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Reviewers' comments: 
 
Reviewer #1: This paper presents an approach to construct a trivariate T-spline 
representation of complex genus-zero solids using a volumetric parameterization 
mapping between the solid and the parametric unitary cube. 
 
 
Does the presented mesh optimization method work for objects with other genus 
number? You may need to construct one simple object with the same topology, not a 
cube any more. Please comment on the challenges and which part of the algorithm 
needs to be modified. 
 
As it is commented in the conclusions of the paper, we introduced in [24] and [25] the way to 
construct volumetric parameterizations of solids of genus greater than zero, where the surface 
parameterization is explicitly given. The method is based on the construction of a rough 
approximation of the solid joining cuboids (the meccano). But the construction of a T-spline 
representation also demands a T-mesh adapted to the discretization of the meccano. Maybe, 
the easiest way to undertake this task is partitioning the bounding box enclosing the meccano 
following the standard octree subdivision scheme. This subdivision produces vertices both 
inside and outside the meccano, but only the inner vertices must be considered as anchors. The 
external vertices will be used to complete the unclamped knot vectors.  
 
We think that the procedure above described could be accomplished without major problems. 
Possibly, the most complex question, from a technical point of view, is the automatic generation 
of a meccano by using a specific CAD system and the corresponding surface parameterization. 
This last topic is widely discussed in the literature and we could proceed as in PolyCube-Maps 
[20, 29, 30]. 
  
As we all know, conformal mapping is a nice mapping method which preserves angles. 
What are the differences between the presented method and conformal mapping in terms 
of angle preservation, efficiency and robustness? 
 
Our technique could be considered as a method that preserves angles. On the one hand, we 
obtain the surface mapping using Floater parameterization, which is shape preserving. On the 
other hand, the interior nodes are relocated by considering rectangular tetrahedra as target. In 
this sense, our procedure tries to preserve angle, at least in a rough way. We also remark that 
the restriction to map the input surface to cube faces could produce some distortion around the 
neighborhood of the edges. The conformal mapping between the input surface and a sphere 
has nice properties [Gu et. Al 2004] but they are not compatible with our scheme in its present 
form. 
 
Harmonic volumetric functions have also been used to generate a volumetric parameterization 
[19,22,23]. For example, Li et al. [19] construct a harmonic volumetric mapping through a 
meshless procedure by using a boundary method. The algorithm can be applied to any genus 
data but it is complex and requires placing some source and collocation points on an offset 
surface. Optimal results of source positions are unknown, and in practice they are chosen in a 
trial-and-error manner or with the help of human experience. Therefore, the problem is ill-
conditioned and regular system solvers often fail.  
   
Martin et al. [22,23] present a methodology based on discrete harmonic functions to 
parameterize a solid. They solve several Laplace's equations, first on the surface and then on 
the complete 3-D domain with FEM, and use a Laplacian smoothing to remove irregularities. 
During the process, new vertices are inserted in the mesh and retriangulations (in 2-D and 3-D) 
are applied in order to introduce the new vertex set in the mesh. The user has to make an initial 
choice of two critical points to establish the surface parameterization and to fix a seed for 
generating the skeleton. The parameterization has degeneracy along the skeleton. The 
extension to genus greater than zero [23] requires finding suitable midsurfaces.   
 
 

Detailed Response to Reviewers



Our technique is simple and automatically produces a T-spline adapted to the geometry with a 
low computational complexity and low user intervention. As in other methods, our 
parameterization can introduce some distortion, especially along the cube edges. 
 
 Remark: The above paragraphs in italics have been included in the introduction of the 

paper. 
 
There is a lack of discussion on the properties of the constructed solid T-spline, such as 
surface accuracy, continuity, quality and linear independence. 
 
The T-spline is enforced to interpolate all the nodes of the tetrahedral mesh and this mesh is as 
close as we want to the input surface (a triangular mesh in our case). Moreover, the 
interpolating points are exactly sited on the input surface. These reasons suggest a good 
accuracy between the T-spline and the input surface. In order to estimate the gap between both 
surfaces we have analyzed the differences between the volumes enclosed by input surface and 
the T-spline. The first volume is measured by applying the divergence theorem and the second 
one is calculated by  
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with 8 Gaussian quadrature points in each cell. The quadrature points with negative Jacobians 
have been rejected from the calculations. 
 
As a example, for bunny application we have: 
 Volume (input surface): 754.9 
 Volume (tetrahedral mesh): 750.9 (difference of 0.5% in relation to the input). 
 Volume (isogeometric model): 757.4 (difference of 0.3% in relation to the input). 
 Only 39 cells out of 9696 have any quadrature point with negative Jacobian. 
 
 Remark: The above paragraphs in italics have been included in section 4.2. 
 
The T-spline ܵሺߦሻ defined in (9) is the sum of rational ܥଶ blending functions, so ܵሺߦሻ is also a ܥଶ 
function. Nevertheless, as the surface of the solid is the union of six patches obtained by 
mapping the six faces of the cube, and these faces match with ܥ continuity, we only can 
assure the ܥ continuity for the surface of the solid. We think the construction of more regular 
surfaces (ܥଵ or ܥଶ) would be possible by adding new blending functions and imposing 
appropriated conditions on the control points in order to assure a smooth junction between 
patches. 
 
At present, there are no quality metrics for isogeometric analysis analogous to the ones for 
traditional FEA. We have analyzed the scaled Jacobian in the quadrature points of the cells as a 
tentative of a quality measure.  
 
Recently Buffa et al. [5] have analyzed the linear independence of the bi-cubic T-spline blending 
functions corresponding to some particular T-meshes. In particular, they prove linear 
independence of hierarchical T-meshes (2D) generated as the refinement of a coarse and 
uniform T-mesh (this is the in 2D  counterpart to our case). This result requires two 
assumptions. The first one is about the refinement algorithm. It must satisfy that the spaces of 
blending functions associated to the sequence of T-meshes are nested (the refinement 
algorithm of [Sederberg et. al 2004] produces T-meshes with this property). The second 
assumption says that in each step of refinement procedure we only have to add new anchors 
living on new edges. In 2D, the hierarchical refinement can be decomposed in elementary steps 
that satisfy the previous assumptions. Unfortunately, this is not possible in 3D and thus we 
cannot extend the result of Buffa et al. to our T-meshes. However, we think that a similar result 
can be proved if we consider, as an elementary refinement step, the addition of a cross in a cell, 
but at this point we do not have a proof.   
 
Moreover, the linear independence has become evident in all the applications considered until 
now, as the resolution of eq. (11) is only possible if the blending functions ܴఈሺߦሻ are linearly 
independent. 



 
 Remark: The above paragraphs in italics have been included in section 3. 
 
 
In Figure 10, there are some concave elements which yield negative Jacobians and 
influence the convergence of isogeometric analysis solver. How to solve this problem? 
 
At present we can’t give a conclusive response to this question. The strategy taken in the paper 
consists on refining the degenerated cells in order to reduce the regions in which the Jacobians 
become negative. Note that we can get a T-spline representation of non-convex domains 
without inverted Jacobians, as it is shown in Figure (R1).  
 

 

 
                                      R1 (a)                                      R1 (b)                                      R1 (c) 
 
Fig. R1 (a): Parametric domain. 
Fig. R1 (b): Non convex real domain. 
Fig. R1 (c): Representation of the scaled Jacobian in the parametric domain. 
 
The problem arises when a corner of the T-mesh is mapped into a reentering vertex, just like in 
Figure 10 of the paper, reproduced below. 
 
 
 

 
                                 Fig. 10 (b)                                Fig. 10 (d)                                   Fig. 10 (f) 
 
Fig. 10 (b): Parametric domain (T-Mesh) refined on the corner 
Fig. 10 (d): Real domain with a reentering corner. 
Fig. 10 (f): Representation of the scaled Jacobian in the parametric domain. 
 
In Figure R2 it is shown the effect of undertaking an extra refinement around the reentering 
vertex. It can be seen how the region involving negative or close to zero Jacobians is reduced, 
but it does not disappear.  
 
 



 
Fig. R2                               

 
 
 

 
Another alternative is relaxing the geometric constraints allowing the reentering vertex to move 
slightly away from its exact position, such as it is shown in Fig. R3. 
 

 
Fig. R3                                 

 
It is clear that the orthogonality of the cells is a measure of the deformation produced by the 
mapping between parametric and real spaces. We are studying at present a new 
parameterization strategy that distributes the inner nodes in such a way that the cells tend to be 
as orthogonal as possible. Although this new parameterization works properly for inner cells, it 
can’t solve the problem associated to the reentering vertices, as these nodes are restricted to 
move on the boundary. 
 
In addition, there is no any simulation results using isogeometric analysis. It will be 
plausible it some simulations can be provided. 
 
We agree with the referee, but we have not implemented any isogeometric code. Our purpose 
is to apply our isogeometric solid modeling to engineering problems in the next future. However, 
we have used the tetrahedral meshes generated by the meccano method to solve elliptic and 
parabolic problems with standard adaptive FEM. You can see the adaptive finite element mesh 
and the solution for a transient heat transfer problem in the first application of: 
 
http://www.dca.iusiani.ulpgc.es/proyecto2008-2011/html_ingles/Resultados_Proyecto.html 
 
To some extent, the volume evaluation of the bunny isogeometric model can be considered as 
an elementary application. 
 
Pictures in Figure 7 (Stanford bunny) are missing. 
 
We can see correctly the pictures in the pdf file that was generated by the journal web system 
(see detail below). We don´t know which is the problem. Please, suggest us how to proceed if 
the problem persists. 
 
 



 
 
There are some grammar and spelling errors, which should be corrected by a careful 
proofreading. 
 
English has been revised. 
 
Other references: 
 
 [Gu et. al. 2004] Gu, X., Wang, Y., Chan, T., Thompson, P. and Yau, S. T. 2004. Genus zero 
surface conformal mapping and its application to brain surface mapping. IEEE Trans. Med. 
Imaging 23, 8, 949-958. 
[Sederberg et. al. 2004] Sederberg, T., Cardon, D., Finnigan, G., North, N., Zheng, J., Lyche, T. 
2004. T-spline simplification and local refinement. ACM Trans. Graph. 23, 3, 276-283. 
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aUniversity of Las Palmas de Gran Canaria, University Institute for Intelligent Systems
and Numerical Applications in Engineering (SIANI), Spain.
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Abstract

We present a new method to construct a trivariate T-spline representation of
complex genus-zero solids for the application of isogeometric analysis. The
proposed technique only demands a surface triangulation of the solid as input
data. The key of this method lies in obtaining a volumetric parameterization
between the solid and the parametric domain, the unitary cube. To do that,
an adaptive tetrahedral mesh of the parametric domain is isomorphically
transformed onto the solid by applying a mesh untangling and smoothing
procedure. The control points of the trivariate T-spline are calculated by
imposing the interpolation conditions on points sited both on the inner and
on the surface of the solid. The distribution of the interpolating points is
adapted to the singularities of the domain in order to preserve the features
of the surface triangulation.

Keywords: Trivariate T-spline, isogeometric analysis, volumetric
parameterization, mesh optimization, meccano method.

1. Introduction

CAD models usually define only the boundary of a solid, but the appli-
cation of isogeometric analysis [2, 3, 10] requires a fully volumetric represen-
tation. An open problem in the context of isogeometric analysis is how to
generate a trivariate spline representation of a solid starting from the CAD
description of its boundary. As it is pointed by Cotrell et al. in [10], ”the
most significant challenge facing isogeometric analysis is developing three-
dimensional spline parameterizations from surfaces”.
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There are only a few works addressing this problem, and they all have in
common the use of harmonic functions to establish the volumetric parame-
terization [19, 21, 22, 23, 30].

For example, Li et al. [19] construct a harmonic volumetric mapping
through a meshless procedure by using a boundary method. The algorithm
can be applied to any genus data but it is complex and requires placing some
source and collocation points on an offset surface. Optimal results of source
positions are unknown, and in practice they are chosen in a trial-and-error
manner or with the help of human experience. Therefore, the problem is
ill-conditioned and regular system solvers often fail.

Martin et al. [22, 23] present a methodology based on discrete harmonic
functions to parameterize a solid. They solve several Laplace’s equations,
first on the surface and then on the complete 3-D domain with FEM, and
use a Laplacian smoothing to remove irregularities. During the process,
new vertices are inserted in the mesh and retriangulations (in 2-D and 3-
D) are applied in order to introduce the new vertex set in the mesh. The
user has to make an initial choice of two critical points to establish the
surface parameterization and to fix a seed for generating the skeleton. The
parameterization has degeneracy along the skeleton. The extension to genus
greater than zero [23] requires finding suitable midsurfaces.

We propose a different approach in which the volumetric parameterization
is accomplished by transforming a tetrahedral mesh from the parametric
domain to the physical domain. This is a special feature of our procedure;
we do not have to give the tetrahedral mesh of the solid as input, as it is a
result of the parameterization process. Another characteristic of our work is
that we use an interpolation scheme to fit a trivariate B-spline to the data,
instead of an approximation, as other authors do. This performs a more
accurate adaptation of the T-spline to the input data.

One of the main drawbacks of NURBS (see for example [26]) is that they
are defined on a parametric space with a tensor product structure, making
the representation of detailed local features inefficient. This problem is solved
by the T-splines, a generalization of NURBS conceived by Sederberg [27] that
enables the local refinement. The T-splines are a set of functions defined on
a T-mesh, a tiling of a rectangular prism in R

3 allowing T-junctions (see [2]
and [27]).

In this paper we present a new method for constructing volumetric T-
meshes of genus-zero solids whose boundaries are defined by surface triangu-
lations. Our procedure can be summarized in two stages. In the first one,

2
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a volumetric parameterization of the solid is developed. Broadly speaking,
we can consider that the construction of a volumetric parameterization is a
process in which an adaptive tetrahedral mesh, initially defined in the uni-
tary cube C = [0, 1]3, is deformed until it achieves the shape of the solid
(the physical domain). This deformation only affects the positions of the
nodes, that is, there is not any change in their connectivities: we say that
both meshes are isomorphic. Given that a point is fully determined by the
barycentric coordinates relative to the tetrahedron in which it is contained,
we can define a one-to-one mapping between C and the solid assuming that
the barycentric coordinates are the same in both spaces.

In the second stage, the modeling of the solid by trivariate T-splines is
carried out. The control points of the T-splines are calculated enforcing the
T-splines to verify the interpolation conditions. Here is where the volumetric
parametrization plays its part, mapping the interpolation points from the
parametric domain, the T-mesh, onto the solid. In our case, the T-mesh is
an octree partition of C with a similar resolution than the tetrahedral mesh
defined in C.

Our technique is simple and it automatically produces a T-spline adapted
to the geometry with a low computational complexity and low user interven-
tion. As in other methods, our parameterization can introduce some distor-
tion, especially along the cube edges.

The paper is organized as follows. In the next section we describe the
main steps to parameterize a genus-zero solid onto a cube. Some parts of this
section are taken from our previous works on mesh untangling and smoothing
and the meccano method [7, 8, 11, 24, 25], but they have been adapted to the
requirements of the present work. The representation of the solid by means
of trivariate T-splines is developed in section 3. In section 4 we show a test
problem and several applications that highlight the ability of our method for
modeling complex objects. Finally, in section 5 we present the conclusions
and set out some challenges.

2. Volumetric parameterization

2.1. Boundary mapping

The first step to construct a volumetric parameterization consists on es-
tablishing a bijective correspondence between the boundary of the cube and
the solid. To do that, the given surface triangulation of the solid, TS, is
divided in six patches or connected subtriangulations, T i

S (i = 1, 2, . . . , 6),

3
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having the same connectivities as the cube faces. Specifically, if we consider
that each subtriangulation corresponds to a vertex of a graph and two ver-
tices of the graph are connected if their corresponding subtriangulations have
at least a common edge, then, the graphs corresponding to the solid and the
graph of the cube must be isomorphic (see [8, 25] for details).

Once TS is decomposed into six patches, we map each T i
S to the corre-

sponding cube face by using the parameterization of surface triangulations
proposed by M. Floater in [13, 14]. This is a well-known method to trans-
form a surface triangulation onto a plane triangulation defined in a convex
domain, that is, the cube faces in our case. Many and more recent alternative
solutions have been proposed to solve the surface parameterization (see for
example the surveys [15, 16]), but in most of them the plane triangulation
is not defined in a convex set, which is a restriction for us. Thus, if τ iF is
the resulting triangulation on the i-th face of the cube, the parameterization
Πi

F : τ iF → T i
S is a piece-wise linear function that maps a point p inside tri-

angle T ∈ τ iF onto a point q belonging to triangle Πi
F (T ) ∈ T i

S with identical
barycentric coordinates.

In order to ensure the compatibility of {Πi
F}6i=1, the boundary nodes

of {τ iF}6i=1 must coincide on common cube edges. The six transformations
{Πi

F}6i=1 define a global parameterization between τF =
⋃6

i=1 τ
i
F and TS given

by

ΠF : τF → TS (1)

The parameterization ΠF is used in the following step of the algorithm to
map a new triangulation defined over the boundary of C onto the boundary
of the solid.

2.2. Generation of an adapted tetrahedral mesh of the cube

Let consider CK is a tetrahedral mesh of C resulting after applying several
local bisections of the Kossaczky algorithm [18] to an initial mesh formed
by six tetrahedra (see Fig. 1(a)). Three consecutive global bisections are
presented in figures 1 (b), (c) and (d). The mesh of Fig. 1(d) contains
8 cubes similar to the one shown in Fig. 1(a). Therefore, the successive
refinement of this mesh produces similar tetrahedra to those of figures 1 (a),
(b) and (c).

If τK = ∂CK is the new triangulation defined on the boundary of C, then
we define a new parameterization

4
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(a) (b) (c) (d)

Figure 1: Refinement of a cube by using Kossaczky’s algorithm: (a) cube subdivision into
six tetrahedra, (b) bisection of all tetrahedra by inserting a new node in the cube main
diagonal, (c) new nodes in diagonals of cube faces and (d) global refinement with new
nodes in cube edges.

ΠK : τK → T ∗
S (2)

where T ∗
S is the surface triangulation obtained after ΠF -mapping the nodes

of τK . The points of τK are mapped to T ∗
S by preserving their barycentric

coordinates. Note that T ∗
S is an approximation of TS. In order to improve

this approximation we must refine the tetrahedra of CK in contact with the
surface of the cube in such a way that the distance between T ∗

S and TS

decreases until reaching a prescribed tolerance ε. The concept of distance
between two triangulations can be defined and implemented in several ways.
In our case is as follows:

Let T be a triangle of τK , where a, b and c are their vertices and let pk ∈
{pi}Nq

i=1 be a Gauss quadrature point of T , then, the distance, d (T ), between
ΠK(T ) and the underlaying triangulation TS is defined as the maximum of
the volumes of the tetrahedra formed by ΠF (a), ΠF (b), ΠF (c) and ΠF (pk). If
we considerer the distance between T ∗

S and TS as the maximum of all d (T ),
the local refinement stops when d (T ) < ǫ for all T ∈ τK . A more accurate
approach based on Hausdorff distance can be found in [4].

Once the adapted tetrahedral mesh CK has been constructed by using
the proposed method, the nodes of τK are mapped to the surface of the
solid giving the triangulation T ∗

S , which is the final approximation of TS.
Note that inner nodes of CK stay in their initial positions, so the current
tetrahedral mesh of the solid will most likely be tangled (see for example
Fig. 13(a) of subsection 4.2). The following step plays a crucial roll in our
procedure. We have to relocate the inner nodes in suitable positions such

5
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that this tetrahedral mesh gets untangled and the distortion introduced by
the associated parameterization is as small as possible (Fig. 13(b)).

2.3. Relocation of inner nodes

Usual techniques to improve the quality of a valid mesh, that is, one that
does not have inverted elements, are based upon local smoothing. In short,
these techniques consist of finding the new positions that the mesh nodes
must hold, in such a way that they optimize an objective function. Such a
function is based on a certain measurement of the quality of the local submesh

N (q), formed by the set of tetrahedra connected to the free node q. As it
is a local optimization process, we can not guarantee that the final mesh is
globally optimum. Nevertheless, after repeating this process several times for
all the nodes of the current mesh, quite satisfactory results can be achieved.
Usually, objective functions are appropriate to improve the quality of a valid
mesh, but they do not work properly when there are inverted elements. This
is because they present singularities (barriers) when any tetrahedron of N (q)
changes the sign of its Jacobian.

Most of the stated below is taken from [11], where we developed a proce-
dure for untangling and smoothing meshes simultaneously. For that purpose,
we use a suitable modification of the objective function such that it is regular
all over R

3. When a feasible region (subset of R3 where q could be placed,
being N (q) a valid submesh) exists, the minima of both the original and the
modified objective functions are very close and, when this region does not
exist, the minimum of the modified objective function is located in such a
way that it tends to untangle N (q). The latter occurs, for example, when the
fixed boundary of N (q) is tangled. With this approach, we can use any stan-
dard and efficient unconstrained optimization method to find the minimum
of the modified objective function, see for example [1].

If we name T to the tetrahedral mesh of the solid once the inner nodes
have been relocated, the corresponding volumetric parameterization is

Π : CK → T (3)

A point p included in a tetrahedron of CK is mapped, preserving barycen-
tric coordinates, into a point q belonging to the transformed tetrahedron of
T .

6
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2.3.1. Objective functions

Several tetrahedron shape measures could be used to construct an objec-
tive function. Nevertheless, those obtained by algebraic operations [17] are
specially indicated for our purpose because they can be computed very effi-
ciently and they allow us to choose the shape of the tetrahedra to optimize.
Our objective is to relocate the nodes of T in positions where not only the
mesh gets untangled, but also the distortion introduced by the parameteri-
zation is minimized.

Let T be a tetrahedral element of T whose vertices are given by xk =
(xk, yk, zk)

T ∈ R
3, k = 0, 1, 2, 3 and TR be the reference tetrahedron with

vertices u0 = (0, 0, 0)T , u1 = (1, 0, 0)T , u2 = (0, 1, 0)T and u3 = (0, 0, 1)T . If
we choose x0 as the translation vector, the affine map that takes TR to T is
x =Au+ x0, where A is the Jacobian matrix of the affine map referenced to
node x0, and expressed as A = (x1 − x0,x2 − x0,x3 − x0).

Let consider that TI is our ideal or target tetrahedron whose vertices are
v0, v1, v2 and v3. If we take v0 = (0, 0, 0)T the linear map that takes TR to TI

is v =Wu, where W = (v1 − v0,v2 − v0,v3 − v0) is its Jacobian matrix. As
the parametric and real meshes are topologically identical, each tetrahedron
of T has its counterpart in CK . Thus, in order to reduce the distortion in
the volumetric parameterization we will fix the target tetrahedra of N (q) as
their counterparts of the local mesh in the parametric space.

The affine map that takes TI to T is given by x =AW−1v + x0, and its
Jacobian matrix is S = AW−1. Note that this weighted matrix S depends
on the node chosen as reference, so this node must be the same for T and TI .
We can use matrix norms, determinant or trace of S to construct algebraic

quality metrics of T . For example, the mean ratio, Q = 3σ
2

3

|S|2
, is an easily

computable algebraic quality metric of T , where σ = det (S) and |S| is the
Frobenius norm of S. The maximum value of Q is the unity, and it is reached
when A = µRW , where µ is a scalar and R is a rotation matrix. In other
words, Q is maximum if and only if T and TI are similar. Besides, any
flat tetrahedron has quality measure zero. We can derive an optimization
function from this quality metric. Thus, let x = (x, y, z)T be the position
of the free node, and let Sm be the weighted Jacobian matrix of the m-th
tetrahedron of N (q). We define the objective function of x, associated to an
m-th tetrahedron as

ηm =
|Sm|2

3σ
2

3

m

(4)

7



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Then, the corresponding objective function for N (q) is constructed by using
the p-norm of (η1, η2, . . . , ηM) as

|Kη|p (x) =
[

M
∑

m=1

ηpm (x)

]

1

p

(5)

where M is the number of tetrahedra in N (q).
Although this optimization function is smooth in those points where N (q)

is a valid submesh, it becomes discontinuous when the volume of any tetra-
hedron of N (q) goes to zero. It is due to the fact that ηm approaches infinity
when σm tends to zero and its numerator is bounded below. In fact, it is
possible to prove that |Sm| reaches its minimum, with strictly positive value,
when q is placed in the geometric center of the fixed face of the m-th tetra-
hedron. The positions where q must be located to get N (q) to be valid,
i.e., the feasible region, is the interior of the polyhedral set P defined as

P =
M
⋂

m=1

Hm,where Hm are the half-spaces defined by σm (x) > 0. This set

can occasionally be empty, for example, when the fixed boundary of N (q) is
tangled. In this situation, function |Kη|p stops being useful as an optimiza-
tion function. Moreover, when the feasible region exists, that is int P 6= ∅,
the objective function tends to infinity as q approaches the boundary of
P . Due to these singularities, it is formed a barrier which avoids reaching
the appropriate minimum when using gradient-based algorithms, and when
these start from a free node outside the feasible region. In other words, with
these algorithms we can not optimize a tangled mesh N (q) with the above
objective function.

2.3.2. Modified objective functions

We proposed in [11] a modification in the previous objective function (5),
so that the barrier associated with its singularities will be eliminated and the
new function will be smooth all over R

3. An essential requirement is that
the minima of the original and modified functions are nearly identical when
int P 6= ∅. Our modification consists of substituting σ in (5) by the positive
and increasing function

h(σ) =
1

2
(σ +

√
σ2 + 4δ2) (6)

8
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being the parameter δ = h(0). We represent in Fig. 2 the function h(σ).
Thus, the new objective function here proposed is given by

∣

∣K∗
η

∣

∣

p
(x) =

[

M
∑

m=1

(η∗m)
p (x)

]

1

p

(7)

where

η∗m =
|Sm|2

3h
2

3 (σm)
(8)

is the modified objective function for the m-th tetrahedron.
The behavior of h(σ) in function of δ parameter is such that, lim

δ→0
h(σ) = σ,

∀σ ≥ 0 and lim
δ→0

h(σ) = 0, ∀σ ≤ 0. Thus, if int P 6= ∅, then ∀x ∈ int P we

have σm (x) > 0, for m = 1, 2, . . . ,M and, as smaller values of δ are chosen,
h (σm) behaves very much as σm, so that the original objective function
and its corresponding modified version are very close in the feasible region.
Particularly, as δ → 0, function

∣

∣K∗
η

∣

∣

p
converges pointwise to |Kη|p. Besides,

by considering that ∀σ > 0, lim
δ→0

h′(σ) = 1 and lim
δ→0

h(n)(σ) = 0, for n ≥ 2,

it is easy to prove that the derivatives of this objective function verify the
same property of convergence. As a result of these considerations, it may
be concluded that the positions of q that minimize original and modified
objective functions are nearly identical when δ is small. Actually, the value
of δ is selected in terms of point q under consideration, making it as small as
possible and in such a way that the evaluation of the minimum of modified
functions does not present any computational problem.

σ

h

δ

Figure 2: Representation of function h (σ).
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Suppose that int P = ∅, then the original objective function, |Kη|p, is not
suitable for our purpose because it is not correctly defined. Nevertheless, the
modified function is well defined and tends to solve the tangle. We can reason
it from a qualitative point of view by considering that the dominant terms
in

∣

∣K∗
η

∣

∣

p
are those associated to the tetrahedra with more negative values

of σ and, therefore, the minimization of these terms imply the increase of
these values. It must be remarked that h (σ) is an increasing function and
∣

∣K∗
η

∣

∣

p
tends to ∞ when the volume of any tetrahedron of N (q) tends to −∞,

since lim
σ→−∞

h (σ) = 0.

In conclusion, by using the modified objective function, we can untangle
the mesh and, at the same time, improve its quality. Obviously, the modifi-
cation here proposed can be easily applied to other objective functions. An
implementation of the simultaneous untangling and smoothing procedure for
an equilateral reference tetrahedron is freely available in [12].

For a better understanding of the behavior of the objective function and
its modification, we propose the following 2-D test example. The objective
functions of this example have been derived from the mean ratio quality
metric for triangles. Let us consider a simple 2-D mesh formed by three
triangles, qBC, qCA and qAB, where we have fixed A(0,−1), B(

√
3, 0),

C(0, 1) and q(x, y) is the free node. In this case, the feasible region is the
interior of the equilateral triangle ABC. In Fig. 3(a) we show |Kη|2 (solid
line) and

∣

∣K∗
η

∣

∣

2
(dashed line) for as a function of x for a fixed value y = 0 (the

y-coordinate of the optimal solution). The chosen parameter δ is 0.1. We
can see that the original objective function presents several local minima and
discontinuities, opposite to the modified one. Besides, the original function
reaches its absolute minimum outside the feasible region. Vertical asymptotes
in the original objective function correspond to positions of the free node for
which σ = 0 for any tetrahedra of the local mesh. As it might be expected,
the optimal solution for the modified function results in q(

√
3/3, 0). Both

functions are nearly identical in the proximity of this point, see Fig. 3(a).
Let us now consider the tangled mesh obtained by changing the position of

point B(
√
3, 0) to B′(−

√
3, 0). Here, the mesh is constituted by the triangles

qB′C, qCA and qAB′, where qB′C and qAB′ are inverted. The feasible region
does not exist in this new situation. The graphics of functions |Kη|2 and
∣

∣K∗
η

∣

∣

2
are represented in Fig. 3(b). Although the mesh cannot be untangled,

we get q(−
√
3/3, 0) as the optimal position of the free node by using our

modified objective function. For this position the three triangles are “equally

10
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Figure 3: (a) Transversal cut of |Kη|2 (solid line) and
∣

∣K∗

η

∣

∣

2
(dashed line) for the 2-D test

example; (b) the same objective functions for the tangled mesh.

inverted”, that is, they have the same negative values of σ.
The next example highlights the difference between relocating the nodes

of T by choosing TI equal to the equilateral tetrahedron (this option would
be the best if we are only interested in an isotropic FEM mesh) and, as
we point in section 2.3.1, equal to the counterpart tetrahedron in CK . The
test example is a rough sphere obtained by deforming a uniform Delaunay
triangulation of a cube. The nodes of the cube surface have been projected
onto the sphere and the inner nodes have been relocated according to the
above mentioned criteria. Figure 4 shows the central section of the sphere
after mapping a uniform grid defined on the cube. The relocation of the
inner nodes has been carried out by taking TI as an equilateral tetrahedron
(b), and taking TI as the counterpart in the cube (c). It is clear that the
second option constructs a better parameterization.

2.3.3. Rearrangement of the inner nodes

The computational effort to optimize a mesh depends on the initial po-
sition of the nodes. An arrangement of the nodes close to their optimal
positions significantly reduces the number of iterations (and the CPU time)
required by the untangling and smoothing algorithm. Therefore, an inter-
esting idea is to construct a rough approximation of the solid and to use the
corresponding parametrization to relocate interior nodes of more accurate
subsequent approximations.

Taking into account that the grade of refinement attained by the tetra-
hedral mesh depends on the maximum allowed distance, ε, between T ∗

S and

11
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(a) (b) (c)

Figure 4: Rough tetrahedral mesh of a sphere (a). Central cross section of the sphere
after mapping a uniform grid with a parameterization obtained by (b) choosing the target
tetrahedron equilateral, and (c) choosing the target tetrahedron equal to the counterpart
in the cube.

TS, we will write CK(ε), T (ε), τK(ε) and T ∗
S (ε) to express this dependence.

Let suppose that Πεi : CK(εi) → T (εi) is the volumetric parameteri-
zation for a given tolerance εi. We want to find the approximate location
of the nodes of a more accurate mesh T (εi+1), assuming that εi > εi+1.
Firstly, the mesh CK(εi) is locally refined until the distance between T ∗

S (εi)
and TS is below εi+1. In that moment we have the new mesh of the cube
CK(εi+1). Afterward, their inner nodes are mapped by using the previous
parameterization, that is, we construct the new tetrahedral mesh T ∗ (εi+1)
after Πεi-mapping the nodes of CK(εi+1). Note that T ∗ (εi+1) has the same
topology as T (εi+1), but their nodes are not located at optimal positions.
Although T ∗ (εi+1) could be tangled, their interior nodes are close to their
final positions. Therefore, the computational effort to optimize the mesh is
drastically reduced. The last step of this iteration consists on relocating the
inner nodes of T ∗ (εi+1) in their optimal position following the mesh smooth-
ing and untangling procedure above described. This sequence is repeated
several times until we achieve the desired tolerance. In Fig. 5 it is shown
a sequence of gradual approximations to the mesh of a horse. The initial
surface triangulation TS has been obtained from the Large Geometric Model
Archives at Georgia Institute of Technology.

12
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(a) (b)

(c) (d)

Figure 5: Gradual approximations: from a initial coarse mesh to the final accurate mesh.

3. Representation of the solid by T-splines

3.1. Construction of an adapted volumetric T-mesh

We will start this section with a short introduction on T-splines. A de-
tailed report about T-splines and their relationship with isogeometric analysis
can be found in [2].

The T-mesh is the control grid of the T-splines. In 3-D it is a division
of a rectangular prism forming a grid in which the T-juntions are allowed.
In 2-D T-junctions are inner vertices of the grid connecting 3 edges. T-
junctions in 3-D are inner vertices shared by one edge in some direction and

13
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two edges in other directions at the same time [28]. T-splines are rational
spline functions defined by local knot vectors, which are inferred from certain
points of the T-mesh known as anchors [2]. The anchors of the odd-degree
T-splines are sited on the vertices of the T-mesh and the anchors of the
even-degree T-splines are located in the center of each prism. We will focus
on odd-degree T-splines and, in particular, on cubic T-splines because they
are the ones implemented in the present work. Cubic T-splines have 5 knots
in each parametric direction. Let us consider the 2-D example of Fig. 6 to
understand how the knot vectors are deduced from the anchor. The para-
metric coordinates of the anchor tα in Fig. 6(a) are given by (ξ14 , ξ

2
4), then,

by examining the intersections of horizontal and vertical lines (red lines in
the figure) with the edges of the T-mesh, we deduce that the the knot vector
in ξ1 direction is Ξα

1 = (ξ11 , ξ
1
2, ξ

1
4 , ξ

1
5 , ξ

1
6) and, the knot vector in ξ2 direction

is Ξα
2 = (ξ22 , ξ

2
3, ξ

2
4 , ξ

2
5, ξ

2
6). In the case of Fig. 6(b) only one edge is found

when marching horizontally from tβ to the right. In such situations we have
two possibilities: repeat knots in order to form a clamped local knot vec-
tor or, as we have implemented in our work, add phantom knots and form
an unclamped one. These phantom knots are placed following the pattern
shown in Fig. 6(b). The construction of knot vector in 3-D is analogous
but we must examine the intersections with T-mesh faces encountered when
marching in each space direction. The points of the parametric domain are
written as ξ = (ξ1, ξ2, ξ3).

A T-spline is a rational function from the parametric domain to the phys-
ical space given by

S (ξ) =
∑

α∈A

PαRα (ξ) (9)

where Pα is the control point corresponding to the α-th blending function

Rα (ξ) =
wαBα (ξ)

∑

β∈A

wβBβ (ξ)
(10)

being wα its weight and Bα (ξ) = N1
α (ξ

1)N2
α (ξ

2)N3
α (ξ

3) the product of uni-
variate B-splines. In these expressions A ⊂ Z

3 represents the index set
containing every α such that tα is an anchor.

The T-spline S (ξ) is the sum of rational C2 blending functions, so it is
also a C2 function. Nevertheless, as the surface of the solid is the union of six
patches obtained by mapping the six faces of the cube, and these faces match

14
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Figure 6: Construction of knot vector in a two-dimensional T-mesh. All the knots associ-
ated to the anchor tα lie inside the T-mesh (a). The phantom knot ξ1

8
has been added to

construct an unclamped local knot vector (b).

with C0 continuity, we only can assure the C0 continuity for the surface of
the solid.

Our objective is to get a representation of the solid suitable for isoge-
ometric analysis by means of trivariate T-splines. This representation, V,
must preserve the features and details of the input data, the triangulation
TS. To do that, we construct an adapted T-mesh by partitioning the para-
metric domain C in cells by using an octree subdivision. The unitary cube
C is divided in 8 identical cells and, each cell is, in turn, divided in other 8
cells and so on, until all the cells of the octree do not contain any node of
CK in their inner. This last is possible due to the particular characteristics
of the Kossaczky subdivision scheme, in which the edges of CK are the result
of successive division of the edges of C by two. The octree partition defines a
T-mesh, CT , that is used to determine the local knot vector and the anchors
of the T-splines. Note that all the nodes of CK are vertices of CT , so it is to
be hoped that the surface of V achieves the same resolution than the input
triangulation TS. Another consequence of the proposed octree subdivision is
that the cell faces of CT contain no more than one inner T-junction.

3.2. Interpolation

Basically there are two ways of fitting splines to a set points: interpola-
tion and approximation. We have adopted the first one because it is more
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appropriated to reproduce all features of the input triangulation. Assuming
that the set of blending functions are linearly independent, we need as many
interpolation points as blending functions

Recently Buffa et al. [5] have analyzed the linear independence of the bi-
cubic T-spline blending functions corresponding to some particular T-meshes.
They prove linear independence of hierarchical 2-D T-meshes generated as
the refinement of a coarse and uniform T-mesh (this is the 2-D counterpart
to our case). However, the extension of these results to 3-D is not straight-
forward.

We have chosen the images of the anchors as interpolation points, and all
the weights have been taken equal to 1. Thus, the control points, Pα, are
obtained by solving the linear system of equation

Π (tβ) = S (tβ) =
∑

α∈A

PαRα (tβ) , ∀tβ, β ∈ A (11)

where the images Π (tβ) have been calculated through the volumetric param-
eterization (3).

The linear independence has become evident in all the applications con-
sidered until now, as the resolution of (11) is only possible if the blending
functions are linearly independent.

In Fig. 7 the interpolation points and their associated control points for
the Stanford bunny of Fig. 11 are shown.

(a) (b)

Figure 7: The interpolation points (a), and their corresponding control points for the
Stanford bunny (b).
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4. Results

4.1. Test examples

We have chosen a sphere as first example in order to clarify how the
proposed technique works. The figures 8 (b) and (d) show the T-mesh and
its transformation by (9) to the physical space. Comparing figures 8 (a) and
8 (b) it is noticed that all the nodes of the triangulation CK are also nodes
of the T-mesh, as it was said in 3.1.

In Fig. 8(e) we have highlighted four critical (red) points in the corners
included in nearly degenerated cells. The existence of degenerated cells is
inherent in this type of parameterization, because a rectangular cell of CT ,
placed in an edge or in a corner of the cube, is transformed into another cell
with 6 or 7 vertices in the surface of the sphere. So, we could have problems
if the external faces of these cells are mapped to non-convex surfaces. In
such a case, the Jacobian of the transformation will be negative. We could
mitigate the volume which is affected by these degenerated cells by refining
the T-mesh around the edges and corners of the cube. This question will be
analyzed in the following test example of Fig. 10.

On the other hand, if the type of parameterization is polar-like, the sin-
gularity appears in the origin of the coordinate system, as it is pointed out
by [23]. They propose a method blending both types of parameterization
where the user has control over the placement of these critical points.

At present, there are no quality metrics for isogeometric analysis analo-
gous to the ones for traditional FEA to help us characterize the impact of
the mesh on analysis, as it is indicated in [9]. Xu et al. [31, 32] give sufficient
conditions for getting both an injective parameterization for planar splines
without self-intersections and an isoparametric net of good uniformity and
orthogonality, but there are not similar studies for T-splines.

One of the factors to take into account is the variation of the Jacobian
in the elements. Usually, a large variation leads to poor accuracy in the
numerical approximation, so we can explore the suitability of a T-spline for
isogeometric simulations by analyzing the scaled Jacobian in the quadrature
points of the cells. The scaled Jacobian, given by

Js

(

ξ1, ξ2, ξ3
)

=
det (Sξ1 ,Sξ2,Sξ3)

‖Sξ1‖ ‖Sξ2‖ ‖Sξ3‖
(12)

where Sξi is the derivative of the trivariate T-spline (9) with respect to ξi,
has been evaluated in the eight Gaussian quadrature points (see for exam-
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(a) (b)

(c) (d) (e)

Figure 8: Parameterization and construction of a sphere with T-splines. Parametric do-
main CK (a), T-mesh CT (b), tetrahedral mesh of the sphere T (c), T-spline representation
of the sphere V (d), and its cross section (e).

ple [6]) of each cell in the real domain. For doing that, we set the eight
quadrature points in the hexahedra of the parametric domain and calculate
their transformation to the real domain by applying (9). We can get an idea
about whether the distortion introduced by the spline is or is not too large
by plotting the average, minimum and maximum of the scaled Jacobian in
the quadrature points. The following graphic shows the average, minimum
and maximum of the scaled Jacobian for each cell sorted in increasing order
of its average value.

The next test model (see Fig. 10) is a T-spline representation of a de-
formed unitary square in which the corner (1, 1) has been displaced toward
position

(

3
4
− 1

10
, 3
4
− 1

10

)

, producing a degenerated cell. This displacement
makes the new optimal position for the central node to become (0.38, 0.38).
The same model is approximated by two T-meshes with 9 (Fig. 10(a)) and
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Figure 9: Scaled Jacobian for the sphere test of Fig. 8, evaluated in the quadrature points
and sorted by the increasing order of the average value (black line). The red and blue
lines correspond to the minimum and maximum values in each cell, respectively.

14 (Fig. 10(b)) interpolating points. The corresponding T-spline represen-
tations are shown in figures 10 (c) and 10 (d), respectively. Note that the
representation of Fig. 10(c) has a wide folded region around the corner in
which the Jacobian is negative. However, this region has been remarkably
reduced in the refined version (Fig. 10(d)). This example points up that,
although the refinement of the T-mesh around the corners (and edges in 3-
D) does not completely solve the problem of degenerated cells, it tends to
diminish the region in which the Jacobians become negative. It can be more
clearly seen in figures 10 (e) and (f), where the scaled Jacobian has been rep-
resented by a color map. The blue hues correspond to the regions in which
the Jacobian is negative.

4.2. Applications to complex solids

In Fig. 11 we have shown a tetrahedral and T-spline representation of the
Stanford bunny. Note how similar discretization of the respective parametric
domains give rise to similar grade of detail in the physical domains. It can
be seen how the isoparemetric curves are nearly orthogonal in most parts
of the solid, which entails low distortion and scaled Jacobians near to unit.
Nevertheless, in some regions of the surface, and specially those close to the
seams, the distortion becomes high. We have computed 39 cells out of 9696
in which at least one of the eight Gaussian quadrature points has negative
Jacobian.
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As we mentioned in the previous section, the T-spline is enforced to inter-
polate all the nodes of the tetrahedral mesh T and this mesh is as close as we
want to the input surface TS. Moreover, the interpolating points are exactly
sited on the input surface. These reasons suggest a good accuracy between
the surface of the T-spline and TS. In order to estimate the gap between both
surfaces we have analyzed the differences between the volumes enclosed by
TS and the T-spline, V, for the present application. The first volume is mea-
sured by applying the divergence theorem and the second one is calculated
integrating det (Sξ1 ,Sξ2,Sξ3) in the unitary cube C with 8 Gaussian quadra-
ture points in each cell. The quadrature points with negative Jacobians have
been rejected from the calculations. The results for the bunny application
are: the volume enclosed by TS is 754.9, the volume of T is 750.9 (a difference
of 0.5% in relation to TS) and the volume of V is 757.4 (a difference of 0.3%
in relation to TS).

Guided by the results of the second test example of Fig. 10, we are
interested in knowing the effect of refining the cells with worse quality. To
do that, we develop an iterative procedure in which the scaled Jacobian is
evaluated in the center of each cell and, if it is negative, we store the point
in a list of vertices to be included in the T-mesh of the subsequent iteration.
If the impact of such refinement is similar to the one of the test example, it
should be hoped a reduction of the region in which the Jacobian had negative
values. In fact, the number of cells with negative scaled Jacobian evaluated
in their centers have been: 5 in the first iteration, 4 in the second, 2 in
the third and 0 in the fourth. Moreover, only 6% of the cells have a scaled
Jacobian less than 0.5.

The sequence of images (figures 12, 13 and 14) summarizes the main
stages to get a T-spline representation of a solid given by a triangulation.
The Fig. 12(a) shows the input triangulation emphasizing the six patches
in which it has been divided. Each patch is mapped to the corresponding
face of the cube by using Floater parameterization, Fig. 12(b). Afterward,
we construct an adapted tetrahedral mesh of the cube by using Kossaczky
refinement (Fig. 12(c)) and map its boundary to the true surface (Fig. 13(a)).
Then, we relocate the inner nodes in their optimal positions by means of our
untangling and smoothing procedure (Fig. 13(b)). Fig. 13(c) represents
the resulting tetrahedral mesh. Finally, we generate an adapted T-mesh of
the cube (Fig. 14(a)) and map the anchors to the positions ruled by the
volumetric parameterization in order to obtain the T-spline representation
of the solid (Fig. 14(b)).

20



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

(a) (b)

(c) (d)

-1 1

(e)

-1 1

(f)

Figure 10: Initial T-mesh in the parametric domain (continuous line) and the underlying
triangular mesh (dashed line) (a). T-mesh refined on the corner (b). T-spline of a deformed
square with a reentering corner (c). Refined version of the T-spline (d). Scaled Jacobian
representation in the parametric domain for the initial (e) and refined meshes (f).
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(a) (b)

(c) (d)

(e) (f)

Figure 11: Tetrahedral mesh of the parametric domain CK (a), T-mesh CT (b), tetrahedral
mesh T (c) and T-spline representation V of the Stanford bunny. Two transversal sections
of V (d) and (e).
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(a)

(b) (c)

Figure 12: Stages of the volumetric parameterization (I). Input triangulation TS divided
into six patches (a). Floater parameterization τF of the armadillo triangulation onto the
cube faces (b). Adapted tetrahedral mesh of the cube by using Kossaczky refinement CK
(c).
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(a) (b)

(c)

Figure 13: Stages of the volumetric parameterization (II). Tangled tetrahedral mesh ob-
tained after mapping the cube boundary to the armadillo surface (a). Cross section of the
optimized tetrahedral mesh (b). Final tetrahedral mesh T (c).
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(a)

(b)

Figure 14: Stages of the volumetric parameterization (III). Adapted T-mesh in the para-
metric domain CT (a) and final T-spline representation of the armadillo V (b).
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In this case, the number of cells with negative Jacobian evaluated in
their centers has been 1 in the first iteration and 0 in the second. In this last
iteration, the number of cells with scaled Jacobian less than 0.5 is 1.5%.

We remark that in these applications we have obtained positive Jacobians
in all the centers of the cells of CT . Therefore, the most distorted cells are
susceptible of being integrated with at least one Gaussian quadrature point.
Obviously, a better numerical approximation is possible in most of the cells.

5. Conclusions and challenges

Focused on the application of isogeometric analysis, this work is a new
approach to the automatic generation of trivariate T-splines representation
of solids. Our procedure has been developed for genus-zero solids, but we
believe that it could be generalized to arbitrary objects. The key lies on
having a volumetric parameterization of the solid. In [24, 25] we pointed the
way to construct volumetric parameterizations of solids delimited by surfaces
of genus greater than zero. The method is based on the composition of a
meccano, joining cuboid pieces in order to get a rough approximation of the
solid. Afterward, we use a parameterization to map the boundary of the solid
to the meccano faces. In the meccano method such surface parameterization
must be explicitly given, but we think that this handicap could be overcome
by applying a technique similar to PolyCube-Maps [20, 29, 30]. The rest of
the procedure would follow the same steps than the ones described in this
paper.

Furthermore, the input data in the present paper is a triangulation defin-
ing the boundary of the solid, but this boundary is generally described by
CAD. Such information could be used to map the points lying on the surface
of the parametric mesh to the surface of the solid, making unnecessary the
stage of surface parameterization.

In general, the distortion introduced by the proposed volumetric parame-
terization is low, but the existence of critical points where the Jacobian of the
T-spline may become negative constitutes an inconvenient for isogeometric
simulations. Just as we have shown in section 4, the selective refinement of
the most degenerated cells palliates the problem, but it cannot be understood
like a conclusive solution. As far as we know, this is a problem common to
other types of parameterizations that must be satisfactory solved.
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