

A Methodology to Map Roughness Length and Displacement Height in Complex Terrain

University Institute for Intelligent Systems and Numerical Applications in Engineering

ESCO 2016 – 5th European Seminar on Computing June 5 - 10, 2016, Pilsen

> Gustavo Montero, Eduardo Rodríguez, Albert Oliver, Guillermo V. Socorro-Marrero Javier Calvo

http://www.siani.es/

Overview

Objective:

- Find the velocity field $\vec{u}(\tilde{u}, \tilde{v}, \tilde{w})$ that adjusts to $\vec{v}_0(u_0, v_0, w_0)$ verifying:
- Incompressibility condition in the domain and No flow-through condition on the terrain

 $\nabla \cdot \vec{u} = 0 \quad \text{in } \Omega$ $\vec{n} \cdot \vec{u} = 0 \quad \text{on } \Gamma_b$

Let state the least square problem:

$$E(\widetilde{u},\widetilde{v},\widetilde{w}) = \int_{\Omega} \left[\alpha_1^2 \left((\widetilde{u} - u_0)^2 + (\widetilde{v} - v_0)^2 \right) + \alpha_2^2 (\widetilde{w} - w_0)^2 \right] d\Omega$$
$$\alpha = \frac{\alpha_1}{\alpha_2}$$

Gauss Precision Moduli

They allow horizontal (α_1) and vertical (α_2) adjustment of wind velocity components

- $\alpha >> 1$ adjustment in vertical direction is predominant
- α << 1 adjustment in horizontal direction is predominant
 - $\alpha \rightarrow \infty$ pure vertical adjustment
 - $\alpha \rightarrow 0$ pure horizontal adjustment

If Gauss Precision Moduli are constant,

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \alpha^2 \frac{\partial^2 \phi}{\partial z^2} = -\frac{1}{T_h} \left(\frac{\partial u_0}{\partial x} + \frac{\partial v_0}{\partial y} + \frac{\partial w_0}{\partial z} \right) \quad \text{in } \Omega$$

$$\phi = 0 \qquad \qquad \text{on } \Gamma_a$$

$$\vec{n} \cdot T \nabla \phi = -\vec{n} \cdot \vec{v}_0 \qquad \qquad \text{on } \Gamma_b$$

Once the Lagrange Multiplier is obtained, the wind velocity is computed with the Euler-Lagrange equations,

$$\vec{v} = \vec{v}_0 + T\vec{\nabla}\phi$$

Construction of the observed wind

Horizontal interpolation

Vertical extrapolation (log-linear wind profile)

Wind Field Modeling HARMONIE vs WIND3D results

HARMONIE

HARMONIE + WIND3D

Let l_c be a $n_p \times 1$ vector containing the land cover information of all the Assume that z_0 and d in each point of study points of the studied region, M a $n_p \times 40$ matrix which entries per row are the proportions of basic land covers at each point, and c a 40×1 vector with the basic land cover codes.

 $d = Md^B = M \begin{pmatrix} d^{ACM} \\ d^{ACU} \\ \dots \\ d^{ZOM} \end{pmatrix}$

$$U_{c} = Mc = \begin{pmatrix} m_{1,ACM} & m_{1,ACU} & \cdots & m_{1,ZQM} \\ m_{2,ACM} & m_{2,ACU} & \cdots & m_{2,ZQM} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ m_{n_{p},ACM} & m_{n_{p},ACU} & \cdots & m_{n_{p},ZQM} \end{pmatrix} \begin{pmatrix} ACM \\ ACU \\ \cdots \\ ZQM \end{pmatrix}$$
 $z_{0} = Mz_{0}^{B} = M \begin{pmatrix} z_{0}^{ACU} & z_{0}^{ACU} & \cdots & z_{0}^{ACU} \\ z_{0}^{ZQM} & \cdots & z_{0}^{ZQM} \\ z_{0}^{ZQM} & z_{0}^{ACU} & \cdots & z_{0}^{ZQM} \end{pmatrix}$ and similarly,

such that, for each row i of M, it is verified,

$$\sum_{j=1}^{40} m_{i,j} = 1$$

Wind Field Modeling SIOSE Land Cover *z*₀ and *d*

Code	Land Cover	$z_0(cm)$	Z0 _{min} —Z0 _{max}	d (cm)	d _{min} -d _{max}
ACM	Sea Cliff	5 ^[1]	5 ^[2] -19 ^[2]	$5700^{[2]}$	330 ^[2] -8500 ^[2]
ACU	Water Courses	$0.025^{[3]}$	0.01 ^[4] -1 ^[5]	0 ^[6,47]	_
AEM	Sheet of Water. Reservoir	$0.025^{[4]}$	$0.01^{[4]} - 0.5^{[7]}$	0 ^[6,47]	_
AES	Estuaries	$0.02^{[8]}$	$0.01^{[4]} - 1^{[5]}$	$0^{[6,47]}$	_
ALC	Coastal Lagoons	0.5 ^[7]	$0.01^{[4]} - 1^{[5]}$	$0^{[6,47]}$	_
ALG	Sheet of Water. Lakes and Lagoons	$0.05^{[9]}$	$0.01^{[4]} - 0.5^{[7]}$	0 ^[6,47]	_
AMO	Seas y Oceans	$0.02^{[8]}$	0.01 ^[4] -3 ^[1]	0 ^[6,47]	_
ARR	Rocky Outcrops and Rocks	$0.5^{[5]}$	$0.03^{[10]} - 18^{[11]}$	3[6]	0 ^[6] -96 ^[6]
CCH	Screes	10 ^[1]	5 ^[12] -15 ^[13]	$60^{[14]}$	56 ^[14] -66 ^[14]
CLC	Quaternary lava flow	$2.86^{[15]}$	$0.13^{[15]} - 7.35^{[15]}$	$15^{[6]}$	0 ^[6] -40 ^[6]
CNF	Forest. Conifers	128 ^[16]	25 ^[17] -193 ^[18]	1310 ^[19]	$487^{[18]} - 2200^{[14]}$
CHA	Herbaceous crops. Rice	$7.2^{[20]}$	$0.1^{[21]} - 11^{[20]}$	$85^{[20]}$	$10^{[20]} - 155^{[20]}$
CHL	Herbaceous crops. Different from Rice	$10^{[22]}$	$0.4^{[23]} - 74^{[24]}$	$25^{[23]}$	$10^{[23]} - 300^{[35]}$
EDF	Artificial Coverage. Building	150 ^[26]	$70^{[26]} - 370^{[24]}$	$1400^{[26]}$	$700^{[26]} - 1973^{[6]}$
FDC	Forest. Leafy. Deciduous	$100^{[28]}$	$18^{[28]} - 140^{[1]}$	$1180^{[29]}$	$300^{[29]} - 2160^{[29]}$
FDP	Forest. Leafy. Evergreen	72 ^[11]	$60^{[3]} - 265^{[30]}$	970 ^[29]	$300^{[29]} - 3100^{[26]}$
GNP	No Vegetation. Glaciers and Perpetual Snow	$0.1^{[5]}$	$0.001^{[31]} - 1.2^{[26]}$	1[6]	0 ^[6] -6 ^[6]

Wind Field Modeling SIOSE Land Cover *z*₀ and *d*

Code	Land Cover	$z_0(cm)$	Z _{0min} —Z _{0max}	d (cm)	d _{min} -d _{max}
HMA	Salt Marshes	$11^{[11]}$	$0.02^{[10]} - 17^{[10]}$	60 ^[6]	0 ^[6] -93 ^[6]
HPA	Wetlands	10 ^{[5}	$0.5^{[28]} - 55^{[11]}$	55 ^[6]	3 ^[6] -300 ^[6]
HSA	Continental Salines	1 ^[5]	$0.05^{[5]}-4^{[7]}$	5 ^[6]	$0^{[6]} - 22^{[6]}$
HSM	Salines	1 ^[5]	$0.05^{[5]}-4^{[7]}$	5 ^[6]	$0^{[6]} - 22^{[6]}$
HTU	Peat bogs	3 ^[5]	$0.05^{[5]} - 3^{[5]}$	16 ^[6]	0 ^[6] -16 ^[6]
LAA	Artificial Coverage. Artificial Sheet of Water	$0.01^{[5]}$	0.01 ^[5] -0.5 ^[7]	$0^{[5,47]}$	_
LFC	Woody Crops. Citrus Fruit Trees	31 ^[33]	3 ^[4] -40 ^[34]	300 ^[14]	0 ^[35] -400 ^[35]
LFN	Woody Crops. No Citrus Fruit Trees	25 ^[5]	3 ^[4] -100 ^[32]	92 ^[36]	0 ^[35] -400 ^[35]
LOC	Other Woody Crops	6.15 ^[37,6]	$3.69^{[37,6]} - 8.61^{[37,6]}$	33 ^[37,6]	$20^{[37,6]} - 47^{[37,6]}$
LOL	Olive Groves	48 ^[38]	25 ^[5] -61 ^[38]	267 ^[38]	200 ^[38] -300 ^[38]
LVI	Vineyards	20 ^[39]	8 ^[40] -55 ^[39]	75 ^[39]	$31^{[40]} - 140^{[41]}$
MTR	Scrubs	$16^{[28]}$	$1.6^{[28]} - 100^{[1]}$	480 ^[42]	$90^{[26]} - 710^{[42]}$
OCT	Artificial Coverage. Other Buildings	50 ^[5]	6 ^[11] -100 ^[5]	$400^{[27]}$	$200^{[27]} - 1400^{[26]}$
PDA	No Vegetation. Beaches, Dunes and Sandy Areas	$0.03^{[5]}$	$0.01^{[43]} - 6^{[10]}$	0 ^[6]	0 ^[6] -33 ^[6]
PRD	Crops. Meadows	3 ^[5]	$0.1^{[31]} - 10^{[5]}$	$1.3^{[26]}$	$0.7^{[35]} - 3.5^{[26]}$
PST	Grassland	9 ^[31]	$0.1^{[31]} - 15^{[31]}$	$17.1^{[44]}$	$1.3^{[26]} - 66^{[35]}$
RMB	No Vegetation. Ravine	$0.12^{[45]}$	$0.03^{[4]} - 0.5^{[46]}$	$0.5^{[6]}$	0 ^[6] -3 ^[6]
SDN	No Vegetation. Bare Soil	$0.1^{[10]}$	$0.02^{[46]} - 4^{[11]}$	$0.5^{[6]}$	$0^{[6]} - 22^{[6]}$
SNE	Artificial Coverage. Unbuilt Land	$0.03^{[10]}$	$0.02^{[46]} - 4^{[1]}$	O ^[6]	$0^{[6]} - 22^{[6]}$
VAP	Artificial Coverage. Road, Parking or Unvegetated Pedestrian Areas	3 ^[5]	$0.35^{[45]} - 50^{[5]}$	$100^{[47,48]}$	$2^{[48]} - 250^{[48]}$
ZAU	Artificial Coverage. Artificial Green Area and Urban Trees	40 ^[4]	3 ^[10] -130 ^[24]	350 ^[47,48]	$350^{[26]} - 1400^{[26]}$
ZEV	Artificial Coverage. Extraction or Waste Areas	10 ^[5]	$0.03^{[10]} - 18^{[11]}$	56 ^[6]	0 ^[6] -100 ^[6]
ZQM	No Vegetation. Burnt Areas	60 ^[5]	10 ^[5] -110 ^[10]	327 ^[6]	54 ^[6] -600 ^[6]

Wind Field Modeling Polygons of SIOSE Land Cover

Roughness length and displacement height

Roughness length (z_0) map

Displacement height (d) map

Roughness length and displacement height maps of Gran Canaria Island (m) corresponding to the nominal values

Wind Field Modeling Estimation of Model Parameters

Wind Field Modeling HARMONIE-FEM wind forecast

1500						4
	ZAU	SDN	LVI	CHL	ALC	АМО
	← VAP	FDC	MTR	LOC	ALG	НМА
	ОСТ	<u>ACM</u>	CNF	PST	<u>AEM</u>	PDA
	⊷ SNE	ZEV	FDP	RMB	LAA	EDF ↓
0	LFC ↓	ZQM	<u>LFN</u>	ARR ↓	CLC	HSM ←
0	0					200

Wind Field Modeling HARMONIE-FEM wind forecast

First case				First case				
	DE +	Student T distribution	Rebirth DE +		DE +	Student T distribution	Rebirth DE +	
Parameter	L-BFGS-B	Confidence	L-BFGS-B	Parameter	L-BFGS-B	Confidence	L-BFGS-B	
	Best error	Interval 99.9%	Best error		Best error	Interval 99.9%	Best error	
RMSE	1.4×10^{-4}	_	1.2×10^{-7}	z_0^{VAP}	3.4×10^{-5}	$7.49096867 \times 10^{-2} - 7.51352981 \times 10^{-2}$	4.1×10^{-8}	
α	1.1×10^{-6}	$9.99891658 \times 10^{-2} - 1.00012716 \times 10^{-1}$	2.6×10^{-9}	z_0^{ZAU}	$6.2 imes 10^{-5}$	$3.99251685 \times 10^{-1} - 4.00240447 \times 10^{-1}$	3.4×10^{-8}	
ξ	$1.0 imes 10^{-2}$	$1.73988332 \times 10^{-1} - 8.27463796 \times 10^{-1}$	$7.7 imes 10^{-2}$	z_0^{ZEV}	$1.9 imes 10^{-6}$	$2.99902915 \times 10^{-2} - 3.00147677 \times 10^{-2}$	1.4×10^{-8}	
z_0^{ACM}	$2.6 imes 10^{-6}$	$5.00000000 \times 10^{-2} - 5.00691832 \times 10^{-2}$	2.2×10^{-8}	z_0^{ZQM}	$8.1 imes 10^{-6}$	$5.98397732 \times 10^{-1} - 6.01119602 \times 10^{-1}$	$1.5 imes 10^{-7}$	
z_0^{AEM}	$1.7 imes 10^{-8}$	$2.49948364 \times 10^{-4} - 2.50089986 \times 10^{-4}$	1.0×10^{-10}	d^{ACM}	1.2×10^{-5}	$5.69998230 \times 10^{1} - 5.70000479 \times 10^{1}$	$7.0 imes 10^{-8}$	
z_0^{ALC}	$1.6 imes 10^{-7}$	$4.99857962 \times 10^{-3} - 5.00103748 \times 10^{-3}$	9.0×10^{-10}	d^{ARR}	$3.6 imes 10^{-5}$	$2.98147359 \times 10^{-2} - 3.01770648 \times 10^{-2}$	$7.5 imes 10^{-8}$	
z_0^{ALG}	$5.0 imes 10^{-8}$	$4.99912109 \times 10^{-4} - 5.00085716 \times 10^{-4}$	2.0×10^{-10}	d^{CLC}	$8.3 imes 10^{-5}$	$1.49889938 \times 10^{-1} - 1.50134456 \times 10^{-1}$	$2.7 imes 10^{-8}$	
z_0^{AMO}	$1.1 imes 10^{-8}$	$1.99967466 \times 10^{-4} - 2.00012359 \times 10^{-4}$	1.0×10^{-10}	d^{CNF}	$1.5 imes 10^{-4}$	$1.30971902 \times 10^{1} 1.31033759 \times 10^{1}$	4.0×10^{-8}	
z_0^{ARR}	1.1×10^{-6}	$4.99121953 \times 10^{-3} - 5.00859944 \times 10^{-3}$	$4.9 imes 10^{-9}$	d^{CHL}	$9.4 imes 10^{-6}$	$2.49673215 \times 10^{-1} - 2.50173144 \times 10^{-1}$	$5.9 imes 10^{-8}$	
z_0^{CLC}	$1.5 imes 10^{-5}$	$2.85764791 \times 10^{-2} - 2.86243504 \times 10^{-2}$	$7.7 imes 10^{-9}$	d^{EDF}	1.1×10^{-3}	$1.39971698 \times 10^{1} 1.40035399 \times 10^{1}$	$8.0 imes 10^{-9}$	
z_0^{CNF}	1.2×10^{-4}	$1.27743498 {-} 1.28228789$	3.4×10^{-8}	d^{FDC}	$6.4 imes 10^{-5}$	$1.17974877 \times 10^{1} 1.18043741 \times 10^{1}$	4.6×10^{-7}	
z_0^{CHL}	$1.3 imes 10^{-5}$	$9.99291955 \times 10^{-2} - 1.00137990 \times 10^{-1}$	$1.7 imes 10^{-8}$	d^{FDP}	$5.9 imes 10^{-4}$	9.69852738 – 9.70074087	$7.3 imes 10^{-8}$	
z_0^{EDF}	$8.2 imes 10^{-4}$	$1.49719791 {-} 1.50218395$	$2.8 imes 10^{-8}$	d^{HMA}	$1.9 imes 10^{-4}$	$5.99773010 \times 10^{-1} - 6.00217925 \times 10^{-1}$	$6.5 imes 10^{-9}$	
z_0^{FDC}	$6.3 imes 10^{-6}$	$9.96508723 \times 10^{-1}$ - 1.00198244	4.4×10^{-7}	d^{HSM}	$5.9 imes 10^{-5}$	$4.98784059 \times 10^{-2} - 5.01964508 \times 10^{-2}$	8.2×10^{-9}	
z_0^{FDP}	$4.6 imes 10^{-4}$	$7.19417726 \times 10^{-1} - 7.21076346 \times 10^{-1}$	$6.2 imes 10^{-8}$	d^{LFC}	1.2×10^{-5}	2.99934291 – 3.00033454	$2.5 imes 10^{-7}$	
z_0^{HMA}	$7.3 imes 10^{-5}$	$1.09900104 \times 10^{-1} - 1.10088026 \times 10^{-1}$	4.3×10^{-9}	d^{LFN}	$3.5 imes 10^{-5}$	$9.19353542 \times 10^{-1} - 9.20547522 \times 10^{-1}$	$1.8 imes 10^{-8}$	
z_0^{HSM}	$4.8 imes 10^{-6}$	$9.98381363 \times 10^{-3} - 1.00097396 \times 10^{-2}$	$1.1 imes 10^{-9}$	d^{LOC}	$1.1 imes 10^{-5}$	$3.29657441 \times 10^{-1} - 3.30250920 \times 10^{-1}$	$7.2 imes 10^{-9}$	
z_0^{LAA}	$1.6 imes 10^{-8}$	$9.99668434 \times 10^{-5} - 1.00090932 \times 10^{-4}$	1.0×10^{-10}	d^{LVI}	$6.3 imes 10^{-5}$	$7.49509571 \times 10^{-1} - 7.50659495 \times 10^{-1}$	$6.7 imes 10^{-8}$	
z_0^{LFC}	$1.3 imes 10^{-5}$	$3.09840527 \times 10^{-1} - 3.10403415 \times 10^{-1}$	$1.7 imes 10^{-7}$	d^{MTR}	$1.6 imes 10^{-4}$	4.79965761 - 4.80027533	$1.5 imes 10^{-7}$	
z_0^{LFN}	$3.3 imes 10^{-5}$	$2.49678372 \times 10^{-1} - 2.50439558 \times 10^{-1}$	1.2×10^{-8}	d^{OCT}	$1.6 imes 10^{-4}$	3.99872271 – 4.00077854	1.4×10^{-7}	
z_0^{LOC}	1.8×10^{-6}	$6.13955515 \times 10^{-2} - 6.16504485 \times 10^{-2}$	3.7×10^{-9}	d^{PDA}	$6.3 imes 10^{-5}$	$0.00000000-1.32206493 \times 10^{-4}$	$1.7 imes 10^{-8}$	
z_0^{LVI}	3.2×10^{-5}	$1.99620082 \times 10^{-1} - 2.00272611 \times 10^{-1}$	3.2×10^{-8}	d^{PST}	$3.3 imes 10^{-5}$	$1.70875618 \times 10^{-1} - 1.71135885 \times 10^{-1}$	$3.8 imes 10^{-8}$	
z_0^{MTR}	$9.3 imes 10^{-5}$	$1.59784202 \times 10^{-1} - 1.60255435 \times 10^{-1}$	$9.3 imes 10^{-8}$	d^{RMB}	$1.1 imes 10^{-4}$	$2.98518849 \times 10^{-2} 3.01158004 \times 10^{-2}$	6.2×10^{-9}	
z_0^{OCT}	$1.6 imes 10^{-4}$	$4.99314831 \times 10^{-1} - 5.01080202 \times 10^{-1}$	$1.4 imes 10^{-7}$	d^{SDN}	$3.0 imes10^{-5}$	$2.99515287 \times 10^{-2} 3.00614935 \times 10^{-2}$	$4.2 imes 10^{-8}$	
z_0^{PDA}	$3.0 imes 10^{-7}$	$2.99462452 \times 10^{-4} - 3.00012448 \times 10^{-4}$	1.0×10^{-10}	d^{SNE}	$5.9 imes 10^{-5}$	$0.00000000-2.57881261 \times 10^{-4}$	$3.3 imes 10^{-8}$	
z_0^{PST}	6.4×10^{-6}	$8.99336560 \times 10^{-2} - 9.00573016 \times 10^{-2}$	$2.9 imes 10^{-8}$	d^{VAP}	$9.4 imes 10^{-5}$	$9.99736844 \times 10^{-1} - 1.00016263$	$7.7 imes 10^{-8}$	
z_0^{RMB}	$1.7 imes 10^{-6}$	$1.19796167 \times 10^{-3} - 1.20251115 \times 10^{-3}$	5.0×10^{-10}	d^{ZAU}	1.2×10^{-4}	3.49954738 – 3.50122087	4.2×10^{-8}	
z_0^{SDN}	$3.2 imes 10^{-7}$	$9.99239316 \times 10^{-4} - 1.00074991 \times 10^{-3}$	7.0×10^{-10}	d^{ZEV}	$5.5 imes 10^{-6}$	$1.59949878 \times 10^{-1} - 1.60018604 \times 10^{-1}$	$6.5 imes 10^{-8}$	
z_0^{SNE}	2.5×10^{-7}	$2.98922979 \times 10^{-4} - 3.00247696 \times 10^{-4}$	2.0×10^{-10}	d^{ZQM}	1.1×10^{-5}	3.26873871 – 3.27180076	1.9×10^{-7}	

Summer wind rose of Gran Canaria

Wind Rose of Gran Canaria at 10 m relating to the period from June 1 to September 30 of the year 2015.

Selected cases

C	Cases		Daytime			
Surface	Surface	HARMONIE	HARMONIE	Incoming	Pasquill	_
wind	wind speed	$10 \mathrm{~m}$ wind	$10 \mathrm{~m}$ wind	solar	$\mathbf{stability}$	
direction	range (m/s)	\mathbf{speed}	direction	radiation	class	
NNE	> 6	7,61	32,89	530,85	D	=
NE	> 6	9,01	$37,\!29$	$583,\!39$	D	
Ν	> 6	$7,\!11$	$349{,}53$	494,75	D	
NE	5 - 6	$5,\!57$	$40,\!50$	$665,\!60$	\mathbf{C}	
Ν	3 - 5	$4,\!16$	4,26	$797,\!14$	В	5,0013-0,0043
NNE	5 - 6	$5,\!88$	12,76	$771,\!82$	\mathbf{C}	
NNE	3 - 5	$3,\!54$	12,70	$586,\!43$	\mathbf{C}	
N	5 - 6	$5,\!39$	$350,\!28$	$695,\!26$	С	_
C	Cases		Nighttime	9		
Surface	Surface	HARMONIE	HARMONIE	Cloud	Pasquill	_
wind	wind speed	10 m wind	10 m wind	amount	stability	
direction	range (m/s)	\mathbf{speed}	direction	(oktas)	class	
NNE	> 6	9,87	25,75	4,59	D	=
NE	> 6	8,07	$34,\!16$	3,39	D	
Ν	> 6	$6,\!82$	$355,\!35$	7,04	D	
NE	5 - 6	$5,\!10$	$42,\!58$	$2,\!24$	D	
Ν	3 - 5	$4,\!99$	$359,\!27$	$6,\!45$	D	- 0,00-0,00
NNE	5 - 6	$5,\!13$	$19,\!94$	$0,\!61$	D	
NNE	3 - 5	$4,\!90$	$12,\!56$	$0,\!00$	Ε	
Ν	5 - 6	$5,\!62$	353,72	$1,\!86$	D	

Table 1: Most frequent wind speeds and directions in the island of Gran Canaria during the summer months.

Measurement stations

Code	Name	$x\left(m ight)$	$y\left(m ight)$	$z\left(m ight)$
C611E	Vega de San Mateo	442587.00	3094849.87	1712
C612F	Cruz de Tejeda	441111.20	3098128.27	1524
C619I	La Aldea de San Nicolás	420071.67	3097617.70	20
C619X	Agaete	429982.92	3108624.01	15
C619Y	La Aldea	420598.02	3097574.90	23
C623I	S. Bartolomé de Tirajana, Cuevas del Pinar	440978.20	3089240.95	1230
C625O	S. Bartolomé de Tirajana, Lomo Pedro Alfonso	436499.77	3081522.42	816
C628B	La Aldea de San Nicolás, Tasarte	424210.25	3087335.04	328
C629I	Mogán, Puerto	424469.50	3077087.00	22
C629Q	Mogán, Puerto Rico	429927.60	3073056.56	20
C629X	Puerto de Mogán	424751.35	3077101.81	20
C639M	Maspalomas, C. Insular Turismo	443238.31	3070506.07	55
C639U	S. Bartolomé de Tirajana, El Matorral	455345.47	3076502.74	51
C648C	Agüimes	455325.70	3086483.97	316
C648N	Telde, Centro Forestal Doramas	454970.89	3095890.75	354
C649I	Gran Canaria, Aeropuerto	461658.52	3088640.43	34
C649R	Telde, Melenara	462854.84	3095804.64	19
C656V	Teror	446227.23	3105674.70	693
C659H	Polígono de San Cristobal	459130.00	3107201.82	65
C659M	Plaza de la Feria	458627.05	3109809.55	25
C665T	Valleseco	444392.38	3104643.66	910
C669B	Arucas	450225.76	3113015.52	96
C689E	Maspalomas	441057.23	3068075.14	35

Location in UTM zone 28N coordinates and height over the sea level of the 23 anemometers available in Gran Canaria.

Adaptive mesh

Domain dimensions: 76 km \times 85 km \times 4 km

1.492.804 tetrahedra 326.101 nodes

Local refinement:

- Measurement stations
- Shoreline
- Altimetry

Surface triangulation

Results of α and ξ with respect to the RMSE in log scale

Results

Roughness length (z_0) map

Results

Displacement height (d) map

Wind Field Modeling Conclusions and Future Research

Conclusions

- Mass Consistent models (MCM) can improve the forecasting results of Mesoscale models
- The studied parameters involved in MCM depend on the wind velocity (speed and direction), and the atmospheric stability. Also daytime and nighttime results are different.
- The mimetic algorithm proposed is a robust tool for solving this type of parameter estimation problems.

Future Research

- Construct a reduced basis of those parameters for solving wind episodes (different locations). Only forecasting values as input data.
- Apply this methodology to the results of different mesoscale models (HARMONIE, ECMWF)

Data interpolation in FE domain

HARMONIE data interpolation in the FE domain:

• Use U10 and V10 supposing it is 10m over the FE surface + height displacement

Statement of the problem

To find $\vec{v} \in K$ such that,

$$E(\vec{v}) = \min_{\vec{u}\in K} E(\vec{u}), \quad K = \left\{ \vec{u}; \vec{\nabla} \cdot \vec{u} = 0, \ \vec{n} \cdot \vec{u}|_{\Gamma_b} = 0 \right\}$$

This is equivalent to find the saddle point (\vec{v}, ϕ) of the Lagrangian

$$L(\vec{u},\lambda) = E(\vec{u}) + \int_{\Omega} \lambda \vec{\nabla} \cdot \vec{u} \, d\Omega$$

with $L(\vec{v},\lambda) \leq L(\vec{v},\phi) \leq L(\vec{u},\phi)$

The solution produces the Euler-Lagrange equations

$$\vec{v} = \vec{v}_0 + T \vec{\nabla} \phi$$
 where $T = (T_h, T_h, T_v)$ $T_h = \frac{1}{2\alpha_1^2}$, $T_v = \frac{1}{2\alpha_2^2}$

Substituting the Euler-Lagrange equation in,

$$\vec{\nabla} \cdot \vec{u} = 0$$
 in Ω
 $\vec{n} \cdot \vec{u} = 0$ on Γ_b

it yields the governing equations,

$$ec{
abla} - ec{
abla} \cdot (Tec{
abla}\phi) = ec{
abla} \cdot ec{v_0}$$
 in Ω
 $\phi = 0$ on Γ_a
 $ec{n} \cdot Tec{
abla}\phi = -ec{n} \cdot ec{v_0}$ on Γ_b

• Height of the surface layer: z_{sl}