
Abstract

This paper introduces a new automatic strategy for adaptive tetrahedral mesh gen-

eration. A local refinement/derefinement algorithm for nested triangulations and a

simultaneous untangling and smoothing procedure are the main techniques involved.

The mesh generator is applied to 3-D complex domains whose boundaries are pro-

jectable on external faces of a meccano approximation composed of cuboids. The

domain surfaces must be given by a mapping between meccano surfaces and object

boundary.

Keywords: tetrahedral mesh generation, adaptive refinement/derefinement, nested

meshes, mesh smoothing, mesh untangling.

1 Introduction

In finite element simulation in engineering problems, it is crucial to automatically

adapt the three-dimensional discretization to geometry and to solution. In the past,

many authors have devoted great effort to solving this problem in different ways [1–

4], but automatic 3-D mesh generation is still an open problem. Generally, as the

complexity of the problem increases (domain geometry and model), the methods for

approximating the solution become more complicated. At present, it is well known

that most mesh generators are based on Delaunay triangulation and the advancing front

technique. On the other hand, local adaptive refinement strategies are employed to

adapt the mesh to singularities of numerical solution. These adaptive methods usually

involve remeshing or nested refinement [5–8]. Another interesting idea is to adapt

simultaneously the model and the discretization in different regions of the domain. A

perspective on adaptive modeling and meshing is studied in [9]. The main objective

of all these adaptive techniques is to achieve a good approximation of the real solution

Chapter 0123456789
XXXXXXXXXXXX PROOF XXXXXXXXXXXXXXX
Advances in the Meccano Technique for
Adaptive Tetrahedral Mesh Generation

R. Montenegro1, J.M. Cascón2, E. Rodríguez1, G. Cascón2 and J.M. Escobar1
1 University Institute for Intelligent Systems and
 Numerical Applications in Engineering
 University of Las Palmas de Gran Canaria, Spain
2 Department of Mathematics, Faculty of Sciences
 University of Salamanca, Spain

123

©Saxe-Coburg Publications, 2008.
Trends in Engineering Computational Technology
B.H.V. Topping and M. Papadrakakis, (Editors)
Saxe-Coburg Publications, Stirlingshire, Scotland, 888-888.

with minimal user intervention and low computational cost. For this purpose, the mesh

element quality is also an essential aspect for the efficiency and numerical behavior of

finite element method. The element quality measure should be understood depending

on the isotropic or anisotropic character of the numerical solution.

In this paper we present new ideas and applications of an innovative tetrahedral

mesh generator which was introduced in [10–12]. This automatic mesh generation

strategy uses no Delaunay triangulation, nor advancing front technique, and it sim-

plifies the geometric discretization problem for 3-D complex domains, whose sur-

faces can be mapped from a meccano face to object boundary. The main idea of

the new mesh generator is to combine a local refinement/derefinement algorithm for

3-D nested triangulations [6] and a simultaneous untangling and smoothing proce-

dure [13]. The resulting adaptive meshes have an appropriate quality for finite element

applications.

The mesh generator starts building a meccano approximation formed by cuboids.

Then, a coarse and valid hexahedral mesh of the meccano approximation is generated.

The automatic subdivision of each hexahedron into six tetrahedra produces an initial

tetrahedral mesh of the meccano approximation. The main idea is to construct a se-

quence of nested meshes by refining only those tetrahedra with a face on the meccano

boundary. The virtual projection of the meccano external faces defines a valid trian-

gulation on the domain boundary. Then a 3-D local refinement/derefinement is carried

out so that the approximation of domain surfaces verifies a given precision. Once this

objective is reached, those nodes placed on the meccano boundary are really projected

on their corresponding true boundary, and inner nodes are relocated using a suitable

mapping. As the mesh topology is kept during node movement, poor quality or even

inverted elements could appear in the resulting mesh; therefore, we finally apply a

mesh optimization procedure.

At present, the refinement/derefinement module is implemented in ALBERTA code

[14,15]. This software can be used for solving several types of 1-D, 2-D or 3-D prob-

lems with adaptive finite elements, but we only use the local refinement/derefinement

algorithm. It is based on local bisection. Actually, ALBERTA has implemented an

efficient data structure and adaption for 3-D domains which can be decomposed into

hexahedral elements as regular as possible. Each hexahedron is subdivided into six

tetrahedra by constructing a main diagonal and its projections on its faces, see Fig-

ure 2(a). The local bisection of the resulting tetrahedra is recursively carried out by

using general ideas of the longest edge [17] and the newest vertex bisection methods.

The refinement of a given triangulation is performed by a recursive algorithm. In order

to guarantee that this procedure terminates in a finite number of iterations, the algo-

rithm requires that the refinement edge of an element in the initial mesh is the same for

all elements that share this edge. Details about the local refinement technique imple-

mented in ALBERTA and restrictions on initial mesh are analyzed in [6, 14, 16]. This

strategy works very efficiently for initial meshes obtained by subdivision of regular

quadrilateral or hexahedral elements. In these cases, the degeneration of the result-

ing 2-D or 3-D triangulations after successive refinements is avoided. The restriction

on the initial element shapes and mesh connectivities makes it necessary to develop

a particular mesh generator for ALBERTA. The presented algorithm produces com-

patible meshes with ALBERTA. Obviously, our mesh generation technique could be

developed for other types of local refinement/derefinement algorithms for tetrahedral

meshes [5, 7, 8].

The meccano technique presents several advantages with respect to more traditional

approaches, such as Delaunay triangulation or the advancing front technique [1–4].

Delaunay triangulation requires a control in order to avoid slivers. Furthermore, the

mesh conformity with the object boundary is not a trivial problem for complex ge-

ometry. On the other hand, advancing front technique requires a suitable surface tri-

angulation. In addition, an appropriate definition of element sizes is demanded for

obtaining good quality tetrahedra. Other technical difficulties appear when these two

methods are applied to objects comprising different materials.

Our approach is based on the combination of several former procedures (refine-

ment, derefinement, projection, untangling and smoothing) which are not in them-

selves new, but the overall integration is an original contribution. Authors have used

them in different ways. Triangulations for convex domains can be constructed from a

coarse mesh by using refinement/projection [15]. Adaptive nested meshes have been

constructed with refinement and derefinement algorithms for evolution problems [18].

Large domain deformations can lead to severe mesh distortions, especially in 3-D.

Mesh optimization is thus key for keeping mesh shape regularity and for avoiding a

costly remeshing [19,20]. In traditional mesh optimization, mesh moving is guided by

the minimization of certain overall functions, but it is usually done in a local fashion.

In general, this procedure involves two steps [21, 22]: the first is for mesh untangling

and the second one for mesh smoothing. Each step leads to a different objective func-

tion. In this paper, we use the improvement proposed by [13], where a simultaneous

untangling and smoothing guided by the same objective function is introduced.

Some advantages of our technique are that: surface triangulation is automatically

constructed, the final 3-D triangulation is conforming with the object boundary, inner

surfaces are automatically preserved (for example, interface between several materi-

als), node distribution is adapted in accordance with the object geometry, and parallel

computations can easily be developed for meshing the meccano pieces. Nevertheless

an admissible mapping between the meccano boundary and the object surface must be

defined. Some effort should be made in that respect in the future.

In the following section we present a description of the main stages of the new

mesh generation procedure. In Section 3 we show a test problem which illustrates the

efficiency of this strategy. Finally, conclusions and future research are presented in

Section 4.

2 Description of the Mesh Generator

In this section, we present the main ideas that have been introduced in the mesh gen-

eration procedure. The following algorithm describes the whole mesh generation ap-

proach

Mesh generation

1. Construct a meccano approximation formed by cuboids.

2. Define an admissible mapping between the meccano approximation

and the object boundaries.

3. Construct a valid hexahedral mesh of the meccano approximation.

4. Construct a coarse tetrahedral mesh from the previous hexahedral

mesh.

5. Generate a local refined tetrahedral mesh of the meccano for a given

precision.

6. Move the boundary nodes of the meccano to the object surface ac-

cording to the mapping defined in 2.

7. Relocate the inner nodes of the meccano.

8. Optimize the actual tetrahedral mesh applying the simultaneous un-

tangling and smoothing procedure.

In Sections 2.1 and 2.2, we start with the definition of the domain and its subdivi-

sion in an initial 3-D triangulation that verifies the restrictions imposed by ALBERTA.

In Section 2.3, we continue with the presentation of different strategies to obtain an

adapted mesh which can approximate the boundaries of the domain within a given

precision. We construct a mesh of the domain by projecting the boundary nodes from

a meccano plane face to the true boundary surface and by relocating the inner nodes.

These two steps are summarized in Sections 2.4 and 2.5, respectively. Finally, in

Section 2.6 we present a procedure to optimize the resulting mesh.

2.1 Object Meccano

The first step of the procedure is to construct a meccano approximation. We have

developed a simple CAD application that allows the user to generate a meccano ap-

proximation by connecting simple cuboids. This toolkit, called MECCANO, has the

most common options of a graphic design application. The user can move, resize,

rotate, delete, undelete, copy or paste cuboids, and edit the properties of each piece of

the meccano approximation. Our application also verifies if the restrictions imposed

on the topology and structure are correct each time the user makes some changes in the

scene. MECCANO is based on library Coin3D [23]. Coin3D is a high level toolkit for

developing 3D simulation and visualization applications. It is built on OpenGL and

Figure 1: View of the main window of toolkit MECCANO. The meccano approxima-

tion in picture corresponds to the example of Section 3

uses scene graph data structures to render 3D graphics in real-time. In Figure 1 a view

of the main window of MECCANO is shown.

Note that, in general the union of cuboids is non-valid hexahedral mesh. The gen-

eral idea of the meccano technique could be understood as the connection of different

polyhedral pieces. The use of cuboid pieces is an initial particular case.

Once the meccano approximation is fixed, we have to define an admissible mapping

between the boundary faces of the meccano and the boundary of the object. We now

introduce this concept. Let Σ0 be the boundary of the meccano and Σ the boundary

of the object. We denote Σi
0

the i-th face of the meccano boundary, such that Σ0 =
⋃n

i=1
Σi

0
where n is the number of meccano boundary faces. We define Π : Σ0 → Σ

as a piecewise function, such that Π|Σi
0

= Πi where Πi : Σi
0
→ Πi(Σi

0
) ⊂ Σ. Then, Π

is called an admissible mapping if it satisfies:

1. Functions {Πi}n
i=1

are compatible on Σ0. That is Πi

|Σi
0
∩Σ

j
0

= Πj

|Σj
0
∩Σi

0

, ∀i, j =

1, . . . , n, with i 6= j and Σi
0
∩ Σj

0
6= ∅.

2. Global mapping Π is continuous and biyective between Σ0 and Σ.

3. Functions Πi are differentiable on Σi
0
.

We note that, if the mesh size of the meccano boundary is not small enough, the

resulting surface mesh could be non-valid. The appropriate element size depends on

gradient of Πi. We also note that admissible mapping is not unique. Obviously, the

quality of the resultant surface mesh depends on the chosen mapping.

Figure 2: Refinement of a cube by using Kossaczky’s algorithm: (a) cube subdivision

into six tetrahedra, (b) bisection of all tetrahedra by inserting a new node in the cube

main diagonal, (c) new nodes in diagonals of cube faces and (d) global refinement

with new nodes in cube edges

2.2 Coarse Tetrahedral Mesh of the Meccano

The meccano is now decomposed into a coarse and valid hexahedral mesh by an ap-

propriate subdivision of initial cuboids. Then, we build a coarse tetrahedral mesh by

splitting each hexahedron into six tetrahedra [6]. For this purpose, it is necessary to

define a main diagonal on each hexahedron and corresponding diagonal on its faces.

For an example of the subdivision of a cube, see Figure 2(a). In order to get a con-

forming tetrahedral mesh, all hexahedra are subdivided in the same way, maintaining

compatibility between the diagonal of their faces. The resulting initial mesh τ1 can

be introduced in ALBERTA since it verifies the imposed restrictions about topology

and structure. The user can introduce in the code the necessary number of recursive

global bisections [6] for fixing a quasi-uniform element size in the whole initial mesh.

Three consecutive global bisections for a cube are presented in Figures 2 (b), (c) and

(d). The resulting mesh of Figure 2(d) contains 8 cubes similar to the one shown in

Figure 2(a). Obviously, the quality of the resulting tetrahedral mesh is directly related

to the quality of the previous hexahedral mesh. Therefore, although the ideal case is

the subdivision of the cuboids into cubes, it is not always possible.

2.3 Local Refined Mesh of the Meccano

The next step in the mesh generator includes a recursive adaptive local refinement

strategy of those tetrahedra with a face placed on a boundary face of the initial coarse

mesh. The refinement process is done in such a way that the true surfaces are approxi-

mated by a linear piecewise interpolation within a given precision. That is, we seek an

adaptive triangulation on the meccano boundary faces, so that the resulting triangula-

tion after node mapping on the object true boundary is a good approximation of this

boundary. The user has to introduce as input data a parameter ε, which is a tolerance

to measure the separation allowed between the linear piecewise interpolation and the

true surface. At present, we have considered two criteria: the first related to the Eu-

clidean distance between both surfaces and the second attending to the difference in

terms of volume.

a

b

c

O

P

a’
c’

b’

P’

a

b

c

a’

c’

b’

O

P

P’

Figure 3: Node mapping from meccano to real domain: (a) transformation of an ex-

ternal node P and (b) of an inner node P

To illustrate these criteria, let abc be a triangle placed on the meccano boundary,

and a′b′c′ the resulting triangle after projecting the nodes a, b and c on surface Σ, see

Figure 3. We define two different criteria to decide whether it is necessary to refine

the triangle (and consequently the tetrahedra containing it) in order to improve the

approximation.

For any point Q in the triangle abc we define dQ
1

as the euclidean distance between

the mapping of Q on Σ, Q′, and the plane defined by a′b′c′. This definition is an

estimate of the distance between the surface of the object and the current piecewise

approximation.

We also introduce a measure in terms of volume, then, for any Q in the triangle abc
we define dQ

2
as the volume of the virtual tetrahedron a′b′c′Q′. In this case, dQ

2
is an

estimate of the lost volume in the linear approximation by the face a′b′c′ of the true

surface.

The threshold of whether to refine the triangle or not is given by a tolerance εi

fixed by the user. With the previous definition, dQ
1

< ε1 for all Q in the boundary

on the meccano implies that the distance between the surface of the object and its

piecewise linear approximation is less than ε1. On the other hand, dQ
2

< ε2 for all

Q in the boundary on the meccano would mean that the lost volume per boundary

face is bounded by ε2. Alternatively, ε2 could be defined as the allowed difference of

volumes and we could use an equidistribution strategy as is usual in a-posteriori error

estimates. Nevertheless, here we prefer to use a local version of ε2, so the difference

of volumes is estimated by multiplying ε2 by the number of boundary faces of the final

approximation.

Obviously, other measures could be introduced in line with the desired approxima-

tion type (curvature, points properties, etc.). What is more, the user could consider the

combination of several measures simultaneously.

Once we have defined separation measures di and tolerances εi, we propose two

different strategies for reaching our objective in the following subsections.

2.3.1 Sequence of Refinements and Derefinement

The first strategy consists of a simple method. It combines a sequence of refinement

steps with one derefinement step.

Simple refinement step. We construct a sequence of tetrahedral nested meshes

by recursive bisection of all tetrahedra that contain a face located on the meccano

boundary faces; see Figure 2. The number of bisections nb is determined by the user as

a function of the desired resolution. At this point, we identify the true surface with the

linear approximation obtained with this resolution. So, we have a uniform distribution

of nodes on these meccano faces and we can consider their virtual mapping on the

object boundary.

Derefinement step. We apply a derefinement procedure, which is a generalization

of the strategy developed in [18]. This criterion fixes which tetrahedra introduced in

the refinement sequence can be eliminated without damaging the approximation for

the prescribed tolerance εi. The derefinement is applied iteratively to the current mesh

and concludes either when there are no elements to remove or when the coarse mesh

is reached.

Note that each tetrahedron T (generated by bisection of its father) has a so-called

newest node P . This node was introduced at the middle point of a prescribed edge ac
of the father of T to generate its two sons, see Figure 3(a). The derefinement criterion

is efficient because it only computes the distance dP
i relative to this newest node to

decide if the tetrahedron T could be removed. This distance is related to the face abc
(or its virtual mapping a′b′c′) of the father of T .

Then, the derefinement criterion, associated to a tetrahedron T of the sequence of

nested meshes, can be introduced as:

Derefinement criterion. Tetrahedron T is marked to be derefined, if it

satisfies one of the following conditions:

1. The newest node P of T is interior.

2. The newest node P of T is placed on the boundary of the meccano

and dP
i < εi.

A marked tetrahedron T will be removed only if all the elements generated by the

bisection of the edge ac of its father are also marked. So, the refinement/derefinement

procedure to construct a local refined tetrahedral mesh of the meccano is summarized

in the following algorithm:

Refinement/derefinement procedure

1. Set nb and εi.

2. Construct the coarse tetrahedral mesh of the meccano.

3. Refine nb times all tetrahedra with at least one face placed on the

meccano boundary.

4. Mark for derefinement all tetrahedra that satisfy the derefinement

criterion for a distance di and a tolerance εi.

5. Derefine the mesh.

6. If the mesh was modified, go to step 4.

2.3.2 Sequence of Local Refinements

The second strategy also starts with the coarse mesh of the meccano, but it only ap-

plies local refinement to obtain the fine one. In this case the refinement criterion for

tetrahedron T is:

Refinement criterion. Tetrahedron T is marked to be refined, if it satisfies

the following two conditions:

1. T has a face F on the boundary of the meccano.

2. dQ
i ≥ εi for some point Q located on face F of T .

From a numerical point of view, the number of points Q (analyzed in this strategy)

is reduced to a set of points on a uniform mesh of a given resolution, or a set of

points of quadrature. Finally, the refinement strategy for constructing a local refined

tetrahedral mesh of the meccano is summarized in the following algorithm:

Refinement procedure

1. Set nb and εi.

2. Construct the coarse tetrahedral mesh of the meccano.

3. Mark for refinement all tetrahedra which satisfy the refinement cri-

terion for a distance di and a tolerance εi.

4. Refine the mesh.

5. If the number of refinement steps is less than nb and the mesh was

modified, go to step 3.

While the first strategy is simpler, it could lead to problems with memory require-

ments if the number of tetrahedra is very high before applying the derefinement algo-

rithm. For example, this situation can occur when there are surfaces defined by very

high resolution functions. Nevertheless, the user could control the number of recursive

bisections nb and the tolerance εi.

On the other hand, the problem of the second strategy is to determine whether a

face placed on meccano boundary must be subdivided to achieve the desired approx-

imation of the true surface. This analysis must be done every time that a boundary

face is subdivided into its two son faces. Suppose, for example, that the true sur-

face is given by a discrete function. Then, the subdivision criterion should stop for

a particular face when all the surface discretization points, defined on this face, have

been analyzed and all of them verify the approximation criterion. So, this second

strategy has the inconvenience that each surface discretization point could be studied

many times and, therefore, it generally involves a higher computational cost than the

first strategy. Nevertheless, both of those strategies could be faster depending on the

geometry of the object surface and the parameters fixed by the user.

2.4 External Node Mapping on Object Boundary

Although ALBERTA has already implemented a node projection on a given boundary

surface during the bisection process, it has two important restrictions: nodes belonging

to the initial mesh are not projected and inverted elements could appear in the case of

projecting new nodes on complex surfaces (i.e. non-convex object). In the latter case,

the code does not work properly since it is only prepared to manage valid meshes.

Therefore, a new strategy must be developed in the mesh generator. The projection

(or mapping) is really done once we have defined the local refined mesh by using

one of the two methods proposed in the previous section. Then, the nodes placed

on the meccano faces are projected (or mapped) on their corresponding true surfaces,

maintaining the position of the inner nodes of the meccano triangulation.

After this process, we obtain a valid triangulation of the domain boundary, but a

tangled tetrahedral mesh could appear. Inner nodes of the meccano could now be

located even outside the domain. Thus, an optimization of the mesh is necessary.

Although the final optimized mesh does not depend on the initial position of the inner

nodes, it is better for the optimization algorithm to start from a mesh with as good a

quality as possible. Therefore, we propose to relocate the inner nodes of the meccano

in a reasonable position before the mesh optimization.

2.5 Relocation of Inner Nodes

There would be several strategies for defining an appropriate position for each inner

node of the domain. An acceptable procedure is to modify their relative position as a

function of the distance between boundary surfaces before and after their projections.

This relocation is done relative to proportional criteria along the corresponding pro-

jection line. For example, relocation of inner node P in its new position P ′, such that

OP ′ = OP × Oa′ / Oa, is represented in Figure 3(b).

Although this node movement does not solve the tangle mesh problem, it normally

lessens it. In other words, the resulting number of inverted elements is lower and the

mean quality of valid elements is greater.

2.6 Object Mesh Optimization: Untangling and Smoothing

An efficient procedure is necessary to optimize the current mesh. This process must be

able to smooth and untangle the mesh and is crucial in the proposed mesh generator.

The most usual techniques to improve the quality of a valid mesh, that is, a mesh

with no inverted elements, are based upon local smoothing. In short, these techniques

consist of finding the new positions that the mesh nodes must hold, in such a way

that they optimize an objective function. Such a function is based on a certain mea-

surement of the quality of the local submesh, N (v), formed by the set of elements

connected to the free node v whose coordinates are given by x. We have considered

the following objective function (1) derived from an algebraic mesh quality metric

studied in [20], but it would also be possible to use other objective functions that have

barriers like those presented in [19]:

K (x) =

[

M
∑

m=1

(

1

qηm

)p

(x)

]

1

p

, (1)

where M is the number of elements in N (v), qηm
is an algebraic quality measure of

the m-th element of N (v) and p is usually chosen as 1 or 2. Specifically, we have

considered the mean ratio quality measure, which for a tetrahedron is qη = 3σ
2

3

|S|2
and

for a triangle is qη = 2σ

|S|2
, being |S| the Frobenius norm of matrix S associated with

the affine map from the ideal element (usually equilateral tetrahedron or triangle) to

the physical one, and σ = det (S). Other algebraic quality measures can be used as,

for example, the metrics based on the condition number of matrix S, qκ = ρ

|S||S−1|
,

where ρ = 2 for triangles and ρ = 3 for tetrahedra.

As it is a local optimization process, we cannot guarantee that the final mesh is

globally optimum. Nevertheless, after repeating this process several times for all the

nodes of the current mesh, quite satisfactory results can be achieved. Objective func-

tions are usually appropriate to improve the quality of a valid mesh, but they do not

work properly when there are inverted elements. This is because they present singu-

larities (barriers) when any tetrahedron of N (v) changes the sign of its Jacobian de-

terminant. To avoid this problem it is possible to proceed as Freitag et al. in [21, 22],

where an optimization method consisting of two stages is proposed. In the first, the

possible inverted elements are untangled by an algorithm that maximizes their nega-

tive Jacobian determinants [21] while, in the second, the resulting mesh from the first

stage is smoothed using another objective function based on a quality metric of the

tetrahedra of N (v) [22]. After the untangling procedure, the mesh has a very poor

quality because the technique has no motivation to create good-quality elements. As

remarked in [22], it is not possible to apply a gradient-based algorithm to optimize the

objective function because it is not continuous all over R
3, making it necessary to use

other non-standard approaches.

We have proposed an alternative to this procedure [13], so the untangling and

smoothing are carried out at the same stage. For this purpose, we use a suitable mod-

ification of the objective function such that it is regular all over R
3. It consists of

substituting the term σ in the quality metrics with the positive and increasing function

h(σ) = 1

2
(σ +

√
σ2 + 4δ2). When a feasible region (subset of R

3 where v could be

placed, N (v) being a valid submesh) exists, the minima of the original and modified

objective functions are very close and, when this region does not exist, the minimum

of the modified objective function is located in such a way that it tends to untangle

N (v). The latter occurs, for example, when the fixed boundary of N (v) is tangled.

With this approach, we can use any standard and efficient unconstrained optimization

method [24] to find the minimum of the modified objective function.

In addition, a smoothing of the boundary surface triangulation could be applied

before the movement of inner nodes of the domain by using the new procedure pre-

sented in [25] and [26]. This surface triangulation smoothing technique is also based

on a vertex repositioning defined by the minimization of a suitable objective function.

The original problem on the surface is transformed into a two-dimensional one on the

parametric space. In our case, the parametric space is a plane, chosen in terms of the

local mesh, in such a way that this mesh can be optimally projected performing a valid

mesh, that is, without inverted elements.

3 Test Example

The performance of our new mesh generator is shown in the following application.

We use our strategy to obtain a 3D mesh of the 25th Civil-Comp Conference logo.

A few more examples can be found at [10–12], where we analyze different issues of

our algorithm: refinement strategies, derefinement parameter, surface deviation of the

resulting mesh, applications to complex geometries, etc.

We are going to stamp the 25th Civil-Comp Conferences logo on a button. This

object is the union of a sphere with ratio 2, and semi-sphere with ratio 4, both with the

same center point. We stamp the number “25” on the uncovered surface of the sphere,

and the legend “- Civil-Comp Conferences - 1983 - 2008” on the uncovered flat place

of the semi-sphere.

The input data can be easily generated with toolkit MECCANO. It consists of five

cuboids for the semi-sphere and one cuboid for the small sphere, see Figure 1 or

Figure 4(a). This meccano approximation is included in a parallelepiped whose di-

mensions are 8 × 6 × 8. A one-to-one projection between meccano and the object is

defined by a sphere projection.

The meccano is first split into 288 cubes, see Figure 4(b), and then into 3-D tri-

angulation of 1728 tetrahedra and 455 nodes, see Figure 4(c). We apply 9 recursive

bisections on all tetrahedra which have a face placed on the meccano boundary or on

the sphere interface, and an additional 9 recursive bisections on the area where the

legend will be stamped. This mesh contains 469672 nodes and 2161960 tetrahedra.

The derefinement criterion is applied to capture the sphere curvature and the legend,

according to Section 2.3. We use here ε2 = 0.0001 for the curvature, and decide

to keep in the surface triangulation all triangles in the interface of the legend. The

resulting mesh contains 187750 nodes and 43710, see Figure 4(d).

(a) (b)

(c) (d)

Figure 4: Main stages of the mesh generator: (a) meccano, (b) valid mesh of cubes, (c)

coarse tetrahedral mesh, (d) mesh adaption after applying the refinement/derefinement

procedure

The projection of this meccano surface triangulation on the true surface produces

a 3-D tangled mesh with 19682 inverted elements, see Figure 5(a). The relocation of

inner nodes by using a proportional criterion reduces the number of inverted tetrahedra

to 88, Figure 5(b). After 9 iterations, the mesh optimization algorithm of Section 2.6

converts the tangled mesh into the one presented in Figure 5(c).

(a) (b)

(c) (d)

Figure 5: Main stages of the mesh generator (continued): (a) cross section of tangled

mesh after the projection, (b) cross section of tangled mesh after relocation, (c) cross

section of resulting mesh after mesh optimization process. (d) fontral view of the final

mesh

The mesh quality is improved to a minimum value of 0.32 and an average qκ =
0.69. The quality curves for the initial, intermediate and final triangulations are shown

in Figure 6.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 40000 80000 120000 160000

Q
u

a
lit

y

Elements

initial mesh
2nd iteration

final mesh (9th iteration)

Figure 6: Quality curves, using qκ = 3

|S||S−1|
, for the initial and optimized meshes

after two and nine (final mesh) iterations

The CPU time for constructing the initial mesh (refinement/derefinement, projec-

tion and inner relocation) is approximately 37 seconds and for its optimization (untan-

gling and smoothing) is 120 seconds on a Intel Xeon processor, 3.06 GHz and 4 Gb
RAM memory.

4 Conclusions and Future Research

The proposed mesh generator is an efficient method for creating tetrahedral meshes

on domains with boundary faces projectable on a meccano boundary. We remark that

it requires minimum user intervention and has a low computational cost.

Although this procedure is at present limited in applicability for highly complex

geometries, it results in a very efficient approach to the problems that fall within the

mentioned class. At present, the user has to define the meccano associated to the

object and mapping between meccano and object surfaces. Once these aspects are

fixed, the mesh generation procedure is fully automatic. A simple CAD application

has been developed to design the meccano approximation. In future works, we will

increase the functionality of our CAD application, including new types of pieces in the

construction of the meccano, and adding an automatic mapping between the boundary

faces of the meccano and the boundary of the object. Specifically, object surface

patches should be defined using meccano surfaces as parametric spaces.

The mesh generation technique is based on sub-processes (subdivision, projection,

optimization) which are not in themselves new, but the overall integration using a

simple shape as a starting point is an original contribution of this paper and it has some

obvious performance advantages. We have also introduced a generalized derefinement

condition for a simple approximation of surfaces. Finally, another interesting property

of the new mesh generation strategy is that it automatically fixes the boundary between

materials and achieves a good mesh adaption to the geometrical characteristics of the

domain.

Acknowledgments

This work has been supported by the Spanish Government, “Secretarı́a de Estado de

Universidades e Investigación”, “Ministerio de Educación y Ciencia”, and FEDER,

grant contracts: CGL2004-06171-C03-02-03 and CGL2007-65680-C03-01-03.

References

[1] G.F. Carey, “Computational Grids: Generation, Adaptation, and Solution Strate-

gies”, Taylor & Francis, Washington, 1997.

[2] P.J. Frey, P.L. George, “Mesh Generation”, Hermes Science Publishing, Oxford,

2000.

[3] P.L. George, H. Borouchaki, “Delaunay Triangulation and Meshing: Application

to Finite Elements”, Editions Hermes, Paris, 1998.

[4] J.F. Thompson, B. Soni, N. Weatherill, “Handbook of Grid Generation”, CRC

Press, London, 1999.

[5] J.M. González-Yuste, R. Montenegro, J.M. Escobar, G. Montero, E. Rodrı́guez,

“Local Refinement of 3-D Triangulations Using Object-oriented Methods”, Adv.

Eng. Soft., 35, 693-702, 2004.

[6] I. Kossaczky, “A Recursive Approach to Local Mesh Refinement in Two and

Three Dimensions”, J. Comput. Appl. Math., 55, 275-288, 1994.

[7] R. Löhner, J.D. Baum, “Adaptive H-Refinement on 3-D Unstructured Grids for

Transient Problems”, Int. J. Num. Meth. Fluids, 14, 1407-1419, 1992.

[8] M.C. Rivara, C. Levin, “A 3-D Refinement Algorithm Suitable for Adaptive

Multigrid Techniques”, J. Comm. Appl. Numer. Meth., 8, 281-290, 1992.

[9] G.F. Carey, “A Perspective on Adaptive Modeling and Meshing (AM&M)”,

Comput. Meth. Appl. Mech. Eng., 195, 214-235, 2006.

[10] R. Montenegro, J.M. Cascón, J.M. Escobar, E. Rodrı́guez, G. Montero, “Imple-

mentation in ALBERTA of an automatic tetrahedral mesh generator”, in: “Pro-

ceeding 15th International Meshing Roundtable”, Springer, Berlin, 325-338,

2006.

[11] J.M. Cascón, R. Montenegro, J.M. Escobar, E. Rodrı́guez, G. Montero, “A new

meccano technique for adaptive 3-D triangulation” in: ”Proceedings of 16th In-

ternational Meshing Roundtable”, Springer, Berlin, 103-120, 2007.

[12] R. Montenegro, J.M. Cascón, J.M. Escobar, E. Rodrı́guez, G. Montero, “An au-

tomatic strategy for adaptive tetrahedral mesh generation”, Applied Numerical

Mathematics (to appear).

[13] J.M. Escobar, E. Rodrı́guez, R. Montenegro, G. Montero, J.M. González-Yuste,

“Simultaneous Untangling and Smoothing of Tetrahedral Meshes”, Comput.

Meth. Appl. Mech. Eng., 192, 2775-2787, 2003.

[14] “ALBERTA - An Adaptive Hierarchical Finite Element Toolbox”,

http://www.alberta-fem.de/.

[15] A. Schmidt, K.G. Siebert, Design of Adaptive Finite Element Software: The

Finite Element Toolbox ALBERTA, “Lecture Notes in Computer Science and

Engineering”, Vol. 42, Springer, Berlin, 2005.

[16] W.F. Mitchell, “A Comparison of Adaptive Refinement Techniques for Elliptic

Problems”, ACM Trans. Math. Soft., 15, 326-347, 1989.

[17] M.C. Rivara, “A Grid Generator Based on 4-Triangles Conforming. Mesh-

refinement Algorithms”, Int. J. Num. Meth. Eng., 24, 1343-1354, 1987.

[18] L. Ferragut, R. Montenegro, A. Plaza, “Efficient Refinement/Derefinement Al-

gorithm of Nested Meshes to Solve Evolution Problems”, Comm. Num. Meth.

Eng., 10, 403-412, 1994.

[19] P.M. Knupp, “Achieving Finite Element Mesh Quality Via Optimization of the

Jacobian Matrix Norm and Associated Quantities. Part II-A Frame Work for Vol-

ume Mesh Optimization and the Condition Number of the Jacobian Matrix”, Int.

J. Num. Meth. Eng., 48, 1165-1185, 2000.

[20] P.M. Knupp, “Algebraic Mesh Quality Metrics”, SIAM J. Sci. Comput., 23, 193-

218, 2001.

[21] L.A. Freitag, P. Plassmann, “Local Optimization-based Simplicial Mesh Untan-

gling and Improvement”, Int. J. Num. Meth. Eng. 49, 109-125, 2000.

[22] L.A. Freitag, P.M. Knupp, “Tetrahedral Mesh Improvement Via Optimization of

the Element Condition Number”, Int. J. Num. Meth. Eng., 53, 1377-1391, 2002.

[23] “Coin 3D-3D Graphics Development Tools”, http://www.coin3d.org/.

[24] M.S. Bazaraa, H.D. Sherali, C.M. Shetty, “Nonlinear Programing: Theory and

Algorithms”, John Wiley and Sons Inc., New York, 1993.

[25] J.M. Escobar, G. Montero, R. Montenegro, E. Rodrı́guez, “An Algebraic Method

for Smoothing Surface Triangulations on a Local Parametric Space”, Int. J. Num.

Meth. Eng., 66, 740-760, 2006.

[26] R. Montenegro, J.M. Escobar, G. Montero, E. Rodrı́guez, “Quality improve-

ment of surface triangulations”, in: “Proceeding 14th International Meshing

Roundtable”, Springer, Berlin, 469-484, 2005.

