value, and p may be a constant value (C), chosen uniformly from
the interval (0, β) with β ≤ 1 (U), or selected from a Gaussian distribution (G). The
fourth operator (R) simply replaces ν with a value selected uniformly random from
the initialisation range of that gene.

The fitness function plays the role of the environment. It evaluates each string of a
population. This is a measure, relative to the rest of the population, of how well that
string satisfies a problem-specific metric. The values are mapped to a nonnegative and
monotonically increasing fitness value. In the numerical experiments with this wind
model, we look for optimal values of α, ε, γ and γ ′. For this purpose, the average
relative error of the wind velocities given by the model with respect to the measures
at the reference stations is minimised

F (α, ε, γ, γ′) =

Nr∑

n=1

|~vn − ~v(xn, yn, zn)|

|~vn|

Nr
(21)

where ~v(xn, yn, zn) is the wind velocity obtained by the model at the location of station
n, and Nr is the number of reference stations.

7 Numerical Experiments

We study the same wind field problem (cases I and III) related to the southern area of
La Palma Island (Canary Islands) which was defined in [39, 2]. A 45600× 31200 ×
9000 m3 domain with real data of the topography is discretized using the code devel-
oped in [1]. The maximum height in this zone of the island is 2279 m. The initial
mesh has been refined around the location of the measurement stations and contains
11416 nodes and 55003 tetrahedra; see Figure 2. The wind measurements were taken
in four stations: MBI, MBII, MBIII and LPA. In case I we consider softly unstable
conditions and in case III softly stable conditions, in order to test the procedure for
different stability conditions of the atmosphere. Due to the small number of available
data, we have used the observed wind speeds of stations MBI, MBII and LPA to ob-
tain the interpolated wind field (9), i.e., N = 3, and the measurement of MBIII is
considered as reference station in the fitness function (21), i.e., Nr = 1.

In the first application (case I), the parameter γ ′ is not involved in the modelling
due to the unstable condition of the atmosphere, i.e., h = zpbl. Thus, only α, ε and γ
will be estimated in this case. The experiment has been divided in two stages. First,
we fix γ = 0.3 and estimate α ∈ [10−3, 10] and ε ∈ [0, 1].
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Figure 2: Detail of the finite element mesh used for the numerical experiment. Only
the triangulation of the boundary is plotted in order to hold clarity.

The second column of Table 1 (Stage 1) shows the values obtained for α and ε,
which suggest a nearly vertical wind adjustment and remark the complexity of the ter-
rain, respectively. Note that we obtain with the model an error at station MBIII about
4.96%. The strategy of GAs (BT, U, R) corresponds to the most efficient selection,
crossover and mutation operators after several tests with different combinations. In
the second stage, α, ε and γ ∈ [0.15, 0.5] are estimated. The results are also shown in
the third column of Table 1. We observe that α takes the maximum value of the space
of search, ε remains around 0.5 and γ is reduced, such that the error at station MBIII
is 4.76%. We remark that in this experiment the worst evaluation of the fitness func-
tion, corresponding to values of the parameters in the search space, yields an error of
68.07% and 34.62% in each stage, respectively. Therefore, the knowledge of suitable
values of the studied parameters is essential for the efficiency of the numerical model.

For the second experiment (case III) we have followed a similar procedure. Now,
γ′ ∈ [0.15, 0.5] must be also considered. First, a problem with two unknown pa-
rameters (α, ε) is solved. The second column of Table 2 (Stage 1) shows the values
obtained for α, ε. Next, four problems arising from fixing one of the parameters each
time, respectively, are studied (Stages 2-5). Finally, the four parameters are estimated
at the same time in Stage 6. The atmospheric stable conditions remains the vertical ad-
justment predominance arising in the previous experiment with unstable conditions,
as well as augment the importance of the horizontal distance in the interpolation of
the observed wind speeds. The minimum error obtained at station MBIII was about
11.87%, while the error related to the worst evaluation was 994.2% in Stage 6. In both
experiments, the number of individuals of the initial population was 100, except for
stage 6 in case III where it was 150.

Figures 3 and 4 show the evolution of the parameters and the error along successive
generations for cases I and III, respectively. Note that α has been scaled in order to

11



Stage 1 Stage 2
GAs strategy BT, U, R SU, U, G

Iterations 88 135
CPU time (s) 10385 16194
Best Fitness 0.496 0.476

α 9.978 10.000
ε 0.609 0.484
γ (0.300) 0.150

Table 1: First experiment corresponding to the case I analysed in [39]. Strategy of ge-
netics algorithms, best evaluation of the fitness function and values of the parameters
(fixed values are written between brackets)

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6
GAs strategy SU, U, G SU, U, R SU, U, R SU, U, R SU, U, R SU, U, R

Iterations 81 82 93 123 435 431
CPU time (s) 9613 9478 10970 14758 50849 75692
Best Fitness 0.181 0.161 0.125 0.121 0.119 0.119

α 10.000 9.968 (9.968) 9.922 9.995 9.999
ε 0.672 0.780 0.808 (0.808) 0.810 0.808
γ (0.300) 0.244 0.234 0.230 (0.230) 0.231
γ′ (0.400) (0.400) 0.164 0.151 0.150 0.150

Table 2: Second experiment corresponding to the case III analysed in [39]. Strat-
egy of genetics algorithms, best evaluation of the fitness function and values of the
parameters (fixed values are written between brackets)

plot all the evolutions together.

Iterations and CPU timings on a five nodes cluster of 1,6 GHz Pentium 4 are shown
in Tables 1 and 1 for each stage, running 2 processes each node. We also try 3 and
4 processes each node, however, the strategy of running 2 processes per node was
the fastest. Evidently, the running time is considerably reduced working in a parallel
environment, where GAs become competitive with other optimisation methods. We
remark that the evaluation of one individual of any generation means the resolution
of a wind problem by the finite element method using two adaptive mesh refinement
steps (i.e., three meshes).

If we compare the results obtained here for both cases with those obtained in [2],
we observe that the error has been reduced about a half in each experiment.

Finally, as example, Figures 5 and 6 show the refined meshes obtained in the two
steps of adaptive mesh refinement for the computation of the wind field in the second
experiment, using the values of the parameters corresponding to Stage 6. Here, the
measures of the four stations have been taken into account for determining the inter-
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polated wind field. Figures 7 and 8 illustrate the streamlines and the velocities of wind
obtained by the model at a height of 500 m.
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Figure 3: Evolution of the parameters and Best Fitness along the successive generation
for stage 2 of case I.
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Figure 4: Evolution of the parameters and Best Fitness along the successive generation
for stage 6 of case III.
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Figure 5: Detail of the refined mesh obtained in the first step of refinement.

Figure 6: Detail of the refined mesh obtained in the second step of refinement.

8 Conclusions

We have pointed out that the estimation of several parameters is essential for the ef-
ficiency of a 3-D mass consistent model for wind field adjustment. The numerical
experiments have shown that these codes are very sensitive to the values chosen for
α, ε, γ and γ ′. A methodology for solving these parameter estimation problems is
proposed. Genetic algorithms have proved to be an efficient and robust tool for these
optimisation problems when several parameters are involved (see also [40]). Adaptive
mesh refinement techniques allow us to reduce the error in the reference stations. Fi-
nally, the resolution by GAs using a cluster of computers leads to competitive timings
compared to other optimisation solvers.
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Figure 7: Streamlines of wind velocities related to the second experiment at a height
of 500 m

Figure 8: Wind velocities related to the second experiment at a height of 500 m
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