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Abstract We present a new method to construct a trivari-
ate T-spline representation of complex solids for the appli-
cation of isogeometric analysis. We take a genus-zero solid
as a basis of our study, but at the end of the work we ex-
plain the way to generalize the results to any genus solids.
The proposed technique only demands a surface triangula-
tion of the solid as input data. The key of this method lies in
obtaining a volumetric parameterization between the solid
and the parametric domain, the unitary cube. To do that, an
adaptive tetrahedral mesh of the parametric domain is iso-
morphically transformed onto the solid by applying a mesh
untangling and smoothing procedure. The control points of
the trivariate T-spline are calculated by imposing the inter-
polation conditions on points sited both on the inner and on
the surface of the solid. The distribution of the interpolating
points is adapted to the singularities of the domain in or-
der to preserve the features of the surface triangulation. We
present some results of the application of isogeometric anal-
ysis with T-splines to the resolution of Poisson equation in
solids parameterized with this technique.
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1 Introduction

CAD models usually define only the boundary of a solid, but
the application of isogeometric analysis [2,3,10] requires
a fully volumetric representation. An open problem in the
context of isogeometric analysis is how to generate a trivari-
ate spline representation of a solid starting from the CAD
description of its boundary. As it is pointed by Cotrell et al.
in [10], ”the most significant challenge facing isogeometric
analysis is developing three-dimensional spline parameteri-
zations from surfaces”.

There are only a few works addressing this problem, and
they all have in common the use of harmonic functions to
establish the volumetric parameterization [21,22,25,26,36].

For example, Li et al. [21] construct a harmonic vol-
umetric mapping through a meshless procedure by using
a boundary method. The algorithm can be applied to any
genus data but it is complex and requires placing some source
and collocation points on an offset surface. Optimal results
of source positions are unknown, and in practice they are
chosen in a trial-and-error manner or with the help of hu-
man experience. Therefore, the problem is ill-conditioned
and regular system solvers often fail.

Martin et al. [25,26] present a methodology based on
discrete harmonic functions to parameterize a solid. They
solve several Laplace’s equations, first on the surface and
then on the complete 3-D domain with FEM, and use a Lapla-
cian smoothing to remove irregularities. During the process,
new vertices are inserted in the mesh and retriangulations (in
2-D and 3-D) are applied in order to introduce the new ver-
tex set in the mesh. The user has to make an initial choice of
two critical points to establish the surface parameterization
and to fix a seed for generating the skeleton. The parameter-
ization has degeneracy along the skeleton. The extension to
genus greater than zero [26] requires finding suitable mid-
surfaces.

We propose a different approach in which the volumetric
parameterization is accomplished by transforming a tetrahe-
dral mesh from the parametric domain to the physical do-
main. This is a special feature of our procedure; we do not
have to give the tetrahedral mesh of the solid as input, as it
is a result of the parameterization process. Another charac-
teristic of our work is that we use an interpolation scheme
to fit a trivariate B-spline to the data, instead of an approxi-
mation, as other authors do. This performs a more accurate
adaptation of the T-spline to the input data.

One of the main drawbacks of NURBS (see for exam-
ple [29]) is that they are defined on a parametric space with
a tensor product structure, making the representation of de-
tailed local features inefficient. This problem is solved by
the T-splines, a generalization of NURBS conceived by Se-
derberg [32] that enables the local refinement. The T-splines
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are a set of functions defined on a T-mesh, a tiling of a rect-
angular prism in R

3 allowing T-junctions (see [2] and [32]).

We present a new method for constructing volumetric
T-meshes of solids whose boundaries are defined by sur-
face triangulations. The method was firstly introduced for
genus zero solid in [13]. Our procedure can be summarized
in two stages. In the first one, a volumetric parameteriza-
tion of the solid is developed. Broadly speaking, we can
consider that the construction of a volumetric parameteri-
zation is a process in which an adaptive tetrahedral mesh,
initially defined in the unitary cube C = [0,1]3, is deformed
until it achieves the shape of the solid (the physical domain).
This deformation only affects the positions of the nodes,
that is, there is not any change in their connectivities: we
say that both meshes are isomorphic. Given that a point is
fully determined by the barycentric coordinates relative to
the tetrahedron in which it is contained, we can define a one-
to-one mapping between C and the solid assuming that the
barycentric coordinates are the same in both spaces.

In the second stage, the modeling of the solid by trivari-
ate T-splines is carried out. The control points of the T-
splines are calculated enforcing the T-splines to verify the
interpolation conditions. Here is where the volumetric pa-
rameterization plays its part, mapping the interpolation points
from the parametric domain, the T-mesh, onto the solid. In
our case, the T-mesh is an octree partition of C with a simi-
lar resolution than the tetrahedral mesh defined in C .

The method was introduced for isogeometric modeling
of genus one solids in [14]. In this paper, that is an extension
of [14], we discuss the application of the method to genus
greater than zero and present an adaptive isogeometric strat-
egy to solve the Poisson equation using T-splines.

Our technique is simple and it automatically produces a
T-spline adapted to the geometry with a low computational
complexity and low user intervention. As in other methods,
our parameterization can introduce some distortion, espe-
cially along the cube edges.

The paper is organized as follows. In the next section we
describe the main steps to parameterize a genus-zero solid
onto a cube. Some parts of this section are taken from our
previous works on mesh untangling and smoothing and the
meccano method [7,8,11,27,28], but they have been adapted
to the requirements of the present work. The representation
of the solid by means of trivariate T-splines is developed in
section 3. In section 4 we show a test problem and several
applications that highlight the ability of our method for mod-
eling complex objects. We also present in this section the
extension of our procedure to deal with genus greater than
zero solids. In section 5 we apply isogeometric analysis to
the resolution of Poisson equation in a domain constructed
with this technique. Finally, in section 6 we present the con-
clusions and set out some challenges.

2 Volumetric parameterization

2.1 Boundary mapping

The first step to construct a volumetric parameterization of
a genus-zero solid consists of establishing a bijective corre-
spondence between the boundary of the cube and the solid.
To do that, the given surface triangulation of the solid, T S,
is divided in six patches or connected subtriangulations, T i

S
(i = 1,2, . . . ,6), having the same connectivities as the cube
faces. Specifically, if we consider that each subtriangulation
corresponds to a vertex of a graph and two vertices of the
graph are connected if their corresponding subtriangulations
have at least a common edge, then, the graphs correspond-
ing to the solid and the graph of the cube must be isomorphic
(see [8,28] for details).

Once TS is decomposed into six patches, we map each
T i

S to the corresponding cube face by using the parameter-
ization of surface triangulations proposed by M. Floater in
[15,16]. This is a well-known method to transform a surface
triangulation onto a plane triangulation defined in a convex
domain, that is, the cube faces in our case. Many and more
recent alternative solutions have been proposed to solve the
surface parameterization (see for example the surveys [17,
18]), but in most of them the plane triangulation is not de-
fined in a convex set, which is a restriction for us. Thus, if τ i

F
is the resulting triangulation on the i-th face of the cube, the
parameterization Π i

F : τ i
F → T i

S is a piece-wise linear func-
tion that maps a point p inside triangle T ∈ τ i

F onto a point q
belonging to triangle Π i

F(T )∈T i
S with identical barycentric

coordinates.
To ensure the compatibility of {Π i

F}6
i=1, the boundary

nodes of {τ i
F}6

i=1 must coincide on common cube edges.
The six transformations {Π i

F}6
i=1 define a global parame-

terization between τF =
⋃6

i=1 τ i
F and TS given by

ΠF : τF → TS (1)

The parameterization ΠF is used in the following step
of the algorithm to map a new triangulation defined over the
boundary of C onto the boundary of the solid.

2.2 Generation of an adapted tetrahedral mesh of the cube

Let us consider CK is a tetrahedral mesh of C resulting after
applying several local bisections of the Kossaczky algorithm
[20] to an initial mesh formed by six tetrahedra (see Fig.
1(a)). Three consecutive global bisections are presented in
Figures 1(b), 1(c) and 1(d). The mesh of Fig. 1(d) contains
8 cubes similar to the one shown in Fig. 1(a). Therefore, the
successive refinement of this mesh produces similar tetrahe-
dra to those of Figures 1(a), 1(b) and 1(c).
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(a) (b) (c) (d)

Fig. 1 Refinement of a cube by using Kossaczky’s algorithm: (a) cube
subdivision into six tetrahedra, (b) bisection of all tetrahedra by insert-
ing a new node in the cube main diagonal, (c) new nodes in diagonals
of cube faces and (d) global refinement with new nodes in cube edges.

If τK = ∂CK is the new triangulation defined on the bo-
undary of C , then we define a new parameterization

ΠK : τK → T ∗
S (2)

where T ∗
S is the surface triangulation obtained after ΠF -

mapping the nodes of τK . The points of τK are mapped to
T ∗

S by preserving their barycentric coordinates. Note that
T ∗

S is an approximation of TS. In order to improve this ap-
proximation we must refine the tetrahedra of CK in contact
with the surface of the cube in such a way that the distance
between T ∗

S and TS decreases until reaching a prescribed
tolerance ε . The concept of distance between two triangu-
lations can be defined and implemented in several ways. In
our case, it is as follows:

Let T be a triangle of τK , where a, b and c are their ver-
tices and let pk ∈ {pi}Nq

i=1 be a Gauss quadrature point of
T , then, the distance, d (T ), between ΠK(T ) and the under-
laying triangulation TS is defined as the maximum of the
volumes of the tetrahedra formed by ΠF(a), ΠF(b), ΠF(c)
and ΠF(pk). If we considerer the distance between T ∗

S and
TS as the maximum of all d (T ), the local refinement stops
when d (T ) < ε for all T ∈ τK . A more accurate approach
based on Hausdorff distance can be found in [4].

Once the adapted tetrahedral mesh CK has been con-
structed by using the proposed method, the nodes of τ K are
mapped to the surface of the solid giving the triangulation
T ∗

S , which is the final approximation of TS. Note that in-
ner nodes of CK stay in their initial positions, so the current
tetrahedral mesh of the solid will most likely be tangled. The
following step plays a crucial roll in our procedure. We have
to relocate the inner nodes in suitable positions such that
this tetrahedral mesh gets untangled and the distortion in-
troduced by the associated parameterization is as small as
possible.

2.3 Relocation of inner nodes

Usual techniques to improve the quality of a valid mesh,
that is, one that does not have inverted elements, are based
upon local smoothing. In short, these techniques consist of

finding the new positions that the mesh nodes must hold, in
such a way that they optimize an objective function. Such a
function is based on a certain measurement of the quality of
the local submesh N (q), formed by the set of tetrahedra con-
nected to the free node q. Usually, objective functions are ap-
propriate to improve the quality of a valid mesh, but they do
not work properly when there are inverted elements. This is
because they present singularities (barriers) when any tetra-
hedron of N (q) changes the sign of its Jacobian.

Most of what is stated below is taken from [11], where
we developed a procedure for untangling and smoothing te-
trahedral meshes simultaneously. For that purpose, we use
a suitable modification of the objective function such that
it is regular all over R3. When a feasible region (subset of
R

3 where q could be placed, being N (q) a valid submesh)
exists, the minima of both the original and the modified ob-
jective functions are very close, and when this region does
not exist, the minimum of the modified objective function
is located in such a way that it tends to untangle N (q). The
latter occurs, for example, when the fixed boundary of N (q)
is tangled. With this approach, we can use any standard and
efficient unconstrained optimization method to find the min-
imum of the modified objective function, see for example
[1].

If we name T to the tetrahedral mesh of the solid once
the inner nodes have been relocated, the corresponding vol-
umetric parameterization is

Π : CK → T (3)

A point p included in a tetrahedron of CK is mapped,
preserving barycentric coordinates, into a point q belonging
to the transformed tetrahedron of T .

2.3.1 Objective functions

Several tetrahedron shape measures could be used to con-
struct an objective function. Nevertheless, those obtained by
algebraic operations [19] are specially indicated for our pur-
pose because they can be computed very efficiently and they
allow us to choose the shape of the tetrahedra to optimize.
Our objective is to relocate the nodes of T in positions
where not only the mesh gets untangled, but also the dis-
tortion introduced by the parameterization is minimized.

Let T be a tetrahedral element of T whose vertices are
xk = (xk,yk,zk)

T ∈ R
3, k = 0,1,2,3 and TR be the reference

tetrahedron with vertices u0 =(0,0,0)T , u1 =(1,0,0)T , u2 =

(0,1,0)T and u3 = (0,0,1)T . If we choose x0 as the transla-
tion vector, the affine map that takes TR to T is x =Au+ x0,
where A is the Jacobian matrix of the affine map referenced
to node x0, and expressed as A = (x1 − x0,x2 − x0,x3 − x0).

Let us consider that TI is our ideal or target tetrahe-
dron whose vertices are v0, v1, v2 and v3. If we take v0 =
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(0,0,0)T the linear map that takes TR to TI is v =Wu, where
W = (v1 − v0,v2 − v0,v3 − v0) is its Jacobian matrix. As the
parametric and real meshes are topologically identical, each
tetrahedron of T has its counterpart in CK . Thus, in order to
reduce the distortion in the volumetric parameterization we
will fix the target tetrahedra of N (q) as their counterparts of
the local mesh in the parametric space.

The affine map that takes TI to T is x =AW−1v+ x0, and
its Jacobian matrix is S=AW−1. Note that this weighted ma-
trix S depends on the node chosen as reference, so this node
must be the same for T and TI . We can use matrix norms,
determinant or trace of S to construct algebraic quality met-

rics of T . For example, the mean ratio, Q= 3σ
2
3

|S|2 , is an easily

computable algebraic quality metric of T , where σ = det(S)
and |S| is the Frobenius norm of S. The maximum value of
Q is the unity, and it is reached when A = μRW , where μ
is a scalar and R is a rotation matrix. In other words, Q
is maximum if and only if T and TI are similar. Besides,
any flat tetrahedron has quality measure zero. We can de-
rive an optimization function from this quality metric. Thus,
let x = (x,y,z)T be the position of the free node, and let Sm

be the weighted Jacobian matrix of the m-th tetrahedron of
N (q). We define the objective function of x, associated to an
m-th tetrahedron as

ηm =
|Sm|2

3σ
2
3

m

(4)

Then, the corresponding objective function for N (q) is con-
structed by using the p-norm of (η1,η2, . . . ,ηM) as

∣∣Kη
∣∣
p (x) =

[
M

∑
m=1

η p
m (x)

] 1
p

(5)

where M is the number of tetrahedra in N (q).
Although this optimization function is smooth in those

points where N (q) is a valid submesh, it becomes discontin-
uous when the volume of any tetrahedron of N (q) goes to
zero. It is due to the fact that ηm approaches infinity when
σm tends to zero and its numerator is bounded below. In fact,
it is possible to prove that |Sm| reaches its minimum, with
strictly positive value, when q is placed in the geometric
center of the fixed face of the m-th tetrahedron. The posi-
tions where q must be located to get N (q) to be valid, i.e.,
the feasible region, is the interior of the polyhedral set P de-

fined as P =
M⋂

m=1
Hm,where Hm are the half-spaces defined

by σm (x) � 0. This set can occasionally be empty, for ex-
ample, when the fixed boundary of N (q) is tangled. In this
situation, function

∣∣Kη
∣∣
p stops being useful as an optimiza-

tion function. Moreover, when the feasible region exists, that
is int P �= /0, the objective function tends to infinity as q ap-
proaches the boundary of P. Due to these singularities, it

is formed a barrier which avoids reaching the appropriate
minimum when using gradient-based algorithms, and when
these start from a free node outside the feasible region. In
other words, with these algorithms we can not optimize a
tangled mesh N (q) with the above objective function.

2.3.2 Modified objective functions

We proposed in [11] a modification in the previous objective
function (5), so that the barrier associated with its singulari-
ties will be eliminated and the new function will be smooth
all over R

3. An essential requirement is that the minima
of the original and modified functions are nearly identical
when int P �= /0. Our modification consists of substituting σ
in (5) by the positive and increasing function

h(σ) =
1
2
(σ +

√
σ2 + 4δ 2) (6)

being the parameter δ = h(0). Thus, the new objective func-
tion here proposed is given by

∣∣K∗
η
∣∣
p
(x) =

[
M

∑
m=1

(η∗
m)

p (x)

] 1
p

(7)

where

η∗
m =

|Sm|2
3h

2
3 (σm)

(8)

is the modified objective function for the m-th tetrahedron.
With this modification, we can untangle the mesh and, at
the same time, improve its quality. An implementation of
the simultaneous untangling and smoothing procedure for an
equilateral reference tetrahedron is freely available in [12].

2.3.3 Rearrangement of the inner nodes

The computational effort to optimize a mesh depends on the
initial position of the nodes. An arrangement of the nodes
close to their optimal positions significantly reduces the num-
ber of iterations (and the CPU time) required by the un-
tangling and smoothing algorithm. Therefore, an interesting
idea is to construct a rough approximation of the solid and
to use the corresponding parameterization to relocate inte-
rior nodes of more accurate subsequent approximations.

Taking into account that the grade of refinement attained
by the tetrahedral mesh depends on the maximum allowed
distance, ε , between T ∗

S and TS, we will write CK(ε), T (ε),
τK(ε) and T ∗

S (ε) to express this dependence.
Let suppose that Πεi : CK(εi)→ T (εi) is the volumetric

parameterization for a given tolerance ε i. We want to find the
approximate location of the nodes of a more accurate mesh
T (εi+1), assuming that εi > εi+1. Firstly, the mesh CK(εi)

is locally refined until the distance between T ∗
S (εi) and TS
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is below εi+1. In that moment we have the new mesh of the
cube CK(εi+1). Afterward, their inner nodes are mapped by
using the previous parameterization, that is, we construct
the new tetrahedral mesh T ∗ (εi+1) after Πεi-mapping the
nodes of CK(εi+1). Note that T ∗ (εi+1) has the same topol-
ogy as T (εi+1), but their nodes are not located at optimal
positions. Although T ∗ (εi+1) could be tangled, their inte-
rior nodes are close to their final positions. Therefore, the
computational effort to optimize the mesh is drastically re-
duced. The last step of this iteration consists on relocating
the inner nodes of T ∗ (εi+1) in their optimal position fol-
lowing the mesh smoothing and untangling procedure above
described. This sequence is repeated several times until we
achieve the desired tolerance. In Fig. 2 it is shown a se-
quence of gradual approximations to the mesh of a horse.
The initial surface triangulation TS has been obtained from
the Large Geometric Model Archives at Georgia Institute of
Technology.

(a) (b)

(c) (d)

Fig. 2 Gradual approximations: from a coarse mesh to the final accu-
rate mesh.

3 Representation of the solid by T-splines

3.1 Construction of an adapted volumetric T-mesh

We will start this Section with a short introduction on T-
splines. A detailed report about T-splines and their relation-

ship with isogeometric analysis can be found in [2] (see also
[30,5,31,23]).

The T-mesh is the control grid of the T-splines. In 3-D it
is a division of a rectangular prism forming a grid in which
the T-juntions are allowed. In 2-D T-junctions are inner ver-
tices of the grid connecting 3 edges. T-junctions in 3-D are
inner vertices shared by one edge in some direction and two
edges in other directions at the same time [33]. T-splines
are rational spline functions defined by local knot vectors,
which are inferred from certain points of the T-mesh known
as anchors [2]. The anchors of the odd-degree T-splines are
situated on the vertices of the T-mesh and the anchors of
the even-degree T-splines are located in the center of each
prism. We will focus on odd-degree T-splines and, in par-
ticular, on cubic T-splines because they are the ones imple-
mented in the present work. Cubic T-splines have 5 knots in
each parametric direction.
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Fig. 3 Construction of knot vector in a two-dimensional T-mesh. All
the knots associated to the anchor tα lie inside the T-mesh (a). The
phantom knot ξ 1

8 has been added to construct an unclamped local knot
vector (b).
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Let us consider the 2-D example of Fig. 3 to under-
stand how the knot vectors are deduced from the anchor.
The parametric coordinates of the anchor tα in Fig. 3(a) are
given by

(
ξ 1

4 ,ξ 2
4

)
, then, by examining the intersections of

horizontal and vertical lines with the edges of the T-mesh,
we deduce that the the knot vector in ξ 1 direction is Ξ α

1 =(
ξ 1

1 ,ξ 1
2 ,ξ 1

4 ,ξ 1
5 ,ξ

1
6

)
and, the knot vector in ξ 2 direction is

Ξ α
2 =

(
ξ 2

2 ,ξ 2
3 ,ξ 2

4 ,ξ 2
5 ,ξ

2
6

)
. In the case of Fig. 3(b) only one

edge is found when marching horizontally from t β to the
right. In such situations we have two possibilities: repeat
knots in order to form a clamped local knot vector or, as we
have implemented for the geometric modeling, add phantom
knots and form an unclamped one. These phantom knots are
placed following the pattern shown in Fig. 3(b). The con-
struction of knot vector in 3-D is analogous but we must ex-
amine the intersections with T-mesh faces encountered when
marching in each space direction. The points of the paramet-
ric domain are written as ξ =

(
ξ 1,ξ 2,ξ 3

)
.

A T-spline is a rational function from the parametric do-
main to the physical space given by

S(ξ ) = ∑
α∈A

PαRα (ξ ) (9)

where Pα is the control point corresponding to the α-th
blending function

Rα (ξ ) =
wα Bα (ξ )

∑
β∈A

wβ Bβ (ξ )
(10)

being wα its weight and Bα (ξ ) = N1
α
(
ξ 1

)
N2

α
(
ξ 2

)
N3

α
(
ξ 3

)
the product of univariate B-splines. In these expressions A⊂
Z

3 represents the index set containing every α such that tα
is an anchor.

The T-spline S(ξ ) is the sum of rational C2 blending
functions, so it is also a C2 function. Nevertheless, as the
surface of the solid is the union of six patches obtained by
mapping the six faces of the cube, and these faces match
with C0 continuity, we only can assure the C0 continuity for
the surface of the solid.

Our objective is to get a representation of the solid suit-
able for isogeometric analysis using trivariate T-splines. This
representation, V , must preserve the features and details of
the input data, the triangulation TS. To do that, we construct
an adapted T-mesh by partitioning the parametric domain C
in cells by using an octree subdivision. The unitary cube C is
divided in 8 identical cells and, each cell is, in turn, divided
in other 8 cells and so on, until all the cells of the octree do
not contain any node of CK in their inner. This last is pos-
sible due to the particular characteristics of the Kossaczky
subdivision scheme, in which the edges of CK are the result
of successive division of the edges of C by two. The octree
partition defines a T-mesh, CT , that is used to determine the
local knot vector and the anchors of the T-splines. Note that

all the nodes of CK are vertices of CT , so it is to be hoped that
the surface of V achieves the same resolution than the input
triangulation TS. Another consequence of the proposed oc-
tree subdivision is that the cell faces of CT contain no more
than one inner T-junction.

3.2 Interpolation

Basically there are two ways of fitting splines to a set points:
interpolation and approximation. We have adopted the first
one because it is more appropriate for reducing all features
of the input triangulation. Assuming that the set of blending
functions are linearly independent, we need as many inter-
polation points as blending functions.

Recently Buffa et al. [5] have analyzed the linear inde-
pendence of the bi-cubic T-spline blending functions cor-
responding to some particular T-meshes. They prove lin-
ear independence of hierarchical 2-D T-meshes generated
as the refinement of a coarse and uniform T-mesh. More-
over, Li et. al. in [23] present an algebraic and topologi-
cal method for analyzing linear independence of T-spline
blending functions. They also introduce a class of T-splines,
called analysis-suitable T-splines, which are linear indepen-
dent and that can be locally refined [31]. However, the ex-
tension of these results to 3-D is not straightforward.

We have chosen the images of the anchors as interpo-
lation points, and all the weights have been taken equal to
1. Thus, the control points, Pα , are obtained by solving the
linear system of equations

Π
(
tβ
)
= S

(
tβ
)
= ∑

α∈A

PαRα
(
tβ
)
, ∀tβ , β ∈ A (11)

where the images Π
(
tβ
)

have been calculated through the
volumetric parameterization (3).

The linear independence has become evident in all the
applications considered until now, as the resolution of (11)
is only possible if the blending functions are linearly inde-
pendent.

4 Geometric modeling results

4.1 Test example

We have chosen a 2-D domain as first example in order to
dicuss how the proposed technique works.

At present, there are no quality metrics for isogeometric
analysis analogous to the ones for traditional FEA to help us
characterize the impact of the mesh on analysis, as it is indi-
cated in [9]. Xu et al. [37,38] give sufficient conditions for
getting both an injective parameterization for planar splines
without self-intersections and an isoparametric net of good
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uniformity and orthogonality, but there are not similar stud-
ies for T-splines.

One of the factors to take into account is the variation of
the Jacobian in the elements. Usually, a large variation leads
to poor accuracy in the numerical approximation, so we can
explore the suitability of a T-spline for isogeometric simu-
lations by analyzing the scaled Jacobian in the quadrature
points of the cells. The scaled Jacobian, given by

Js
(
ξ 1,ξ 2,ξ 3)= det

(
Sξ 1 ,Sξ 2 ,Sξ 3

)
∥∥∥Sξ 1

∥∥∥∥∥∥Sξ 2

∥∥∥∥∥∥Sξ 3

∥∥∥ (12)

where Sξ i is the derivative of the trivariate T-spline (9) with
respect to ξ i. We can get an idea about whether the distor-
tion introduced by the spline is or is not too large by evalu-
ating the scaled Jacobian. The following test model shows a
procedure, based on local mesh refinement, to improve the
scaled Jacobian values. The goal is to reach values of the
scaled Jacobian close to one in most parts of the solid.

The test model (see Fig. 4) is a T-spline representation
of a deformed unitary square in which the corner (1,1) has
been displaced toward position

( 3
4 − 1

10 ,
3
4 − 1

10

)
, producing

a degenerate cell. This displacement makes the new opti-
mal position for the central node to become (0.38,0.38).
The same model is approximated by two T-meshes with 9
(Fig. 4(a)) and 14 (Fig. 4(d)) interpolating points. The corre-
sponding T-spline representations are shown in Figures 4(b)
and 4(e), respectively. Note that the representation of Fig.
4(b) has a wide folded region around the corner in which the
Jacobian is negative. However, this region has been remark-
ably reduced in the refined version (Fig. 4(e)). This example
indicates that, although the refinement of the T-mesh around
the corners (and edges in 3-D) does not completely solve
the problem of degenerate cells, it tends to diminish the re-
gion in which the Jacobians become negative. It can be more
clearly seen in Figures 4(c) and 4(f), where the scaled Jaco-
bian has been represented by a color map. The blue colors
correspond to the regions in which the Jacobian is negative.

4.2 Solid with surface of genus zero

In Fig. 5 we have shown a tetrahedral and T-spline represen-
tation of the Stanford bunny. Note how similar discretiza-
tion of the respective parametric domains give rise to similar
grade of detail in the physical domains. It can be seen how
the isoparametric curves are nearly orthogonal in most parts
of the solid, which entails low distortion and values of scaled
Jacobian close to one. Nevertheless, the distortion becomes
high in some regions of the surface. We have computed 39
cells out of 9696 in which at least one of the eight Gaus-
sian quadrature points (see for example [6]) has a negative
Jacobian.

(a) (b)
�1 1

(c)

(d) (e)
�1 1

(f)

Fig. 4 Initial T-mesh in the parametric domain (continuous line) and
the underlying triangular mesh (dashed line) (a). T-spline of a deformed
square with a reentrant corner (b). Scaled Jacobian representation in
the parametric domain (c). Corresponding representations for a refined
version (d), (e) and (f).

As we have mentioned, the T-spline is enforced to inter-
polate all the nodes of the tetrahedral mesh T and this mesh
is as close as we want to the input surface TS. Moreover, the
interpolating points are exactly situated on the input surface.
These reasons suggest a good accuracy between the surface
of the T-spline and TS. In order to estimate the gap between
both surfaces we have analyzed the differences between the
volumes enclosed by TS and the T-spline, V . The first vol-
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(a) (b)

(c) (d)

(e) (f)

Fig. 5 Tetrahedral mesh of the parametric domain CK (a), T-mesh CT

(b), tetrahedral mesh T (c) and T-spline representation V (d) of the
Stanford bunny. Two transversal sections of V (e) and (f).

ume is measured by applying the divergence theorem and

the second one is calculated integrating det
(

Sξ 1 ,Sξ 2 ,Sξ 3

)
in the unitary cube C with 8 Gaussian quadrature points
in each cell. The quadrature points with negative Jacobians
have been rejected from the calculations. The results for the
bunny application are: the volume enclosed by T S is 754.9;
the volume of T is 750.9 (a difference of 0.5% in relation
to TS) and the volume of V is 757.4 (a difference of 0.3%
in relation to TS).

Guided by the results of the test example of Fig. 4, we
are interested in knowing the effect of refining the cells with
worst quality. To do that, we develop an iterative procedure
in which the scaled Jacobian is evaluated in the center of
each cell and, if it is negative, we store the point in a list
of vertices to be included in the T-mesh of the subsequent
iteration. If the impact of such refinement is similar to the
one of the test example, it should be hoped a reduction of
the region in which the Jacobian had negative values. In fact,
the number of cells with negative scaled Jacobian evaluated
in their centers have been: 5 in the first iteration, 4 in the

second, 2 in the third and 0 in the fourth. Moreover, only
6% of the cells have a scaled Jacobian less than 0.5.

We remark that in this application we have obtained pos-
itive Jacobians in all the centers of the cells of CT . There-
fore, the most distorted cells are susceptible of being inte-
grated with at least one Gaussian quadrature point. Obvi-
ously, a better numerical approximation is possible in most
of the cells.

4.3 Solid with surface of genus greater than zero

We now consider the extension of the proposed isogeometric
modeling to solids with surface of genus greater than zero.
In this case our method demands two requirements. Firstly, a
rough approximation of the solid with the same genus, com-
posed by a set of cuboids (i.e. the meccano), is needed. This
simple geometry defines the parametric space. Secondly, a
mapping from the meccano boundary to the solid surface is
required. Then, the meccano method [7,8,27,28] automati-
cally produces the volumetric parameterization.

At present, the construction of the parametric space and
the surface mapping are defined by the user. However, an ini-
tial polycube of the meccano could be generated by using an
octree subdivision, and the surface parameterization could
be built using PolyCube-Maps [24,34,36]. The remaining
stages of the method are similar to the genus-zero case.

In order to make the construction of the T-mesh easier,
we apply an octree subdivision of a cube C enclosing the
initial polycube, as it is shown in Fig. 6. These figures corre-
spond to a meccano, formed by four cuboids, whose bound-
ary is a genus-one surface. The dimension of C must satisfy
a certain restriction so that this polycube is nested inside the
octree.

(a) (b)

Fig. 6 Cube enclosing the polycube decomposition of the meccano (a),
External view (b), Internal view.

Let suppose that the dimensions of the meccano, in units
of the edge size of the cubic pieces, are n1, n2 and n3. Then,
the length d of the side of C (in units of the cubic pieces)
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(a) (b)

(c) (d)

(e) (f) (g)

Fig. 7 Main stages of the isogeometric modeling of a solid with a surface of genus one: (a) Coarse tetrahedral mesh of the meccano, (b) refined
tetrahedral mesh of the meccano, (c) T-mesh of the meccano, (d) tangled tetrahedral mesh after the mapping on solid surface, (e) resulting
tetrahedral mesh after inner node relocation and mesh optimization, (f) T-spline representation of the solid and (g) two transversal sections.

must be a power of two such that d = 2n ≥ max{n1,n2,n3}.
For example, if the dimensions of the meccano are 1, 7 and
3, we need a cube C of side d = 23 = 8.

This subdivision produces vertices both inside and out-
side the meccano, but only the inner vertices must be con-
sidered as anchors. The external vertices will be used to
complete the unclamped knot vectors. As an example, we
present the modeling of a solid with a genus-one surface
that is explicitly given. The main stages of the process are
shown in Fig. 7. In this case, the meccano is formed by four
cuboids. We remark that we have also obtained positive Ja-
cobians in all the centers of the cells of the T-mesh.

5 Application to isogeometric analysis

In this section we present results of the resolution of the
Poisson equation in a complex domain by using isogeomet-
ric analysis with T-splines. In contrast to NURBS, T-splines
allow local refinement in order to improve the numerical
approximation. The combination of the refinement with an
a posteriori error estimator produces adaptive T-meshes in-
creasing the efficiency. It makes T-splines functions atractive
for isogeometric analysis.

We propose a refinement strategy that subdivides each
marked cell into eight sub-cells, allowing only one hanging
node by edge.
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Let us consider the problem

−	u = f in Ω ,

u = g on ∂Ω .
(13)

The variational formulation of this problem consists on find-
ing u ∈Vg(Ω) such that

a(u,v) = ( f ,v) ∀v ∈V0(Ω), (14)

where

a(u,v) =
∫

Ω
∇u∇v, ( f ,v) =

∫
Ω

f v, (15)

and the appropriated test function and solution spaces are

V0(Ω) = {v ∈ H1(Ω) : v |∂Ω= 0}, (16)

and

Vg(Ω) = {v ∈ H1(Ω) : v |∂Ω= g}. (17)

Let T be a T-mesh of Ω (T = CT in the case of genus-
zero solids). In order to impose boundary condition we now
repeat knots at the boundary to form clamped knot vector.
Note that we use different basis for the geometry (produced
by unclamped knots) and the isogeometric analysis.

Let VT(Ω) be the finite dimensional space spanned by
the T-splines asocciated to T, and VgT,T(Ω) be the subspace
of functions of VT(Ω) that are equal to gT at the boundary,
where gT is an interpolant of g.

The isogeometric approximation uT ∈Vg,T(Ω) is defined
by

a(uT,vT) = ( f ,vT) ∀vT ∈V0,T(Ω). (18)

We propose an adaptive algorithm based on a posteriori
error indicator to improve the quality of the numerical so-
lution. The initial T-mesh, T0, is provided by the procedure
developed in setion 3. Then the T-mesh is refined according
to a simple residual-type estimator given by:

η (Ωe)
2 = ‖h( f +Δuh)‖2

0,Ωe
=

∫
Ωe

h2 ( f +Δuh)
2 (19)

where Ωe = S
(
Ω̂e

)
is the image of a cell of the parametric

space and h is the diameter of Ωe. The estimator is jump
free, because the smothness of the isogeometric approxima-
tion (compare with FEM case [35]). A cell Ω̂e is marked
to be refined if the error estimator exceeds certain threshold
γ maxe {η (Ωe)} with γ ≈ 0.9

As a example, we assume that the computational domain
is a genus-zero solid (Igea, http://www.cyberware.com/)
parameterizated onto a unitary cube Fig. 8. The scaled Jaco-
bian representation of this parametrization is shown in Fig.
9. We have considereded as forcing term, f , a gaussian type
function, and zero boundary condition. In Fig. 10, we show
a sequence of isogeometric solutions in the T-splines pro-
duced by the adaptive algorithm.

(a)

(b)

Fig. 8 Parametric domain and T-spline representation of Igea.

6 Conclusions and challenges

Focused on the application of isogeometric analysis, this
work is a new approach to the automatic generation of trivari-
ate T-splines representation of solids. Our procedure has been
specifically developed for genus-zero solids, but it can be
generalized to arbitrary objects, as it is explained in subsec-
tion 4.3. The key lies on having a volumetric parameteriza-
tion of the solid following the mecano method described in
[27,28]. In this method the surface parameterization must
be explicitly given, but we think that this handicap could
be overcome by applying a technique similar to PolyCube-
Maps [24,34,36]. The rest of the procedure would follow
the same steps than the ones described in this paper.

Furthermore, the input data in the present paper is a tri-
angulation defining the boundary of the solid, but this bound-
ary is generally described by CAD. Such information could
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(a) (b)

Fig. 9 Scaled Jacobian representation of the isogeometric parametrization.

(a) (b) (c)

(d) (e) (f)

Fig. 10 Transversal and frontal sections of a isogeometric solution of a Poisson problem: Initial solution (a) and (d). Second local refinement (b)
and (e). Fifth local refinement (c) and (f).
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be used to map the points lying on the surface of the para-
metric mesh to the surface of the solid, making unnecessary
the stage of surface parameterization.

In general, the distortion introduced by the proposed vol-
umetric parameterization is low, but the existence of criti-
cal points where the Jacobian of the T-spline may become
negative constitutes an inconvenience for isogeometric sim-
ulations. Just as we have shown in section 4, the selective
refinement of the most degenerated cells palliates the prob-
lem, but it cannot be understood like a conclusive solution.
As far as we know, this is a problem common to other types
of parameterizations that must be satisfactory solved.

The applicability of our trivariate T-spline representation
to the resolution of PDE is shown up by the example of sec-
tion 5.
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